Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = cholecystokinin-B receptor (CCK-BR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6816 KiB  
Article
Rapid Generation and Molecular Docking Analysis of Single-Chain Fragment Variable (scFv) Antibody Selected by Ribosome Display Targeting Cholecystokinin B Receptor (CCK-BR) for Reduction of Chronic Neuropathic Pain
by Adinarayana Kunamneni, Marena A. Montera, Ravi Durvasula, Sascha R. A. Alles, Sachin Goyal and Karin N. Westlund
Int. J. Mol. Sci. 2023, 24(13), 11035; https://doi.org/10.3390/ijms241311035 - 3 Jul 2023
Cited by 6 | Viewed by 2451
Abstract
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated [...] Read more.
A robust cell-free platform technology, ribosome display in combination with cloning, expression, and purification was utilized to develop single chain Fragment variable (scFv) antibody variants as pain therapy directed at the mouse cholecystokinin B (CCK-B) receptor. Three effective CCK-B peptide-specific scFvs were generated through ribosomal display technology. Soluble expression and ELISA analysis showed that one antibody, scFv77-2 had the highest binding and could be purified from bacterial cells in large quantities. Octet measurements further revealed that the CCK-B scFv77-2 antibody had binding kinetics of KD = 1.794 × 10–8 M. Molecular modeling and docking analyses suggested that the scFv77-2 antibody shaped a proper cavity to embed the whole CCK-B peptide molecule and that a steady-state complex was formed relying on intermolecular forces, including hydrogen bonding, electrostatic force, and hydrophobic interactions. Thus, the scFv antibody can be applied for mechanistic intermolecular interactions and functional in vivo studies of CCK-BR. The high affinity scFv77-2 antibody showed good efficacy with binding to CCK-BR tested in a chronic pain model. In vivo studies validated the efficacy of the CCK-B receptor (CCK-BR) scFv77-2 antibody as a potential therapy for chronic trigeminal nerve injury-induced pain. Mice were given a single dose of the CCK-B receptor (CCK-BR) scFv antibody 3 weeks after induction of a chronic trigeminal neuropathic pain model, during the transition from acute to chronic pain. The long-term effectiveness for the reduction of mechanical hypersensitivity was evident, persisting for months. The anxiety- and depression-related behaviors typically accompanying persisting hypersensitivity subsequently never developed in the mice given CCK-BR scFv. The effectiveness of the antibody is the basis for further development of the lead CCK-BR scFv as a promising non-opioid therapeutic for chronic pain and the long-term reduction of chronic pain- and anxiety-related behaviors. Full article
(This article belongs to the Special Issue Therapeutic Antibody Development: What Are We Learning along the Way?)
Show Figures

Figure 1

14 pages, 1877 KiB  
Article
Development of the First 18F-Labeled Radiohybrid-Based Minigastrin Derivative with High Target Affinity and Tumor Accumulation by Substitution of the Chelating Moiety
by Thomas Günther, Nadine Holzleitner, Daniel Di Carlo, Nicole Urtz-Urban, Constantin Lapa and Hans-Jürgen Wester
Pharmaceutics 2023, 15(3), 826; https://doi.org/10.3390/pharmaceutics15030826 - 3 Mar 2023
Cited by 6 | Viewed by 2511
Abstract
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at [...] Read more.
In order to optimize elevated kidney retention of previously reported minigastrin derivatives, we substituted (R)-DOTAGA by DOTA in (R)-DOTAGA-rhCCK-16/-18. CCK-2R-mediated internalization and affinity of the new compounds were determined using AR42J cells. Biodistribution and µSPECT/CT imaging studies at 1 and 24 h p.i. were carried out in AR42J tumor-bearing CB17-SCID mice. Both DOTA-containing minigastrin analogs exhibited 3- to 5-fold better IC50 values than their (R)-DOTAGA-counterparts. natLu-labeled peptides revealed higher CCK-2R affinity than their natGa-labeled analogs. In vivo, tumor uptake at 24 h p.i. of the most affine compound, [19F]F-[177Lu]Lu-DOTA-rhCCK-18, was 1.5- and 13-fold higher compared to its (R)-DOTAGA derivative and the reference compound, [177Lu]Lu-DOTA-PP-F11N, respectively. However, activity levels in the kidneys were elevated as well. At 1 h p.i., tumor and kidney accumulation of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 and [18F]F-[natLu]Lu-DOTA-rhCCK-18 was high. We could demonstrate that the choice of chelators and radiometals has a significant impact on CCK-2R affinity and thus tumor uptake of minigastrin analogs. While elevated kidney retention of [19F]F-[177Lu]Lu-DOTA-rhCCK-18 has to be further addressed with regard to radioligand therapy, its radiohybrid analog, [18F]F-[natLu]Lu-DOTA-rhCCK-18, might be ideal for positron emission tomography (PET) imaging due to its high tumor accumulation at 1 h p.i. and the attractive physical properties of fluorine-18. Full article
Show Figures

