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Abstract: In order to enable 18F- and 177Lu-labelling within the same molecule, we introduced a
silicon-based fluoride acceptor (SiFA) into the hexa-D-glutamate chain of DOTA-PP-F11N. In addition,
minigastrin analogues with a prolonged as well as γ-linked D-glutamate chain were synthesised
and evaluated. CCK-2R affinity (IC50, AR42J cells) and lipophilicity (logD7.4) were determined.
Biodistribution studies at 24 h post-injection (p.i.) and µSPECT/CT imaging at 1, 4 and 24 h p.i. were
carried out in AR42J tumour-bearing CB17-SCID mice. CCK-2R affinity of (R)-DOTAGA-rhCCK-1 to
18 was enhanced with increasing distance between the SiFA building block and the binding motif.
Lipophilicity of [177Lu]Lu-(R)-DOTAGA-rhCCK-1 to 18 was higher compared to that of [177Lu]Lu-
DOTA-PP-F11N and [177Lu]Lu-CP04. The respective α- and γ-linked rhCCK derivatives revealing
the highest CCK-2R affinity were further evaluated in vivo. In comparison with [177Lu]Lu-DOTA-
PP-F11N, [177Lu-]Lu-(R)-DOTAGA-rhCCK-9 and -16 exhibited three- to eight-fold increased activity
levels in the tumour at 24 h p.i. However, activity levels in the kidneys were elevated as well.
We could show that the introduction of a lipophilic SiFA moiety into the hydrophilic backbone of
[177Lu]Lu-DOTA-PP-F11N led to a decelerated blood clearance and thus improved tumour retention.
However, elevated kidney retention has to be addressed in future studies.

Keywords: cholecystokinin-2 receptor (CCK-2R); cholecystokinin-B receptor (CCK-BR); medullary
thyroid cancer (MTC); minigastrin analogues; radiohybrid; rhCCK

1. Introduction

Medullary thyroid carcinoma (MTC) constitutes for only 2–3% of all thyroid cancer
cases and is therefore rather rare, but treatment options are limited: neither external beam
radiation, nor conventional chemotherapy, nor radioiodine therapy are recommended, as
all three concepts have not shown curative effects [1–4]. Tyrosine kinase inhibitors such as
selpercatinib, vandetanib or cabozantinib are usually applied for systematic treatment but
these agents are associated with distinct side effects such as renal toxicity, myelosuppression,
arterial thromboembolism, hepatotoxicity, and muscle wasting [3,5].

Since Reubi et al. discovered that approximately 92% of all MTCs overexpress the
cholecystokinin-2 receptor (CCK-2R), designing small compounds that address this target
became attractive in combination with peptide receptor radionuclide imaging (PRRI) and
therapy (PRRT) [6]. While first compounds were based on the structure of cholecystokinin,
nowadays minigastrin-based ligands are clearly favoured because of their increased hy-
drophilicity [7]. However, early radiolabelled minigastrin analogues suffered from elevated
activity levels in the kidneys, which hampered a potential therapeutic use [8,9].

An important step for the applicability of these minigastrin derivatives was the mod-
ification within the linker section, namely the substitution of the hexa-L-glutamate by a
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hexa-D-glutamate chain, which resulted in compounds such as CP04 and DOTA-PP-F11N,
amongst others. The latter consists of a stabilised binding motif of seven amino acid with
high CCK-2R affinity (H-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH2), a hexa-D-glutamate linker
and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid) as a chelator [10,11].
Nevertheless, due to the high hydrophilicity of [177Lu]Lu-DOTA-PP-F11N, first patient
studies revealed a very rapid renal clearance already at 1 h post-injection (p.i.), which
resulted in a median (interquartile range) absorbed tumour dose of only 0.88 Gy/GBq [12].
Moreover, none of the currently available CCK-2R-targeted compounds for clinical applica-
tion bears an option for 18F-labelling.

Recently, radiohybrid (rh)-based prostate-specific membrane antigen (PSMA)-targeted
compounds were developed by our group, implementing a new class of theranostic com-
pounds. These compounds comprise a silicon-based fluoride acceptor (SiFA) moiety for
rapid and facile 18F-fluorination via a 18F/19F isotopic exchange reaction and additionally
contains a chelator for radiometallation (with 68Ga or 177Lu, amongst others). This concept
results in a chemically identical pair of compounds (either 18F/non-radioactive metal or
19F/radiometal), which thus exhibits identical pharmacokinetics and can be used for either
diagnostic or therapeutic applications [13,14].

