Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = chopped fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Viewed by 363
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

18 pages, 2459 KiB  
Article
A Comprehensive Study on the Assessment of CaCO3-, Nano-CaCO3-, and Glass Fiber Chopped Strand (GFCS)-Treated Clay in Terms of Bearing Capacity and Settlement Enhancements
by Baki Bağrıaçık, Barış Mahmutluoğlu and Abdulkadir Ürünveren
Appl. Sci. 2025, 15(14), 7779; https://doi.org/10.3390/app15147779 - 11 Jul 2025
Viewed by 253
Abstract
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil [...] Read more.
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil media by performing traditional and laboratory model experiments. Clay samples mixed with CaCO3 at 5%, nano-CaCO3 at 0.75% and GFCSs at 2.0% separately provided 1.49, 1.68 and 1.86 times increments in the bearing capacity values in comparison with plain clay, respectively. Mixtures of clay, GFCSs at 1.5% and nano-CaCO3 at 0.75% enabled the most optimal result of 2.58 times improved bearing capacities. Curing durations had a significant effect on increasing the bonding between nano-CaCO3 and clay which led to further improved conditions. Settlement enhancements of up to 6.80% were recorded for the mixtures of nano-CaCO3, GFCSs and clay as well. Thus, improvements were reached in terms of bearing capacity and settlements along with the applicability and economy of the related procedures, of which the details can be seen in the following sections of this study. Full article
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
Exploring the Thermal and Mechanical Properties of Thermoset-Based Composites Reinforced with New Continuous and Chopped Phosphate Glass Fibers
by Iliass Daki, Nezha Saloumi, Mohamed Yousfi, Caroline Parajua-sejil, Vivien Truchot, Jean-François Gérard, Omar Cherkaoui, Hassan Hannache, Mehdi El Bouchti and Mina Oumam
Polymers 2025, 17(12), 1627; https://doi.org/10.3390/polym17121627 - 11 Jun 2025
Viewed by 1208
Abstract
Currently, the main drivers for the production of phosphate glass fiber-reinforced composites are the growing demand for lightweight materials, reduced energy consumption, improved durability, and minimized environmental impact. This study aims to develop thermoset-based composites using chopped and continuous phosphate glass fibers (PGFs) [...] Read more.
Currently, the main drivers for the production of phosphate glass fiber-reinforced composites are the growing demand for lightweight materials, reduced energy consumption, improved durability, and minimized environmental impact. This study aims to develop thermoset-based composites using chopped and continuous phosphate glass fibers (PGFs) combined with polyester and epoxy matrices, processed via contact molding. Physical, mechanical, thermal, and morphological characterizations were conducted. The addition of PGFs led to a steady increase in density and fiber volume fraction. For polyester composites with short PGFs, density rose from 1.60 g/cm3 (0 wt%) to 1.77 g/cm3 (22.8 wt%), with a corresponding volume fraction increase from 0% to 14.4%. Similarly, epoxy composites showed density values from 1.70 g/cm3 to 1.87 g/cm3 and volume fractions up to 15.2%. Thermogravimetric analysis (TGA) showed that as the fiber content increased, the thermal degradation of the resin was delayed, as evidenced by a rise in onset degradation temperature and greater residual mass—indicating improved thermal stability of the composites. Tensile strength increased from 20.8 MPa to 71.3 MPa (polyester) and from 26.8 MPa to 75.9 MPa (epoxy) with chopped fibers, reaching 145.7 MPa and 187.9 MPa, respectively, with continuous fibers. Flexural strength reached 167.9 MPa (polyester) and 218.0 MPa (epoxy) in continuous-fiber configurations. Young’s modulus values closely matched Hirsch model predictions. These findings confirm the potential of PGF-reinforced thermoset composites for high-performance and sustainable material applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

