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Abstract: Survival from pancreatic cancer is poor because most cancers are diagnosed in the late
stages and there are no therapies to prevent the progression of precancerous pancreatic intraepithelial
neoplasms (PanINs). Inhibiting mutant KRASG12D, the primary driver mutation in most human
pancreatic cancers, has been challenging. The cholecystokinin-B receptor (CCK-BR) is absent in the
normal pancreas but becomes expressed in high grade PanIN lesions and is over-expressed in pancre-
atic cancer making it a prime target for therapy. We developed a biodegradable nanoparticle polyplex
(NP) that binds selectively to the CCK-BR on PanINs and pancreatic cancer to deliver gene therapy.
PanIN progression was halted and the pancreas extracellular matrix rendered less carcinogenic in
P48-Cre/LSL-KrasG12D/+ mice treated with the CCK-BR targeted NP loaded with siRNA to mutant
Kras. The targeted NP also slowed proliferation, decreased metastases and improved survival in mice
bearing large orthotopic pancreatic tumors. Safety and toxicity studies were performed in immune
competent mice after short or long-term exposure and showed no off-target toxicity by histological
or biochemical evaluation. Precision therapy with target-specific NPs provides a novel approach to
slow progression of advanced pancreatic cancer and also prevents the development of pancreatic
cancer in high-risk subjects without toxicity to other tissues.

Keywords: pancreatic cancer; cholecystokinin receptor; mutant Kras; nanoparticles

1. Introduction

The incidence of pancreatic cancer is on the rise and will soon become the 2nd leading
cause of cancer-related deaths in the USA [1]. With the current chemotherapeutic regimens,
the 5-year survival is only about 11% and is only 3% for patients who present with metastatic
disease [2]. Reasons contributing to the poor outcome of this malignancy is the inability
to diagnose pancreatic cancer in early or precancerous stages [3], the lack of prevention
strategies for high risk individuals, its high metastatic potential [4], its relative resistance
to chemotherapy [5,6] and the dense fibrotic tumor microenvironment [7]. Pancreatic
cancer is considered a “cold tumor” and lacks CD8+ tumor infiltrating lymphocytes, and
using immune checkpoint antibodies has thus far largely failed in this malignancy [8];
therefore, chemotherapy remains the mainstay treatment for advanced pancreatic cancer.
Monotherapy is no longer recommended in treating advanced pancreatic cancer and
combination therapeutic regimens have become the standard of care in order to improve
survival [9]. Aggressive modified chemotherapy regimens have improved the overall
survival in subjects R0 or R1 resections [10,11]. Yet, even with combination therapy, the 5
year survival of pancreatic cancer remains low and new strategies are needed to overcome
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the above obstacles. Unfortunately, most treated with chemotherapy experience side effects
from the nonspecific and off-target toxicity of these agents [12].

One new approach being explored to change the outcome of advanced pancreatic cancer
includes precision medicine with nanomedicines [13,14]. The first nanomedicine applied to
treating pancreatic cancer was albumin nanoparticle (nab)-paclitaxel [15], which improved the
tolerability and efficacy of paclitaxel when combine with gemcitabine [16]. Nab-paclitaxel has
also been modified with embedded tumor necrosis factor-related apoptosis-inducing ligand to
improve delivery through the dense fibrosis of the pancreatic cancer microenvironment [17].
Another strategy has been to target pancreatic cell surface receptors in order to improve
uptake, efficacy and to limit off-site toxicity. Some nanomedicines rely upon the enhanced
permeability and retention effect (EPR) for passive uptake into tumors. Alternatively, active
targeting by modification of nanomedicines to render them target-specific has increased the
efficacy and reduced the toxicity of these agents [18,19]. Another advantage being employed in
nanomedicine is the ability to safely deliver small interfering RNAs (siRNAs) to downregulate
genes regulating proliferation or ‘cancer driver genes’ in vivo [14].

We designed a biodegradable nanoparticle polyplex (NP) micelle that selectively tar-
gets the cholecystokinin-B receptor (CCK-BR) [20], growth factor receptor that is markedly
over-expressed in pancreatic cancer and not detected in the normal pancreas [21,22]. The
NP is targeted to the CCK-BR by conjugation of a gastrin decapeptide ligand to the polyethy-
lene glycol surface of the micelle; gastrin is the endogenous peptide hormone ligand of the
CCK-BR. Using this platform [20], we previously showed that the CCK-BR targeted NP
could deliver siRNA to orthotopic pancreatic tumors in mice to downregulate gastrin, as
gastrin peptide stimulates growth of pancreatic cancer [23,24] whereas, the untargeted NP
had no effect. In this prior study [20], the CCK-BR targeted NP not only decreased growth of
established human pancreatic tumors in athymic nude mice, but also prevented metastases.
Since CCK-BRs also become expressed in precancerous pancreatic intraepithelial neoplasia
called PanINs [25], we modified our CCK-BR targeted NP with fluorophores to render it
as an imaging tool. The fluorophore conjugated NPs directed to the CCK-BR selectively
identified high grade PanIN lesions in P48-Cre/LSL-KrasG12D/+ mice in vivo [26]. These
prior studies support that the CCK-BR can serve as a potential target for other therapeutics
and diagnostics, i.e., a theranostic agent.