Given the promising clinical data of the rhPSMA derivatives [15–18], the aim of this
study was to transfer the concept of rh-based compounds to minigastrin analogues. For
this reason, we introduced a SiFA group into the highly hydrophilic hexa-D-glutamate
chain of DOTA-PP-F11N via conjugation through a D-2,3-diaminopropionic acid (dap)
moiety to generate a possibility for 18F-labelling and compensate for the high lipophilicity
of the SiFA group. Moreover, DOTA was replaced by the more hydrophilic (R)-DOTAGA
(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-6yl)pentanedioic acid) in all
of our rhCCK derivatives. Besides the usually present α-linked poly-D-glutamate chain the
rhCCK ligands were designed with a γ-linked poly-D-glutamate chain (Figure 1) as well
and evaluated in state-of-the-art experiments.
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rhCCK-8: n1 = 7 and n2 = 0; (R)-DOTAGA-rhCCK-9: n1 = 8 and n2 = 0) of DOTA-PP-F11N. (c) Structure 

of the rhCCK derivatives ((R)-DOTAGA-rhCCK-10-18) generated analogous to B but containing a 

γ-instead of an α-linked D-glutamate chain ((R)-DOTAGA-rhCCK-10-16: n1 = 0 to 6 and n2 = 6 − n1; 

(R)-DOTAGA-rhCCK-17: n1 = 7 and n2 = 0; (R)-DOTAGA-rhCCK-18: n1 = 8 and n2 = 0). 

Figure 1. Structure of (a) DOTA-PP-F11N. (b) Structure of the rhCCK derivatives ((R)-DOTAGA-
rhCCK-1-9) comprising a modified linker section generated via the introduction of a dap(SiFA)
moiety into the D-glutamate chain ((R)-DOTAGA-rhCCK-1-7: n1 = 0 to 6 and n2 = 6 − n1; (R)-
DOTAGA-rhCCK-8: n1 = 7 and n2 = 0; (R)-DOTAGA-rhCCK-9: n1 = 8 and n2 = 0) of DOTA-PP-F11N.
(c) Structure of the rhCCK derivatives ((R)-DOTAGA-rhCCK-10-18) generated analogous to B but
containing a γ-instead of an α-linked D-glutamate chain ((R)-DOTAGA-rhCCK-10-16: n1 = 0 to 6 and
n2 = 6 − n1; (R)-DOTAGA-rhCCK-17: n1 = 7 and n2 = 0; (R)-DOTAGA-rhCCK-18: n1 = 8 and n2 = 0).

2. Results
2.1. Synthesis and Radiolabelling

The uncomplexed ligands were synthesised via standard Fmoc-based SPPS, yielding
5–20% RP-HPLC purified precursors (chemical purity > 95%, determined by RP-HPLC at
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λ = 220 nm). Non-radioactive labelling proceeded quantitatively using a 2.5-fold excess
of [natLu]LuCl3. No purification prior to affinity studies was performed, as the remaining
free Lu3+ was shown to not affect affinity data [19]. 177Lu-labelling of all compounds was
carried out manually resulting in quantitative radiochemical yields and purities of >95% as
well as molar activities of 30 ± 10 GBq/µmol. After radiolabelling all peptides were used
without further purification. Confirmation of peptide integrity and quality controls are
depicted in the Supplementary Materials (Figures S1–S3).

2.2. In Vitro Characterisation

The affinity and lipophilicity data of all compounds are summarised in Figure 2 and
Table S1.
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Figure 2. Affinity (IC50) and lipophilicity (logD7.4) data of the natLu-labelled references DOTA-
PP-F11N (dark blue) and CP04 (dark grey) compared to their γ-linked analogues DOTA-PP-γ-
F11N (light blue) and γ-CP04 (light grey), the natLu-labelled rhCCK derivatives comprising an
α-linked D-glutamate chain ([natLu]Lu-(R)-DOTAGA-rhCCK-1-9, red) and the natLu-labelled rhCCK
derivatives containing a γ-linked D-glutamate chain ([natLu]Lu-(R)-DOTAGA-rhCCK-10-18, green).
IC50 values were determined using AR42J cells (2.0 × 105 cells per well) and [177Lu]Lu-DOTA-
PP-F11N (0.3 pmol/well) as radiolabelled reference (3 h, 37 ◦C, RPMI 1640, 5 mM L-Gln, 5 mL
non-essential amino acids (100×), 10% fetal calf serum (FCS) + 5% bovine serum albumin (BSA)
(v/v)).