28 pages, 12832 KiB  
Article
Experimental Investigations on Microstructure, Properties and Wear Behavior of Chopped Basalt Fiber and Molybdenum Disulfide Reinforced Epoxy Matrix Composites
by Santhosh Kumar P. C., Manickam Ravichandran, Vinayagam Mohanavel and Nachimuthu Radhika
Polymers 2025, 17(10), 1371; https://doi.org/10.3390/polym17101371 - 16 May 2025
Viewed by 364
Abstract
This study examined the impact of molybdenum disulfide (MoS2) addition as a filler in epoxy composites reinforced with chopped basalt fibers (CBF), maintaining the basalt fiber content at a constant 40 wt. %. The investigation focused on physical, microstructural, mechanical, and [...] Read more.
This study examined the impact of molybdenum disulfide (MoS2) addition as a filler in epoxy composites reinforced with chopped basalt fibers (CBF), maintaining the basalt fiber content at a constant 40 wt. %. The investigation focused on physical, microstructural, mechanical, and sliding-wear properties. Testing revealed that tensile, impact, compressive, and flexural strengths improved with MoS2 content from 0 to 8 wt. %. However, at 12 wt. % loading, these properties declined due to uneven dispersion and particle agglomeration. An increase in hardness was observed with rising MoS2 content, with a maximum value of 98 HV at 16 wt. %. Wear testing was conducted using a Taguchi L16 orthogonal array, evaluating the effects of multiple parameters. The results indicated that MoS2 content had the most significant influence on wear rate (WR), followed by applied load (P) and sliding distance (D), while sliding velocity (V) had minimal impact on specific wear rate (SWR) and coefficient of friction (COF). Scanning electron microscopy (SEM) was used to analyze wear mechanisms, and analysis of variance (ANOVA) confirmed the optimal conditions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

11 pages, 797 KiB  
Article
Comparison of In Vitro Fermentation Characteristics Among Five Maize Varieties
by Fabio Zicarelli, Serena Calabrò, Piera Iommelli, Micaela Grossi, Federico Infascelli and Raffaella Tudisco
Fermentation 2025, 11(5), 285; https://doi.org/10.3390/fermentation11050285 - 15 May 2025
Viewed by 620
Abstract
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the [...] Read more.
Maize (Zea mays L.) silage in the irrigated and flat areas of Italy represents the most important large ruminant feed crop due to the high dry matter yield and nutritive value per hectare. The aim of the investigation was to evaluate the chemical composition and the in vitro fermentation patterns of five maize varieties (Tiesto, R700 1, MAS 78.T, DKC 7074 and KWS Kantico) freshly chopped and preserved via ensiling. The results indicated that the chemical composition was not significantly different among varieties. The substrates were incubated for 72 h with buffered rumen fluid collected from cow. The ensiling process slightly reduced gas production and fermentation kinetics, likely due to the consumption of soluble sugars during fermentation. Organic matter loss (OM loss) differed significantly (p < 0.01) among varieties in ensiled maize, correlating with their neutral detergent fiber (NDF) content. While total volatile fatty acid (VFA) production showed no significant differences between varieties, the buffer capacity ratio (BCR), an indicator of protein degradation, varied significantly. Ammonia production (NH3) was significantly higher in ensiled samples, supporting previous findings that ensiling increases non-protein nitrogen (NPN) due to microbial proteolysis and plant enzyme activity. The gas production profiles and fermentation rates over time showed minor differences between fresh and ensiled samples, with fresh material exhibiting faster fermentation kinetics due to the presence of soluble sugars. These findings highlight the importance of evaluating maize silage quality to optimize ruminant nutrition and feed efficiency. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
Show Figures