Figure 1

16 pages, 3673 KiB  
Article
Treatment with a Cholecystokinin Receptor Antagonist, Proglumide, Improves Efficacy of Immune Checkpoint Antibodies in Hepatocellular Carcinoma
by Narayan Shivapurkar, Martha D. Gay, Aiwu (Ruth) He, Wenqiang Chen, Shermineh Golnazar, Hong Cao, Tetyana Duka, Bhaskar Kallakury, Sona Vasudevan and Jill P. Smith
Int. J. Mol. Sci. 2023, 24(4), 3625; https://doi.org/10.3390/ijms24043625 - 11 Feb 2023
Cited by 4 | Viewed by 3139
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated deaths worldwide. Treatment with immune checkpoint antibodies has shown promise in advanced HCC, but the response is only 15–20%. We discovered a potential target for the treatment of HCC, the cholecystokinin-B receptor (CCK-BR). [...] Read more.
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated deaths worldwide. Treatment with immune checkpoint antibodies has shown promise in advanced HCC, but the response is only 15–20%. We discovered a potential target for the treatment of HCC, the cholecystokinin-B receptor (CCK-BR). This receptor is overexpressed in murine and human HCC and not in normal liver tissue. Mice bearing syngeneic RIL-175 HCC tumors were treated with phosphate buffer saline (PBS; control), proglumide (a CCK-receptor antagonist), an antibody to programmed cell death protein 1 (PD-1Ab), or the combination of proglumide and the PD-1Ab. In vitro, RNA was extracted from untreated or proglumide-treated murine Dt81Hepa1-6 HCC cells and analyzed for expression of fibrosis-associated genes. RNA was also extracted from human HepG2 HCC cells or HepG2 cells treated with proglumide and subjected to RNA sequencing. Results showed that proglumide decreased fibrosis in the tumor microenvironment and increased the number of intratumoral CD8+ T cells in RIL-175 tumors. When proglumide was given in combination with the PD-1Ab, there was a further significant increase in intratumoral CD8+ T cells, improved survival, and alterations in genes regulating tumoral fibrosis and epithelial-to-mesenchymal transition. RNAseq results from human HepG2 HCC cells treated with proglumide showed significant changes in differentially expressed genes involved in tumorigenesis, fibrosis, and the tumor microenvironment. The use of the CCK receptor antagonist may improve efficacy of immune checkpoint antibodies and survival in those with advanced HCC. Full article
Show Figures