In general, all ligands containing a γ-linked D-glutamate chain revealed a higher
affinity towards CCK-2R compared to their α-linked counterparts, except for [natLu]Lu-10.
Furthermore, a trend could be observed that with increasing distance of the dap(SiFA)
moiety to the binding motif IC50 values decreased, irrespective whether the compounds are
α- or γ-linked. Overall, [natLu]Lu-(R)-DOTAGA-rhCCK-16 and [natLu]Lu-(R)-DOTAGA-
rhCCK-18 displayed the highest CCK-2R affinity among all SiFA-containing compounds.
Nevertheless, all four reference ligands showed lower IC50 values, suggesting a negative
impact of the SiFA unit irrespective of its position within the molecule.
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All four reference ligands revealed a high hydrophilicity, exhibiting distribution coeffi-
cients (logD7.4) in a range of −4.8 and −3.8. Not surprisingly, the rhCCK derivatives com-
prising the lipophilic SiFA moiety displayed a distinctly higher lipophilicity (logD7.4 = −2.9
to −1.7).

Internalisation values at different time points were determined for the respective
most affine α- and γ-linked rhCCK derivative ([177Lu]Lu-(R)-DOTAGA-rhCCK-9 and
-16) compared to the references. The amount of internalised activity (%) on AR42J cells
increased over time for all compounds tested from 2–8% (1 h) to 13–32% (6 h) (Figure 3,
Table S2). Most of the cell-associated activity was internalized, while cell membrane-bound
activity was ≤1.1% (Tables S2 and S3).
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Figure 3. (a) CCK-2R-mediated internalisation (0.25 pmol/well) on AR42J cells as percent (%) of the
applied activity (incubation at 37 ◦C for 1, 2, 4 and 6 h, RPMI 1640, 5 mM L-Gln, 5 mL non-essential
amino acids (100×), 10% FCS + 5% BSA (v/v), 3.0 × 105 cells/mL/well). (b) CCK-2R mediated
internalisation (% of the reference [177Lu]Lu-DOTA-PP-F11N) of [177Lu]Lu-CP04 (grey), [177Lu]Lu-
(R)-DOTAGA-rhCCK-9 (red) and [177Lu]Lu-(R)-DOTAGA-rhCCK-16 (green) after incubation for
6 h.

The 177Lu-labelled rhCCK derivative [177Lu]Lu-(R)-DOTAGA-rhCCK-16 exhibited
distinctly higher internalisation values than the reference compounds, [177Lu]Lu-DOTA-
PP-F11N and [177Lu]Lu-CP04. In comparison, the internalisation kinetics of [177Lu]Lu-(R)-
DOTAGA-rhCCK-9 were found to be lower.

2.3. In Vivo Characterisation

The most affine α-linked([177Lu]Lu-(R)-DOTAGA-rhCCK-9) and γ-linked ([177Lu]Lu-
(R)-DOTAGA-rhCCK-16) rhCCK derivatives were evaluated in vivo in comparison to
the reference [177Lu]Lu-DOTA-PP-F11N, which is already being applied in clinical trials
(Figure 4, Table S4).