Mutant KRAS (muKRAS) has been identified as a driver gene in human pancreatic
cancer and is identified in about 90% of those with this tumor [27]. Until recently, KRAS-
driven tumors were thought to be ‘undruggable’ [28]. With the discovery and recent
approval of allele-specific covalent inhibitors targeting KRASG12C in non-small-cell lung
cancer [29], there remains hope that therapies may also be developed to target the common
KRASG12D mutation of pancreatic cancer. In the current investigation, we examined the
role of the targeted NP to prevent pancreatic carcinogenesis in P48-Cre/LSL-KrasG12D/+

mutant Kras mice. We further studied whether the CCK-BR targeted NP could deliver
the murine KrasG12D siRNA payload to an immune competent mouse model with an
established orthotopic syngeneic pancreatic tumor. Next, we examined the safety and
efficacy of the CCK-BR targeted NP to deliver mutant KRAS G12D siRNA alone, gastrin
(GAST) siRNA alone, or both siRNAs in combination in mice bearing orthotopic human
pancreatic tumors with a heavy tumor burden to represent the advanced stage in which
most human subjects present at diagnosis. Safety and off-target toxicity were also studied
after short and long-term NP therapy in immune competent mice.

2. Results
2.1. Targeted NPs with siRNA to Mutant Kras Prevent PanIN Progression

Currently there are no effective therapies to prevent pancreatic carcinogenesis espe-
cially in those at high risk for developing pancreatic cancer. In this investigation, chronic
treatment of P48-Cre/LSL-KrasG12D (KC) mice with CCK-BR targeted NPs loaded with
siRNA to muKras halted progression of precancerous PanIN lesions. A representative
Hemotoxylin & Eosin (H&E) image from a control, untreated P48-Cre/LSL-KrasG12D mouse
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pancreas at 6 months of age shows that the normal pancreatic architecture is replaced with
high grade PanIN lesions and extensive fibrosis in the extracellular matrix (Figure 1A).
Similar histologic findings were found in an age-matched P48-Cre/LSL-KrasG12D mouse
treated with the targeted NP loaded with a scrambled siRNA for muKras (Figure 1B). In
contrast, a representative image from a 6-month-old P48-Cre/LSL-KrasG12D mouse treated
with the targeted NP loaded with a siRNA for muKras reveals very few PanIN lesions and
little fibrosis with the preservation of normal acinar cells and structure of the pancreas
(Figure 1C). The stained slides were scanned and the number and grade of PanIN lesions
counted. Figure 1D shows that the majority of PanINs in the pancreas of control mice and
in the pancreas of mice treated with the targeted NP loaded with the scrambled siRNA
were high grade, or PanIN-3 grade lesions. In contrast, the analysis of the pancreata from
mice treated with the NP loaded with the muKras siRNA payload revealed a shift to lower
grade PanIN lesions with some early PanIN-1 lesions identified. The difference between
the number of high grade PanINs in the muKras siRNA-treated group was significantly less
than the control and scrambled groups (p = 0.0003). The area of the pancreas with normal
acinar cells was analyzed with the Aperio Image software for each image and results
confirmed that the area of normal pancreas parenchyma histologically was significantly
increased or preserved in mice treated with the targeted NP with muKras siRNA (Figure 1E).
Likewise, the mean number of high grade PanIN-3 lesions per pancreas tissue section was
significantly decreased in the muKras siRNA-treated mice compared the controls and scram-
bled siRNA treated mice (Figure 1F). In order to confirm that the reason for the change in
PanIN grade and pancreatic histology was due to our therapy, muKras mRNA expression in
the mouse pancreas was analyzed by qRT-PCR. We found a significant decrease in muKras
mRNA expression in the pancreas tissue of mice treated with the NP loaded with muKras
siRNA confirming that the NP successfully delivered its payload (Figure 1G).
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Figure 1. CCK-BR targeted NP loaded with siRNA for muKras decreases the number of high grade
PanIN lesions in P48-Cre/LSL-KrasG12D mice. (A) H&E stain of a representative 6 month-old control
mouse pancreas revealed extensive high grade PanIN lesions and fibrosis replacing the pancreas.
(B) A representative image of a pancreas from a 6-month old P48-Cre/LSL-KrasG12D mouse treated
with the NP loaded with the scrambled siRNA also shows high grade PanINs and fibrosis. (C) A
representative H&E stain of a 6 month pancreas of a P48-Cre/LSL-KrasG12D mouse after 14 weeks of
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therapy with the target specific NP loaded with muKras siRNA shows fewer PanINs and preservation
of the normal pancreas histology. (D) Pie-shaped diagrams from the three treatment groups shows
that 87.4% of the PanINs counted were high grade PanIN-3 lesions in the pancreas of control and
scrambled siRNA-treated P48-Cre/LSL-KrasG12D mice. The number of high grade PanINs are less
and the low grade PanINs increased in mice treated with the NP delivering the muKras siRNA. This
difference was significant (p = 0.0003). (E) The ratio of normal pancreas area to abnormal pancreas
was greater in the pancreas of mice treated with the muKras siRNA (p = 0.013). (F) The absolute
number of PanIN-3 lesions per histologic section is shown with significantly less PanIN-3 lesions in
the pancreas of the muKras siRNA-treated mice (p < 0.0001). (G) mRNA expression of muKras was
decreased in the pancreas of mice treated with the NP carrying the muKras siRNA payload (p = 0.01).
* p < 0.05; ** p < 0.01; *** p < 0.005; **** p < 0.0001. Individual data points are represented by circles,
squares and triangles in the columns.