Figure 1

15 pages, 4976 KiB  
Article
Thermal Insulation Based on NBR-Elastomerized Phenolic Resin Reinforced with Carbon Fibers: Mechanical and Ablation Properties
by Jelena Gržetić, Saša Brzić, Slavko Mijatov, Saša Živković, Veselin Živanović, Jela Galović and Tihomir Kovačević
Materials 2025, 18(10), 2250; https://doi.org/10.3390/ma18102250 - 13 May 2025
Viewed by 481
Abstract
In this paper, thermal and mechanical properties of ablative thermal protective material (TPM) as inhibitors for a free-standing propellant grain based on phenolic resin (PR) and acrylonitrile butadiene rubber (NBR) were investigated. NBR elastomerized PR composite, reinforced with chopped carbon fibers (CFs) (PR/NBR/CF), [...] Read more.
In this paper, thermal and mechanical properties of ablative thermal protective material (TPM) as inhibitors for a free-standing propellant grain based on phenolic resin (PR) and acrylonitrile butadiene rubber (NBR) were investigated. NBR elastomerized PR composite, reinforced with chopped carbon fibers (CFs) (PR/NBR/CF), was prepared by homogenization of 90 parts by weight (PBW) PR in 100 PBW NBR (28 wt.% of acrylonitrile content). PR/NBR/CF composite was blended in two-roller open and closed mixers and in a twin-screw extruder. Carbon black, aluminum(III)-oxide, and fumed silica were added as promoters of thermal and mechanical properties of PR/NBR/CF. The structural analysis was studied using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the prepared PR/NBR/CF composite inhibitor were studied by ablation and firing tests, while a morphological analysis of the char layer formed after the ablation test was conducted via scanning electron microscopy (SEM). A low erosion rate of 2.00 × 10−4 m·s−1 and high tensile strength and elongation at break of 6.7 MPa and 419.92%, respectively, indicate that the developed materials can be applied as a thermal insulation/inhibitor of free-standing rocket propellant grains. Bond strength between PR/NBR/CF composite and aluminized composite rocket propellant (ACRP), determined via a standard peel test, showed higher adhesion forces between the PR/NBR/CF composite and the ACRP compared to the cohesion between the ACRP molecular chains. Full article
Show Figures

Figure 1

11 pages, 226 KiB  
Article
Effects of Compound Lactic Acid Bacteria Additives on the Quality of Oat and Common Vetch Silage in the Northwest Sichuan Plateau
by Tianli Ma, Yafen Xin, Xuesong Chen, Xingjin Wen, Fei Wang, Hongyu Liu, Lanxi Zhu, Xiaomei Li, Minghong You and Yanhong Yan
Fermentation 2025, 11(2), 93; https://doi.org/10.3390/fermentation11020093 - 12 Feb 2025
Cited by 1 | Viewed by 1202
Abstract
The objective of this experiment was to determine whether compound microbial inoculants could enhance the fermentation of oat and common vetch silage that were stored in the Northwest Sichuan Plateau for 60 days under extremely low temperatures. Oat and common vetch harvested from [...] Read more.
The objective of this experiment was to determine whether compound microbial inoculants could enhance the fermentation of oat and common vetch silage that were stored in the Northwest Sichuan Plateau for 60 days under extremely low temperatures. Oat and common vetch harvested from single and mixed artificially planted grassland of oat and common vetch were chopped into 2–3 cm (oat, S1; common vetch, S2; oat–common vetch = 2:1, S3), then sterile water (T1), Zhuang Lemei IV silage additive (T2), and Fu Zhengxing silage additive (T3) were added to the feed and ensiled at the local outdoor environment for 60 days. Data were analyzed as a 3 × 3 factorial arrangement of treatments with the main effects of the materials, additives, and their interaction. Interactions between the materials and additives significantly affected the fermentation quality and the content of DM, WSC, and NDF and the number of yeasts in forages. Treatments with S3 have significantly higher contents of lactic acid, acetic acid, and lactic acid bacteria in the feed than those in the S1 and S2 treatments, while the contents of AN/TN and propionic acid were significantly lower compared with the S1 and S2 treatments (p < 0.05). Concentrations of lactic acid, acetic acid, and propionic acid were significantly increased and the content of neutral detergent fiber in the T2-treated silage decreased compared with the T1 treatment (p < 0.05). The T3 treatment significantly reduced the number of yeasts in the silage but the compound lactic acid bacteria additive treatment (T1, T2) significantly decreased the butyric acid content and pH of the feed and increased the acid detergent fiber content and the number of lactic acid bacteria in the feed compared with the T1 treatment. Among them, the butyric acid content of the T3 treatment decreased by 63.64–86.05%, while that of the T2 treatment decreased by 36.36–83.33% (p < 0.05). The comprehensive analysis of the membership function revealed that the silage quality was the best after the S3T2 treatment, so the implementation of the S3T2 combination in the Northwest Sichuan Plateau can provide guarantees for the production of local high-quality forage grass and alleviate the shortage of forage grass. Full article
24 pages, 30156 KiB  
Article
Chopped Basalt Fibers Reinforced Mortar for Strengthening the Architectural Heritage
by Micaela Mercuri, Marco Vailati and Amedeo Gregori
Fibers 2025, 13(2), 20; https://doi.org/10.3390/fib13020020 - 11 Feb 2025
Cited by 1 | Viewed by 2373
Abstract
The high seismic vulnerability of unreinforced masonry buildings urgently calls for researchers to develop sustainable reinforcing methods and materials. This paper presents an innovative lime-based mortar reinforced with randomly oriented basalt fibers for the reinforcement of masonry heritage. The main aim of this [...] Read more.
The high seismic vulnerability of unreinforced masonry buildings urgently calls for researchers to develop sustainable reinforcing methods and materials. This paper presents an innovative lime-based mortar reinforced with randomly oriented basalt fibers for the reinforcement of masonry heritage. The main aim of this study is to understand the effect of the content and the length of basalt fibers on the mortar’s mechanical behavior. As a cementitious material made mostly out of lime, the mortar is chemically compatible with the historical substrate and therefore suitable in cases of restoration works on architectural heritage. Moreover, the chopped basalt fibers are randomly oriented, and this characteristic makes the overall layer effective in all directions, as the state of stress induced by seismic action is directionally undetermined. The newly proposed reinforcement system is characterized by a twofold aspect related to sustainability: 30% of the aggregates composing the mortar mix design is a recycled result of the ruins of the 2009 L’Aquila earthquake, and the chopped fibers are made out of basalt, widely known for its environmentally supportable peculiarity. The study consists of testing samples characterized by two fiber lengths and six fiber contents, along with one set of plain mortar samples. Specimens measuring 160 mm × 40 mm × 40 mm are first tested in a three-point bending (TPB) configuration, aiming to determine the flexural strength and the post-peak capacity through the calculation of the fracture energy. Then, the two broken pieces resulting from the TPB tests, each measuring 80 mm × 40 mm × 40 mm, are tested in splitting and compression, respectively, aiming to compute the tensile and compressive strengths. Finally, to provide a trend for the mortar’s mechanical properties, a regression analysis is performed by fitting the experimental data with simple linear, polynomial, and exponential regression models. Results show that: (i) both fiber content and fiber length are responsible for a linear increase of the flexural strength and the fracture energy; (ii) for both short- and long-fiber mortar samples, the tensile strength and the compressive strength parabolically increase with the fiber content; (iii) the increase in fiber content and fiber length always generates a reduction in the conglomerate workability. The fiber content (FC) optimization with respect to the mechanical properties leads to a basalt FC equal to 1.2% for long-fiber samples and an FC equal to 1.9% for short-fiber ones. Full article
Show Figures