In vivo, the rhCCK derivatives showed 3- (6.40± 1.48 %ID/g, [177Lu]Lu-(R)-DOTAGA-
rhCCK-9) to 8-fold (15.7 ± 3.3 %ID/g, [177Lu]Lu-(R)-DOTAGA-rhCCK-16) higher activity
levels in the tumour and 5- to 10-fold higher levels in the CCK-2R-positive stomach than the
reference ligand, which was statistically significant in groups of four mice (p < 0.02). Activ-
ity levels in the liver were not significantly increased for both rhCCK derivatives compared
to the reference compound at 24 h p.i. despite their increased lipophilicity (p > 0.15). Blood
levels of both rhCCK derivatives were 10- to 11-fold increased to [177Lu]Lu-DOTA-PP-F11N
(p < 0.001) but still favourably low at 24 h p.i. (~0.015 %ID/g) despite their decelerated
clearance kinetics. However, activity levels in the kidneys were almost 30-fold higher for
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the rhCCK derivatives compared to [177Lu]Lu-DOTA-PP-F11N at 24 h p.i. (84.4 ± 22.7
and 85.5 ± 11.3 vs. 3.08 ± 0.51 %ID/g, respectively, p < 0.001). [177Lu]Lu-DOTA-PP-F11N
revealed lower activity levels in most organs at 24 h p.i., indicating a more rapid clearance.
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Figure 4. Biodistribution of the reference compound, [177Lu]Lu-DOTA-PP-F11N (blue), the α-linked
[177Lu]Lu-(R)-DOTAGA-rhCCK-9 (red) and the γ-linked [177Lu]Lu-(R)-DOTAGA-rhCCK-16 (green)
in selected organs (%ID/g) at 24 h p.i. in AR42J tumour-bearing CB17-SCID mice (100 pmol each,
n = 4). Data is expressed as mean ± SD.

µSPECT/CT studies of mice (n = 1) injected with [177Lu]Lu-(R)-DOTAGA-rhCCK-9,
[177Lu]Lu-(R)-DOTAGA-rhCCK-16 and [177Lu]Lu-DOTA-PP-F11N at 1, 4 and 24 h p.i.
revealed a low overall background activity for all three compounds at each time point,
except for a high kidney accumulation and retention for the latter two (Figure 5). Activity
levels in the tumour were highest for [177Lu]Lu-(R)-DOTAGA-rhCCK-16 (15.7± 3.3 %ID/g)
and lowest for the reference ligand (1.8 ± 0.8 %ID/g).
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Figure 5. Representative µSPECT/CT images of (a) [177Lu]Lu-DOTA-PP-F11N, (b) [177Lu]Lu-(R)-
DOTAGA-rhCCK-9 and (c) [177Lu]Lu-(R)-DOTAGA-rhCCK-16 at 1, 4 and 24 h p.i. in AR42J tumour-
bearing CB17- SCID mice (100 pmol each). Tumours (T) are indicated by white arrows.
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CCK-2R specificity of [177Lu]Lu-(R)-DOTAGA-rhCCK-16 was evaluated via co-injection
of an excess of the CCK2R-targeted compound, [natLu]Lu-DOTA-MGS5, which resulted
in activity levels in the tumour < 1%. Activity levels in the stomach, which endogenously
expresses the CCK-2R, were found to be <0.3% (Figure S4, Table S4).

3. Discussion

Among the currently most promising minigastrin-derived peptides for clinical appli-
cation (DOTA-MGS5, DOTA-PP-F11N and CP04), there is no option available for facile 18F-
labelling [20–23]. Particularly a 18F-labelled minigastrin analogue would be beneficial for
the detection of small MTC-derived metastases due to the low tissue penetration and thus
high resolution of fluorine-18, consequently to its low positron energy (Eβ,max = 635 keV),
compared to gallium-68, for example [24]. Furthermore, up to now there is no CCK-2R-
targeted ligand that enables both 18F- and 177Lu-labelling. This radiohybrid-based concept
has been successfully implemented for PSMA inhibitors and resulted in impressive results
over the last three years, which is why the compounds rhPSMA-7.3 and rhPSMA-10.1 are
evaluated in clinical studies [13,25–32]. With the aim to develop a 177Lu-labelled minigas-
trin analogue, which can also be labelled with fluorine-18, we introduced the lipophilic SiFA
moiety into different sites within the highly hydrophilic, N-terminal D-glutamate chain
of DOTA-PP-F11N and compared these novel compounds to the reference compounds,
[177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04.