2.2. Targeted NPs Loaded with Mutant Kras siRNA Decrease Fibrosis in the Pancreas
Extracellular Matrix

During pancreatic carcinogenesis, the normal parenchyma of the pancreas is replaced
with the precancerous PanIN lesions and dense fibrosis in the pancreatic extracellular
matrix (ECM) or tumor microenvironment (TME). This characteristic desmoplastic reaction
found in the pancreas of the KC mice and also in human pancreatic cancer is due to the
activation of pancreatic stellate cells and fibroblasts [30]. The pancreas from control KC
mice (Figure 2A) and from the KC mice treated with CCK-BR targeted NPs loaded with a
scrambled siRNA (Figure 2B) exhibited marked intra-pancreatic fibrosis as shown in the
representative images of sections stained with Masson’s trichrome. KC mice treated for
4 months with targeted NPs loaded with muKras siRNA not only had fewer high grade
PanIN lesions and preservation of pancreatic acinar cells, but also exhibited significantly
less fibrosis within the pancreas extracellular matrix (Figure 2C). The amount of fibrosis was
analyzed by integrative density and demonstrated to be about half the amount as that in the
pancreas of control and scrambled siRNA treated mice (Figure 2D; p = 0.0015). Confirmation
of collagenous fibrosis staining in the pancreas microenvironment was performed with
Sirius red staining. Similar to the Masson’s trichrome stains, pancreata of control mice
(E) and scrambled siRNA-treated mice (F) show significant staining consistent with increase
fibrosis. In contrast, pancreata of mice treated with the muKras siRNA loaded NP had less
Sirius red staining (G). Densitometry of images from each treatment group (H) revealed
less fibrosis in pancreas of the muKras-treated mice (p < 0.0001).