Figure 1

18 pages, 11691 KiB  
Article
Effect of Geometry and Size on Additively Manufactured Short-Fiber Carbon-Nylon Composite Under Tensile Loading
by András Kámán, Armand Meszlényi, Miklós Jakab, András Kovács and Attila Egedy
Polymers 2025, 17(3), 401; https://doi.org/10.3390/polym17030401 - 3 Feb 2025
Cited by 1 | Viewed by 948
Abstract
As the articles relating to the study of 3D printing processes are picking up pace, the question of comparability and repeatability based on the geometry and size of the specimens arises, based on the fact that the widely used extrusion 3D printing processes [...] Read more.
As the articles relating to the study of 3D printing processes are picking up pace, the question of comparability and repeatability based on the geometry and size of the specimens arises, based on the fact that the widely used extrusion 3D printing processes inherently have a structure that is made up of extruded lines of various shapes and sizes. This study aimed to determine the impact the specimen geometry and size have on the final tensile strength. One of the most widely used engineering materials, chopped carbon-fiber-reinforced nylon was used for this study. The four main specimen groups examined were specimens containing only walls and specimens containing only infill printed with both a 0.4 mm and 0.8 mm nozzle (to determine that the size of the extrusion lines has any effect on the tensile strength with different specimen sizes) achieving a solid body with two different line structures. Contradictory to the initial expectations, the tests showed that the geometry and size of the specimens had not influenced the tensile strength of the specimens in any of the four specimen groups. However, the tests showed that the groups containing only walls were always stronger than their only-infill counterparts and the groups printed with a 0.4 mm nozzle were stronger than the groups printed with a 0.8 mm nozzle. Full article
(This article belongs to the Special Issue 3D Printing of Polymer-Based Composite Materials)
Show Figures