The SiFA moiety was introduced into different sites within both an α-linked poly-D-
glutamate chain (= (R)-DOTAGA-rhCCK-1 to -9) and a γ-linked poly-D-glutamate chain
(= (R)-DOTAGA-rhCCK-10 to -18), while the binding sequence of DOTA-PP-F11N was
maintained. In general, for both linker concepts it could be observed that with increasing
distance of the SiFA moiety to the binding motif, CCK-2R affinity was enhanced, which
indicates that the bulky SiFA building block does not fit into the binding pocket of the
receptor. However, at a farther distance the SiFA group seems to be located outside of the
binding pocket and thus CCK-2R affinity increases. In direct comparison of these series of
minigastrin derivatives (α- or γ-linked D-glutamate chain) that each exhibit the same site
for the SiFA moiety, it is evident that those ligands containing a γ-linked D-glutamate chain
generally show a higher CCK-2R affinity. Similar results were observed for the respective
γ-linked analogues of the references, [natLu]Lu-DOTA-PP-γ-F11N and [natLu]Lu-γ-CP04,
pointing to a beneficial effect of a prolonged linker section and thus the use of γ-linked
D-glutamate residues. Nevertheless, IC50 values of the most affine compounds were still
approximately fivefold (α-linked poly-D-glutamate linker) and twofold (γ-linked poly-D-
glutamate linker) higher compared to [natLu]Lu-DOTA-PP-F11N and [natLu]Lu-CP04 (IC50
of 11–13 nM). Hence, it is assumed that the lower CCK-2R affinity of the novel rhCCK
derivatives is due either to the addition of the sterically demanding SiFA moiety or the
(R)-DOTAGA chelator, which comprises one negative charge more than the DOTA chelator
present in the reference compounds when labelled with [nat/177Lu]lutetium.

The addition of the SiFA moiety was also accompanied by an enhanced lipophilicity
(logD7.4: −2.9 to −1.7), which is one to three magnitudes higher compared to [177Lu]Lu-
DOTA-PP-F11N and [177Lu]Lu-CP04. However, this was desired since for tumour targeting
we consider a logD7.4 value of about −4 or lower unfavourable because we assume that
high tumour uptake is prevented by a too rapid clearance rate. Indeed, first patient studies
with [177Lu]Lu-DOTA-PP-F11N showed low activity levels in the tumour but high levels in
the bladder at 1 h p.i., most likely due to an accelerated clearance [12]. Based on previous
experiences in our group, a range of −3 to −2 seems to be ideal for tumour targeting.

We thus selected the most promising α- and γ-linked compound with regard to CCK-
2R affinity (IC50) and lipophilicity (logD7.4), (R)-DOTAGA-rhCCK-9 and -16 (Figure 6),
respectively, for in vivo studies.

Interestingly, both SiFA-containing compounds revealed noticeably higher activity lev-
els in the tumour at all time points than [177Lu]Lu-DOTA-PP-F11N despite their distinctly
lower CCK-2R affinity. [177Lu]Lu-(R)-DOTAGA-rhCCK-16 revealed a higher CCK-2R-
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mediated internalisation than [177Lu]Lu-DOTA-PP-F11N, which points to an enhanced
uptake by the tumour cells. [177Lu]Lu-(R)-DOTAGA-rhCCK-9 revealed low internalisation
values, which is in accordance with its low CCK-2R affinity but contradicting to the higher
tumour uptake found compared to the reference. It has to be added that tumour values for
[177Lu]Lu-DOTA-PP-F11N were low despite its high CCK-2R affinity, which is, however, in
accordance to the patient data and most likely caused its high hydrophilicity and thus rapid
clearance [12]. Although further studies have to be carried out to elucidate the beneficial
effects observed in this study, we proved that the introduction of the SiFA group not only
generated a possibility for 18F-labelling but also improved overall bioavailability in vivo.
Besides the decreased hydrophilicity, we further suspect an elevated albumin binding
potential of the SiFA group, which decelerates the activity clearance, increases circulation
time of the compounds in the blood and thus enhances activity uptake and retention in the
tumour. Similar observations were made for PSMA-targeted compounds [14,33].
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Hence, [177Lu]Lu-(R)-DOTAGA-rhCCK-9 and -16 showed 3- and 8-fold higher activity
levels in the tumour, respectively, than the reference ligand at 24 h p.i. Similar observations
were made for stomach levels due to the endogenous CCK-2R expression in this organ.
Competition studies using an excess of the CCK-2R-specific ligand, [natLu]Lu-DOTA-
MGS5 [34], confirmed CCK-2R specificity. Despite their enhanced lipophilicity, liver levels
were not significantly increased compared to [177Lu]Lu-DOTA-PP-F11N at 24 h p.i. Blood
levels of both rhCCK derivatives were significantly higher than those of [177Lu]Lu-DOTA-
PP-F11N but still in a comparable range to compounds addressing other tumour targets in
nuclear medicine, such as PSMA-, gastrin releasing peptide receptor-, chemokine receptor
CXCR4- and somatostatin-2 receptor-targeted probes [14,19,35–37].