Figure 1

20 pages, 2710 KiB  
Article
Target-Specific Nanoparticle Polyplex Down-Regulates Mutant Kras to Prevent Pancreatic Carcinogenesis and Halt Tumor Progression
by Jill P. Smith, Wenqiang Chen, Narayan Shivapurkar, Monica Gerber, Robin D. Tucker, Bhaskar Kallakury, Siva Sai Krishna Dasa, Ruvanthi N. Kularatne and Stephan T. Stern
Int. J. Mol. Sci. 2023, 24(1), 752; https://doi.org/10.3390/ijms24010752 - 1 Jan 2023
Cited by 4 | Viewed by 3102
Abstract
Survival from pancreatic cancer is poor because most cancers are diagnosed in the late stages and there are no therapies to prevent the progression of precancerous pancreatic intraepithelial neoplasms (PanINs). Inhibiting mutant KRASG12D, the primary driver mutation in most human pancreatic [...] Read more.
Survival from pancreatic cancer is poor because most cancers are diagnosed in the late stages and there are no therapies to prevent the progression of precancerous pancreatic intraepithelial neoplasms (PanINs). Inhibiting mutant KRASG12D, the primary driver mutation in most human pancreatic cancers, has been challenging. The cholecystokinin-B receptor (CCK-BR) is absent in the normal pancreas but becomes expressed in high grade PanIN lesions and is over-expressed in pancreatic cancer making it a prime target for therapy. We developed a biodegradable nanoparticle polyplex (NP) that binds selectively to the CCK-BR on PanINs and pancreatic cancer to deliver gene therapy. PanIN progression was halted and the pancreas extracellular matrix rendered less carcinogenic in P48-Cre/LSL-KrasG12D/+ mice treated with the CCK-BR targeted NP loaded with siRNA to mutant Kras. The targeted NP also slowed proliferation, decreased metastases and improved survival in mice bearing large orthotopic pancreatic tumors. Safety and toxicity studies were performed in immune competent mice after short or long-term exposure and showed no off-target toxicity by histological or biochemical evaluation. Precision therapy with target-specific NPs provides a novel approach to slow progression of advanced pancreatic cancer and also prevents the development of pancreatic cancer in high-risk subjects without toxicity to other tissues. Full article
(This article belongs to the Special Issue Molecular Targets in Preventing Pancreatic Cancer Progression)
Show Figures

Figure 1

12 pages, 2112 KiB  
Article
Introduction of a SiFA Moiety into the D-Glutamate Chain of DOTA-PP-F11N Results in Radiohybrid-Based CCK-2R-Targeted Compounds with Improved Pharmacokinetics In Vivo
by Nadine Holzleitner, Thomas Günther, Roswitha Beck, Constantin Lapa and Hans-Jürgen Wester
Pharmaceuticals 2022, 15(12), 1467; https://doi.org/10.3390/ph15121467 - 25 Nov 2022
Cited by 10 | Viewed by 2817
Abstract
In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition, minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised and [...] Read more.
In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition, minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised and evaluated. CCK-2R affinity (IC50, AR42J cells) and lipophilicity (logD7.4) were determined. Biodistribution studies at 24 h post-injection (p.i.) and µSPECT/CT imaging at 1, 4 and 24 h p.i. were carried out in AR42J tumour-bearing CB17-SCID mice. CCK-2R affinity of (R)-DOTAGA-rhCCK-1 to 18 was enhanced with increasing distance between the SiFA building block and the binding motif. Lipophilicity of [177Lu]Lu-(R)-DOTAGA-rhCCK-1 to 18 was higher compared to that of [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04. The respective α- and γ-linked rhCCK derivatives revealing the highest CCK-2R affinity were further evaluated in vivo. In comparison with [177Lu]Lu-DOTA-PP-F11N, [177Lu-]Lu-(R)-DOTAGA-rhCCK-9 and -16 exhibited three- to eight-fold increased activity levels in the tumour at 24 h p.i. However, activity levels in the kidneys were elevated as well. We could show that the introduction of a lipophilic SiFA moiety into the hydrophilic backbone of [177Lu]Lu-DOTA-PP-F11N led to a decelerated blood clearance and thus improved tumour retention. However, elevated kidney retention has to be addressed in future studies. Full article
(This article belongs to the Special Issue Tumor-Targeting Radioligands for Molecular Imaging and Therapy)
Show Figures