Figure 1

23 pages, 12763 KiB  
Article
Bond Performance of GFRP Bars in Glass and Basalt Fiber-Reinforced Geopolymer Concrete Under Hinged Beam Tests
by Duygu Ertürkmen, Hüsamettin Ürünveren, Ahmet Beycioğlu, Nabi Ibadov, Hüseyin Yılmaz Aruntaş and Andrzej Garbacz
Materials 2025, 18(3), 498; https://doi.org/10.3390/ma18030498 - 22 Jan 2025
Cited by 3 | Viewed by 1081
Abstract
In recent years, researchers have focused on the usability of fiber-reinforced polymer (FRP) bars due to their lightweight, corrosion-resistant, and eco-friendly characteristics. Geopolymers, as low-carbon alternatives to traditional binders, aim to reduce CO2 emissions in concrete production. The bond strength between FRP [...] Read more.
In recent years, researchers have focused on the usability of fiber-reinforced polymer (FRP) bars due to their lightweight, corrosion-resistant, and eco-friendly characteristics. Geopolymers, as low-carbon alternatives to traditional binders, aim to reduce CO2 emissions in concrete production. The bond strength between FRP bars and concrete is critical for the load-bearing capacity and deformation characteristics of reinforced elements. The objectives of this work are to investigate the bond performance of GFRP bars in chopped glass and basalt fiber-added geopolymer concrete using hinged beam tests. Since the hinged beam test accurately represents the behavior of real bending elements, this test method was selected as a main bonding test. Initially, three geopolymer mixtures with Ms modulus values of 1.2, 1.3, and 1.4 were prepared and tested. The mixture with a modulus of 1.2 Ms, achieving a compressive strength of 56.53 MPa, a flexural strength of 3.54 MPa, and a flow diameter of 57 cm, was chosen for beam production due to its optimal workability and strength. After mechanical and workability tests, SEM analysis was performed to evaluate its internal structure. For evaluating the bond performance of GFRP bars, 12 geopolymer beam specimens were prepared, incorporating varying fiber types (chopped glass fiber or basalt fiber) and embedment lengths (5 Ø or 20 Ø). Hinged beam tests revealed that the bond strengths of glass and basalt fiber-added mixtures were up to 49% and 37% higher than that of the control geopolymer concrete, respectively. It was concluded that incorporating fibers positively influenced the bond between geopolymer concrete and GFRP bars, with glass fibers proving more effective than basalt fibers. These findings enhance the understanding of bond mechanisms between GFRP bars and geopolymer concrete, emphasizing their potential for sustainable and durable construction in both industrial and scientific applications. Full article
Show Figures

Figure 1

15 pages, 796 KiB  
Article
The Effect of Corn Ensiling Methods on Digestibility and Biogas Yield
by Karol Kupryaniuk, Kamil Witaszek, Iryna Vaskina, Sebastian Filipek-Kaźmierczak, Jakub Kupryaniuk, Piotr Sołowiej and Jacek Dach
Energies 2025, 18(1), 188; https://doi.org/10.3390/en18010188 - 4 Jan 2025
Cited by 1 | Viewed by 959
Abstract
This study investigates the impact of different corn silage preparation methods, namely the traditional and Shredlage methods, on digestibility and biogas yield in anaerobic digestion and its nutritional value—the first complex study of its kind. Key parameters of both silage types were analyzed, [...] Read more.
This study investigates the impact of different corn silage preparation methods, namely the traditional and Shredlage methods, on digestibility and biogas yield in anaerobic digestion and its nutritional value—the first complex study of its kind. Key parameters of both silage types were analyzed, including chemical composition, fiber content, and elemental makeup. Methane and biogas production were assessed under standardized fermentation conditions. The results showed that the Shredlage method, characterized by more intensive chopping, led to higher biogas and methane yields per unit of organic dry matter compared to traditional silage. This improvement is attributed to enhanced digestibility due to the lower content of neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber in Shredlage. An elemental analysis revealed slight differences in carbon-to-nitrogen (C/N) ratios, with both silages showing values suitable for efficient fermentation. Despite minor variations in mineral content, Shredlage demonstrated greater efficiency in biogas production, particularly for rapid fermentation processes. The findings underscore the importance of silage preparation techniques in optimizing biogas yield and suggest Shredlage as a superior option for enhancing energy recovery in biogas plants. Future work should explore the economic trade-offs and scalability of these methods. Full article
(This article belongs to the Special Issue New Challenges in Biogas Production from Organic Waste)
Show Figures