Despite these respectable results, our current rhCCK derivatives suffer from elevated
activity levels in the kidneys (30-fold higher compared to the reference). We assume a
synergistic effect of the negative charges in proximity of the SiFA moiety within the linker
section, as [177Lu]Lu-DOTA-PP-F11N did not show comparable kidney values although it
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comprises a similar amount of negative charges in its linker. These kidney issues have to be
addressed in future studies to enable a clinical translation of this rh-based concept for mini-
gastrin analogues. One possible strategy to decrease kidney accumulation and retention
might be a reduction of the albumin binding of the rhCCK derivatives, as beneficial effects
were observed for PSMA inhibitors when negative charges in direct proximity to the SiFA-
building block were depleted [14]. Furthermore, co-injection of lysine or gelofusine could
also be a valuable tool. Tumour values were noticeably higher at 1 and 4 h p.i. compared
to the reference in µSPECT/CT imaging (n = 1). However, further studies at 1 and 4 h p.i.
have to be conducted to statistically confirm these observations and, furthermore, elucidate
the imaging potential of the respective 18F-labeled rhCCK analogues.

In summary, we could successfully introduce a SiFA building block into the minigastrin
analogue DOTA-PP-F11N, which not only generated a possibility for 18F-labelling but
also considerably improved pharmacokinetics. We further could show that the rh-based
concept successfully applied for PSMA-targeted compounds can be applied for CCK-2R-
targeted ligands as well, which enables both 18F- and 177Lu-labelling for a theranostic
use. Nevertheless, elevated activity levels in the kidneys are of concern, which has to be
optimised in future studies. Moreover, CCK-2R affinity might possibly be further improved,
either by varying the position of the SiFA building block or a DOTA-for-(R)-DOTAGA
substitution. However, a beneficial effect of a γ- instead of an α-linked D-glutamate chain
in minigastrin derivatives was found, which might be applicable for other peptides and
their linker as well.

4. Materials and Methods

Characterisation of all CCK-2R-targeted compounds is provided in the Supplementary Mate-
rials (Figures S1–S4). Electrospray ionisation-mass spectra for characterisation of the substances
were acquired on an expressionL CMS mass spectrometer (Advion Ltd., Harlow, UK).

4.1. Chemical Synthesis and Labelling Procedures

All compounds were synthesised via standard Fmoc-based solid phase peptide
synthesis (SPPS) using a H-Rink Amide ChemMatrix® resin (35–100 mesh particle size,
0.4–0.6 mmol/g loading, Merck KGaA, Darmstadt, Germany). Final purification of the
peptides was performed by reversed phase high performance liquid chromatography
(RP-HPLC).

177Lu- and natLu-complexation of the peptides was performed according to a previ-
ously published procedure [14].

4.2. In Vitro Experiments

Detailed description of all cell-based experiments is provided in the Supplemen-
tary Materials. In brief, competitive binding studies were conducted on AR42J cells
(2.0 × 105 cells per 1 mL/well) via incubation at 37 ◦C for 3 h using [177Lu]Lu-DOTA-
PP-F11N (0.3 pmol) as a radiolabelled reference (n = 3).

Internalisation studies of the 177Lu-labelled conjugates (0.3 pmol) were performed on
AR42J cells (3.0 × 105 cells per 1 mL/well) at 37 ◦C for 1, 2, 4 and 6 h (n = 3). Data were
corrected for non-specific binding (competition by 10−4 M [natLu]Lu-DOTA-PP-F11N).