Graphical abstract

18 pages, 4229 KiB  
Article
Dysregulation of the Enteric Nervous System in the Mid Colon of Complement Component 3 Knockout Mice with Constipation Phenotypes
by Yun Ju Choi, Hee Jin Song, Ji Eun Kim, Su Jin Lee, You Jeong Jin, Yu Jeong Roh, Ayun Seol, Hye Sung Kim and Dae Youn Hwang
Int. J. Mol. Sci. 2022, 23(12), 6862; https://doi.org/10.3390/ijms23126862 - 20 Jun 2022
Cited by 4 | Viewed by 3446
Abstract
Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic elimination under normal and disease conditions of the brain, even though it has not been studied in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism [...] Read more.
Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic elimination under normal and disease conditions of the brain, even though it has not been studied in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism of ENS during C3 deficiency-induced constipation, the changes in the markers of neuronal and interstitial cells of Cajal (ICCs), the markers for excitatory and inhibitory transmission of ENS, and expression of C3 receptors were analyzed in the mid colon of C3 knockout (KO) mice at 16 weeks of age. Prominent constipation phenotypes, including the decrease in stool parameters, changes in the histological structure, and suppression of mucin secretion, were detected in C3 KO mice compared to wildtype (WT) mice. The expression levels of the neuron specific enolase (NSE), protein gene product 9.5 (PGP9.5), and C-kit markers for myenteric neurons and ICCs were lower in the mid colon of C3 KO mice than WT mice. Excitatory transmission analysis revealed similar suppression of the 5-hydroxytryptamine (5-HT) concentration, expression of 5-HT receptors, acetylcholine (ACh) concentration, ACh esterase (AChE) activity, and expression of muscarinic ACh receptors (mAChRs), despite the mAChRs downstream signaling pathway being activated in the mid colon of C3 KO mice. In inhibitory transmission analysis, C3 KO mice showed an increase in the nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression, while neuronal NOS (nNOS) expression, cholecystokinin (CCK), and gastrin concentration were decreased in the same mice. Furthermore, the levels of C3a receptor (C3aR) and C3bR expression were enhanced in the mid colon of C3 KO mice compared to the WT mice during C3 deficiency-induced constipation. Overall, these results indicate that a dysregulation of the ENS may play an important role in C3 deficiency-induced constipation in the mid colon of C3 KO mice. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

8 pages, 1698 KiB  
Article
Therapeutic Response of CCKBR-Positive Tumors to Combinatory Treatment with Everolimus and the Radiolabeled Minigastrin Analogue [177Lu]Lu-PP-F11N
by Michal Grzmil, Stefan Imobersteg, Alain Blanc, Stephan Frank, Roger Schibli and Martin P. Béhé
Pharmaceutics 2021, 13(12), 2156; https://doi.org/10.3390/pharmaceutics13122156 - 15 Dec 2021
Cited by 6 | Viewed by 3969
Abstract
The inhibition of the mammalian target of rapamycin complex 1 (mTORC1) by everolimus (RAD001) was recently shown to enhance the tumor uptake of radiolabeled minigastrin. In this paper, we investigate if this finding can improve the in vivo therapeutic response to [177 [...] Read more.
The inhibition of the mammalian target of rapamycin complex 1 (mTORC1) by everolimus (RAD001) was recently shown to enhance the tumor uptake of radiolabeled minigastrin. In this paper, we investigate if this finding can improve the in vivo therapeutic response to [177Lu]Lu-PP-F11N treatment. The N-terminal DOTA-conjugated gastrin analogue PP-F11N (DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) was used to evaluate treatment efficacy in the human A431/CCKBR xenograft nude mouse model in combination with RAD001. Both RAD001 and [177Lu]Lu-PP-F11N single treatments as well as their combination inhibited tumor growth and increased survival. In concomitantly treated mice, the average tumor size and median survival time were significantly reduced and extended, respectively, as compared to the monotherapies. The histological analysis of kidney and stomach dissected after treatment with RAD001 and [177Lu]Lu-PP-F11N did not indicate significant adverse effects. In conclusion, our study data demonstrate the potential of mTORC1 inhibition to substantially improve the therapeutic efficacy of radiolabeled minigastrin analogues in CCKBR-positive cancers. Full article
Show Figures