Figure 1

17 pages, 2553 KiB  
Article
Evaluation of SMA-13 Asphalt Mixture Reinforced by Different Types of Fiber Additives
by Haochen Wu, Peng Xiao, Ziyun Fei, Aihong Kang and Xing Wu
Materials 2024, 17(22), 5468; https://doi.org/10.3390/ma17225468 - 8 Nov 2024
Viewed by 1117
Abstract
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil [...] Read more.
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil absorption property of these fiber additives were analyzed. Secondly, the property of SMA-13 reinforced using four types of single fibers and two kinds of composite fibers (FLF + CBF and FLF + FBF) was comprehensively analyzed. Specifically, the high-temperature performance was evaluated using the uniaxial penetration test and the rutting test, the medium-temperature anticracking property was evaluated using the IDEAL-CT test, the low-temperature property was analyzed using the beam bending test, and the water stability was studied by the freeze–thaw splitting test. Thirdly, the dynamic mechanical response of different-fibers-modified SMA-13 was evaluated using the uniaxial compression dynamic modulus test. Finally, correlation analysis between the results of dynamic modulus and the high-, medium-, and low-temperature mechanical performance was carried out. The research results reveal that the stability of CBF and FBF under thermal action is better than that of GLF and FLF, and FBF shows the best thermal stability. The oil absorption property of FLF is better than that of GLF, followed by FBF and CBF. The comprehensive mechanical properties of CBF- and FBF-reinforced SMA-13 are better than those of FLF- and GLF-modified SMA-13. CBF can better reinforce the mechanical property of SMA-13 under low and medium temperature, while FBF can better reinforce the performance of SMA-13 at high temperature. FLF/CBF- and FLF/FBF-composite-modified SMA-13 show better high-temperature mechanical performance than that of the single-fiber-reinforced mixture, and FLF has some negative impact on the properties of FLF/FBF-composite-modified SMA-13 at low temperature. Fibers have no significant influence on the water stability of the mixtures. Meanwhile, the linear correlation between the mechanical performance of all the fiber-reinforced SMA-13 and the dynamic modulus result is good. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

19 pages, 6344 KiB  
Article
Influence of Basalt Fiber Morphology on the Properties of Asphalt Binders and Mixtures
by Chenhao Cai, Keke Lou, Fuxin Qian and Peng Xiao
Materials 2024, 17(21), 5358; https://doi.org/10.3390/ma17215358 - 1 Nov 2024
Cited by 4 | Viewed by 1272
Abstract
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) [...] Read more.
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) and flocculent basalt fiber (FBF) were selected to make samples for testing the influence of the two types of basalt fibers on asphalt materials. Fluorescence microscopy was used to obtain the dispersion of fiber in asphalt binders. Then, a temperature sweep test and a multiple stress creep recovery (MSCR) test were carried out to appraise the rheological characteristics of the binder. Moreover, the performance of the fiber-reinforced asphalt mixture was evaluated by a wheel tracking test, a uniaxial penetration test, an indirect tensile asphalt cracking test (IDEAL-CT), a low-temperature bending test, a water-immersion stability test, and a freeze–thaw splitting test. The results indicate that the rheological behavior of asphalt binders could be enhanced by both types of fibers. Notably, FBFs exhibit a larger contact area with asphalt mortar compared to CBFs, resulting in improved resistance to deformation under identical shear conditions. Meanwhile, the performance of the asphalt mixture underwent different levels of enhancement with the incorporation of two morphologies of basalt fiber. Specifically, as for the road property indices with FBFs, the enhancement extent of DS in the wheel tracking test, that of RT in the uniaxial penetration test, that of the CTindex in the IDEAL-CT test, and that of εB in the low-temperature trabecular bending test was 3.1%, 6.8%, 15.1%, and 6.5%, respectively, when compared to the CBF-reinforced mixtures. Compared with CBFs, FBFs significantly enhanced the elasticity and deformation recovery ability of asphalt mixtures, demonstrating greater resistance to high-temperature deformation and a more pronounced effect in delaying the onset of middle- and low-temperature cracking. Additionally, the volume of the air void for asphalt mixtures containing FBFs was lower than that containing CBFs, thereby reducing the likelihood of water damage due to excessive voids. Consequently, the moisture susceptibility enhancement of CBFs to asphalt mixture was not obvious, while FBFs could improve moisture susceptibility by more than 20%. Overall, the impact of basalt fibers with different morphologies on the properties of asphalt pavement materials varies significantly, and the research results may provide reference values for the choice of engineering fibers. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