Lipophilicity (depicted as octanol-phosphate-buffered saline solution (PBS, pH = 7.4)
distribution coefficient, logD7.4) was determined via dissolving the 177Lu-labelled peptide
(approx. 1 MBq) in a mixture (1/1, v/v) of n-octanol and PBS. The suspension was vortexed
in a reaction vial (1.5 mL) for 3 min at RT and the vial was centrifuged at 9000× g rpm for
5 min (Biofuge 15, Heraus Sepatech GmbH, Osterode, Germany). 200 µL aliquots of both
layers were measured separately in a γ-counter (Perkin Elmer, Waltham, MA, USA). The
experiment was repeated at least five times.



Pharmaceuticals 2022, 15, 1467 9 of 12

4.3. In Vivo Experiments

All animal experiments were conducted in accordance with general animal welfare
regulations in Germany (German animal protection act, in the edition of the announcement,
dated 18 May 2006, as amended by Article 280 of 19 June 2020, approval no. ROB-55.2-1-
2532.Vet_02-18-109 by the General Administration of Upper Bavaria) and the institutional
guidelines for the care and use of animals. CB17-SCID mice of both genders and aged
2–12 months (Charles River Laboratories International Inc., Sulzfeld, Germany) were
allowed to acclimate at the in-house animal facility for at least one week prior to tumour
cell inoculation was performed. Tumour xenografts were generated using AR42J cells
(5.0 × 106 cells per 200 µL) suspended in a 1/1 mixture (v/v) of RPMI 1640 medium and
Cultrex® Basement Membrane Matrix Type 3 (Trevigen, Gaithersburg, MD, USA). This
suspension was inoculated subcutaneously onto the right shoulder and animals were used
when tumour volume was >100 mm3 (1–2 week after inoculation). Exclusion criteria for
animals from an experiment were either weight loss higher than 20%, a tumour size above
1500 mm3, an ulceration of the tumour, respiratory distress or a change of behaviour. None
of these criteria applied to any animal from the experiment. Neither randomisation nor
blinding was applied in the allocation of the experiments. Health status is SPF according to
FELASA.

For biodistribution studies, the 177Lu-labelled compound (approx. 2–3 MBq, 100 pmol)
was injected into a lateral tail vein (n = 4) of anesthetised (2% isoflurane) AR42J tumour-
bearing CB-17-SCID mice. At 24 h post-injection (p.i.), the mice were euthanised. Thereafter,
the pertinent organs were removed, weighed and measured using a γ-counter.

Imaging studies were carried out according to a recently published protocol [19]. Static
images were recorded at t = 1, 4 and 24 h p.i. (anesthesia by 2% isoflurane, n = 1) with an
acquisition time of t + (45–60 min) using a high-energy general-purpose rat and mouse
collimator via MILabs acquisition software v11.00 and v12.26 from MILabs (Utrecht, The
Netherlands).

For all competition studies, 2.90 mg/kg (40 nmol) of [natLu]Lu-DOTA-MGS5 (10−3 M
in phosphate-buffered saline) were co-administered.

Acquired data were statistically analysed by performing a Student’s t-test via Ex-
cel (Microsoft Corporation, Redmond, WA, USA) and OriginPro software (version 9.7)
from OriginLab Corporation (Northampton, MA, USA). Acquired p values of <0.05 were
considered statistically significant.

5. Conclusions

We could demonstrate that the radiohybrid-based concept could easily be transferred
to minigastrin derivatives, whose hydrophilic linker section compensates for the high
lipophilicity of the introduced SiFA moiety. This offers not only the possibility of 18F-
and 177Lu-labelling with the same molecule but also had a beneficial impact on overall
pharmacokinetics, as clearance kinetics were decelerated. Thereby, activity retention in
the tumour could be increased by approximately eightfold compared to the clinically ap-
plied [177Lu]Lu-DOTA-PP-F11N. However, these compounds also suffer from a noticeably
enhanced kidney retention. This will be addressed in further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15121467/s1, general information and characterisation of all
CCK2R-targeted compounds, detailed description of cell-based experiments. Figure S1: Confirmation
of peptide identity and integrity for (a) [natLu]Lu-DOTA-PP-F11N and (b) [177Lu]Lu-DOTA-PP-F11N
as analysed by analytical (radio-)RP-HPLC (MultoKrom 100-5 C18, 5 µm, 125 × 4.6 mm, CS Chro-
matographie GmbH, Langerwehe, Germany; 10→90% MeCN in H2O + 0.1% TFA in 15 min). (c) Mass
spectrum of [natLu]Lu-DOTA-PP-F11N; Figure S2: Confirmation of peptide identity and integrity
for (a) [natLu]Lu-(R)-DOTAGA-rhCCK-9 and (b) [177Lu]Lu-(R)-DOTAGA-rhCCK-9 as analysed by
analytical (radio-)RP-HPLC (MultoKrom 100-5 C18, 5 µm, 125 × 4.6 mm, CS Chromatographie
GmbH, Langerwehe, Germany; 10→90% MeCN in H2O + 0.1% TFA in 15 min). (c) Mass spectrum
of [natLu]Lu-(R)-DOTAGA-rhCCK-9; Figure S3: Confirmation of peptide identity and integrity for