Figure 1

20 pages, 3193 KiB  
Article
Cholecystokinin-B Receptor-Targeted Nanoparticle for Imaging and Detection of Precancerous Lesions in the Pancreas
by Jill P. Smith, Hong Cao, Elijah F. Edmondson, Siva Sai Krishna Dasa and Stephan T. Stern
Biomolecules 2021, 11(12), 1766; https://doi.org/10.3390/biom11121766 - 25 Nov 2021
Cited by 8 | Viewed by 3408
Abstract
Survival from pancreatic cancer remains extremely poor, in part because this malignancy is not diagnosed in the early stages, and precancerous pancreatic intraepithelial neoplasia (PanIN) lesions are not seen on routine radiographic imaging. Since the cholecystokinin-B receptor (CCK-BR) becomes over-expressed in PanIN lesions, [...] Read more.
Survival from pancreatic cancer remains extremely poor, in part because this malignancy is not diagnosed in the early stages, and precancerous pancreatic intraepithelial neoplasia (PanIN) lesions are not seen on routine radiographic imaging. Since the cholecystokinin-B receptor (CCK-BR) becomes over-expressed in PanIN lesions, it may serve as a target for early detection. We developed a biodegradable fluorescent polyplex nanoparticle (NP) that selectively targets the CCK-BR. The NP was complexed to a fluorescent oligonucleotide with Alexa Fluor 647 for far-red imaging and to an oligonucleotide conjugated to Alexa Fluor 488 for localization by immunohistochemistry. Fluorescence was detected over the pancreas of five- to ten-month-old LSL-KrasG12D/+; P48-Cre (KC) mice only after the injection of the receptor target-specific NP and not after injection of untargeted NP. Ex vivo tissue imaging and selective immunohistochemistry confirmed particle localization only to PanIN lesions in the pancreas and not in other organs, supporting the tissue specificity. A human pancreas tissue microarray demonstrated immunoreactivity for the CCK-BR only in the PanIN lesions and not in normal pancreas tissue. The long-term goal would be to develop this imaging tool for screening human subjects at high risk for pancreatic cancer to enable early cancer detection. Full article
Show Figures

Graphical abstract

12 pages, 2747 KiB  
Article
Evaluation of Actinium-225 Labeled Minigastrin Analogue [225Ac]Ac-DOTA-PP-F11N for Targeted Alpha Particle Therapy
by Yun Qin, Stefan Imobersteg, Alain Blanc, Stephan Frank, Roger Schibli, Martin P. Béhé and Michal Grzmil
Pharmaceutics 2020, 12(11), 1088; https://doi.org/10.3390/pharmaceutics12111088 - 12 Nov 2020
Cited by 23 | Viewed by 4414
Abstract
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and [...] Read more.
The overexpression of cholecystokinin B receptor (CCKBR) in human cancers led to the development of radiolabeled minigastrin analogues for targeted radionuclide therapy, which aims to deliver cytotoxic radiation specifically to cancer cells. Alpha emitters (e.g., actinium-225) possess high potency in cancer cell-killing and hold promise for the treatment of malignant tumors. In these preclinical studies, we developed and evaluated CCKBR-targeted alpha particle therapy. The cellular uptake and cytotoxic effect of actinium-225 labeled and HPLC-purified minigastrin analogue [225Ac]Ac-PP-F11N were characterized in the human squamous cancer A431 cells transfected with CCKBR. Nude mice bearing A431/CCKBR tumors were used for biodistribution and therapy studies followed by histological analysis and SPECT/CT imaging. In vitro, [225Ac]Ac-PP-F11N showed CCKBR-specific and efficient internalization rate and potent cytotoxicity. The biodistribution studies of [225Ac]Ac-PP-F11N revealed CCKBR-specific uptake in tumors, whereas the therapeutic studies demonstrated dose-dependent inhibition of tumor growth and extended mean survival time, without apparent toxicity. The histological analysis of kidney and stomach indicated no severe adverse effects after [225Ac]Ac-PP-F11N administration. The post-therapy SPECT-CT images with [111In]In-PP-F11N confirmed no CCKBR-positive tumor left in the mice with complete remission. In conclusion, our study demonstrates therapeutic efficacy of [225Ac]Ac-PP-F11N without acute radiotoxicity in CCKBR-positive cancer model. Full article
(This article belongs to the Special Issue Targeted Radionuclide Therapy)
Show Figures

Figure 1

Back to TopTop