20 pages, 10901 KiB  
Article
Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams
by Muhammet Muaz Yalçın
Polymers 2024, 16(21), 2991; https://doi.org/10.3390/polym16212991 - 25 Oct 2024
Cited by 4 | Viewed by 1984
Abstract
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis [...] Read more.
This study investigates the flexural behavior of 3D-printed multi-topology lattice beams, with a specific emphasis on octet and cube lattice geometries created through fused deposition modeling (FDM). The mechanical properties of these beams were evaluated through quasi-static three-point bending tests. A comparative analysis of load-carrying capacity, energy absorption, and specific energy absorption (SEA) indicates that octet lattice beams exhibit superior performance to cube lattice beams. The octet lattice beam in the triple-layer double-column (TL-DC) arrangement absorbed 14.99 J of energy, representing a 38% increase compared to the 10.86 J absorbed by the cube lattice beam in the same design. The specific energy absorption (SEA) of the octet beam was measured at 0.39 J/g, which exceeds the 0.29 J/g recorded for the cube beam. Two distinct types of deformations were identified for the struts and the beam layers. Octet struts exhibit enhanced performance in stretch-dominated zones, whereas the cube system demonstrates superior efficacy in compressive-dominated regions. The results highlight the enhanced efficacy of octet lattice structures in energy absorption and mechanical stability maintenance. The investigation of sandwich lattice topologies integrating octet and cube structures indicates that while hybrid designs may exhibit efficiency, uniform octet structures yield superior performance. This study provides valuable insights into the structural design and optimization of lattice systems for applications requiring high-energy absorption and mechanical robustness. Full article
(This article belongs to the Special Issue Additively Manufactured Polymers: Design, Testing and Applications)
Show Figures

Figure 1

13 pages, 3388 KiB  
Article
Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors
by Constantina Matsika-Klossa, Nikoleta Chatzidai, Charoula Kousiatza and Dimitrios Karalekas
Materials 2024, 17(18), 4668; https://doi.org/10.3390/ma17184668 - 23 Sep 2024
Cited by 2 | Viewed by 2090
Abstract
This work aims at the determination of the coefficient of thermal expansion (CTE) of parts manufactured through the Fused Deposition Modeling process, employing fiber Bragg grating (FBG) sensors. Pure thermoplastic and composite specimens were built using different commercially available filament materials, including acrylonitrile [...] Read more.
This work aims at the determination of the coefficient of thermal expansion (CTE) of parts manufactured through the Fused Deposition Modeling process, employing fiber Bragg grating (FBG) sensors. Pure thermoplastic and composite specimens were built using different commercially available filament materials, including acrylonitrile butadiene styrene, polylactic acid, polyamide, polyether-block-amide (PEBA) and chopped carbon fiber-reinforced polyamide (CF-PA) composite. During the building process, the FBGs were embedded into the middle-plane of the test specimens, featuring 0° and 90° raster printing orientations. The samples were then subjected to thermal loading for measuring the thermally induced strains as a function of applied temperature and, consequently, the test samples’ CTE and glass transition temperature (Tg) based on the recorded FBG wavelengths. Additionally, the integrated FBGs were used for the characterization of the residual strain magnitudes both at the end of the 3D printing process and at the end of each of the two consecutively applied thermal cycles. The results indicate that, among all tested materials, the CF-PA/0° specimens exhibited the lowest CTE value of 14 × 10−6/°C. The PEBA material was proven to have the most isotropic thermal response for both examined raster orientations, 0° and 90°, with CTE values of 117 × 10−6/°C and 108 × 10−6/°C, respectively, while similar residual strains were also calculated in both printing orientations. It is presented that the followed FBG-based methodology is proven to be an excellent alternative experimental technique for the CTE characterization of materials used in 3D printing. Full article
Show Figures

Figure 1

Back to TopTop