https://www.mdpi.com/article/10.3390/ph15121467/s1
https://www.mdpi.com/article/10.3390/ph15121467/s1
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(a) [natLu]Lu-(R)-DOTAGA-rhCCK-16 and (b) [177Lu]Lu-(R)-DOTAGA-rhCCK-16 as analysed by
analytical (radio-)RP-HPLC (MultoKrom 100-5 C18, 5 µm, 125 × 4.6 mm, CS Chromatographie
GmbH, Langerwehe, Germany; 10→90% MeCN in H2O + 0.1% TFA in 15 min). (c) Mass spectrum
of [natLu]Lu-(R)-DOTAGA-rhCCK-16; Figure S4: (a) Biodistribution of [177Lu]Lu-DOTA-rhCCK-16
(100 pmol) co-injected with [natLu]Lu-DOTA-MGS5 (40 nmol) in selected organs (%ID/g) at 24 h p.i.
in AR42J tumour-bearing CB17-SCID mice. Data is expressed as mean ± SD (n = 2). (b) Represen-
tative µSPECT/CT images of [177Lu]Lu-DOTA-rhCCK-16 co-injected with [natLu]Lu-DOTA-MGS5
(40 nmol) at 24 h p.i. in AR42J tumour-bearing CB17- SCID mice; Table S1: Affinity and lipophilicity
data of the compounds evaluated. Affinity data were determined on AR42J cells (2.0× 105 cells/well)
and [177Lu]Lu-DOTA-PP-F11N (0.3 pmol/well) as radiolabelled reference (3 h, 37 ◦C, RPMI 1640,
5 mM L-Gln, 5 mL non-essential amino acids (100×), 10% FCS + 5% BSA (v/v)); Table S2: Receptor-
mediated internalisation values (37 ◦C, RPMI 1640, 5 mM L-Gln, 5 mL non-essential amino acids
(100×), 10% FCS, 0.25 pmol/well) determined as percent (%) of the applied activity of [177Lu]Lu-
(R)-DOTAGA-rhCCK-16 and the references [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04 using
AR42J cells (3.0 × 105 cells/well) at different time points (1, 2, 4 and 6 h). Data are corrected for
non-specific binding (10 µmol/well, [natLu]Lu-DOTA-PP-F11N); Table S3: Total cell uptake (37 ◦C,
RPMI 1640, 5 mM L-Gln, 5 mL non-essential amino acids (100×), 10% FCS, 0.25 pmol/well) deter-
mined as percent (%) of the applied activity of [177Lu]Lu-(R)-DOTAGA-rhCCK-9 and -16 as well as
the references [177Lu]Lu-DOTA-PP-F11N and [177Lu]Lu-CP04 using AR42J cells (3.0 × 105 cells/well)
at different time points (1, 2, 4 and 6 h). Data are corrected for non-specific binding (10 µmol/well,
[natLu]Lu-DOTA-PP-F11N); Table S4: Biodistribution data of [177Lu]Lu-DOTA-PP-F11N, [177Lu]Lu-
(R)-DOTAGA-rhCCK-9 and [177Lu]Lu-(R)-DOTAGA-rhCCK-16 in selected organs at 24 h p.i. in
AR42J tumour-bearing CB17-SCID mice (100 pmol each). Data are expressed as %ID/g, mean ± SD.
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