2.3. Targeted NPs Loaded with muKras siRNA Alter Immune Cell Signature by Decreasing
M2-Polarized Macrophages

The immune cell signature of the pancreas ECM was markedly changed in the muKras
siRNA NP-treated mice as demonstrated by a decreased number of M2-polarized arginase
positive macrophages. The immunosuppressive M2-polarized macrophages are abundant
in the pancreatic tissue of control KC mice (Figure 3A) and also in the pancreas of mice
treated with the NP loaded with scrambled siRNA (Figure 3B). However, fewer M2-polarized
arginase positive macrophages were found in the pancreas sections of mice treated with the
NPs loaded with the muKras siRNA (Figure 3C). The number of M2 polarized macrophages
were quantified and significantly less in the pancreas of mice treated with the targeted
NP loaded with muKras siRNA (p = 0.02; Figure 3D). These changes in the pancreas ECM
rendered the environment less carcinogenic. In order to confirm the immunoreactivity was
associated with tissue macrophages, we also performed immunoreactivity with a F4/80 that
reacts to murine macrophages. An abundance of macrophages are identified in the pancreas
microenvironment of control mice (Figure 3E) and also in the pancreas of scrambled siRNA
NP-treated mice (Figure 3F). Significantly fewer F4/80+ tissue macrophages were found in
the pancreas of mice treated with the muKras siRNA (Figure 3G). Quantitative analysis of
macrophage density confirmed less macrophages were present in the pancreas of mice treated
with the muKras siRNA NPs (Figure 3H; p < 0.0001).
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Figure 2. The pancreas extracellular matrix (ECM) shows decreased fibrosis and collagen in mice
treated with targeted NP loaded with muKras siRNA. (A) Representative Masson’s trichrome stain of
a control mouse pancreas shows extensive fibrosis and high grade PanIN lesions. (B) Representative
image from the pancreas of a mouse treated for 4 months with targeted scrambled siRNA also shows
extensive pancreatic fibrosis. (C) The pancreata from mice treated with the targeted NP loaded with
muKras siRNA have less fibrosis by Masson’s trichrome stain, fewer PanINs, and preservation of
the normal pancreas acinar cells in the parenchyma. (D) Quantitative analysis of the amount of
fibrosis with computerized integrative density shows significantly less fibrosis in the KC mice treated
with targeted NP loaded with muKras siRNA (p = 0.0015; compared to control & scrambled –treated;
two-way ANOVA). (E) Representative image of a Sirius red stained pancreas section of control mice
and (F) in the pancreas of mice treated with the scrambled siRNA loaded NP. (G) A decrease in the
Sirius red staining was observed in the pancreas of the KC mice treated with the muKras loaded
NPs. (H) Quantitative analysis of the amount of fibrosis with computerized integrative density
shows significantly less fibrosis in the KC mice treated with targeted NP loaded with muKras siRNA.
(p < 0.001; compared to control & scrambled-treated; two-way ANOVA). ** p < 0.01; **** p < 0.0001.
Individual data points are represented by circles, squares and triangles in the columns.
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Figure 3. The pancreas microenvironment has fewer immunosuppressive M2-polarized macrophages
in mice treated with muKras siRNA nanoparticles. (A) Arginase positive M2-polarized macrophages are
seen in the ECM and are abundant in pancreas of control mice and (B) in the pancreas of mice treated
with the scrambled siRNA loaded NP. (C) A decrease in the arginase staining was observed in the
pancreas of the KC mice treated with the mutant Kras loaded NPs. (D) The number of arginase positive
macrophages was quantified and the number per high powered field were significantly decreased in the
pancreas of the KC mice treated with the mutant Kras loaded NP (p = 0.02). (E) F4/80+ macrophages
were abundant in the pancreas of control mice and (F) in mice treated with the scrambled siRNA.
(G) Fewer tissue macrophages were identified in the pancreas of mice treated with the muKras siRNA
NP. (H) Quantitative computerized densitometry confirmed fewer macrophages in the pancreas of the
muKras siRNA NP- treated mice (p = 0.0004; two-way ANOVA).). *** p < 0.005. Individual data points
are represented by circles, squares and triangles in the columns.
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2.4. CCK-BR Targeted NP Improves Survival and Decreases Metastases of Orthotopic Human
Pancreatic Cancer Tumors in Mice

In these series of experiments, we examined the effects of CCK-BR targeted NPs
to improve survival and decrease metastases in athymic nude mice bearing orthotopic
human pancreatic cancer. In order to simulate a scenario more representative of human
subjects presenting with pancreatic cancer, we allowed the tumors to grow up to 5 weeks
(PANC-1) before initiating therapy such that the mice had heavy tumor burdens and
probable metastatic disease when treatment was started. Two separate experiments were
performed using human AsPC-1 and human PANC-1 pancreatic cancers orthotopically
implanted to the mouse pancreas. Two different doses of NPs were used with AsPC-1 mice
receiving 240nM and PANC-1 mice receiving 480nM. In both experiments, confirmation
of established tumors and size was made by abdominal ultrasound prior to initiation of
therapy. We previously showed that CCK-BR targeted NPs delivering a gastrin (GAST)
siRNA payload could prevent pancreatic cancer metastases in mice bearing PANC-1 and
BxPC-3 tumors when treatment with nanoparticles was initiated one week after tumor cell
inoculation. We wanted to validate the efficacy of the GAST siRNA loaded nanoparticle
in AsPC-1 cells, a cancer that produces >5 fold more gastrin than PANC-1 cells [31]. The
goal of these experiments was to test the effectiveness of the siRNA-loaded nanoparticle
in preventing metastases in a mouse with a heavy tumor burden and also to examine
whether combination treatment with GAST siRNA and muKRAS siRNA NPs could be
co-administered and enhance the efficacy.

At euthanasia, the organs of each mouse were dissected, fixed, paraffin embedded and
stained with H&E and metastases counted and confirmed histologically by the team pathologist
in a blinded fashion. The mean number of metastases per mouse in the AsPC-1 tumor bearing
mice is shown in Figure 4A according to the treatment group. PBS-treated and scrambled siRNA
NP-treated mice had a similar number of metastases. Mice treated with the targeted NP that
was loaded with muKRAS siRNA had 50% fewer metastases per mouse, but the difference did
not reach statistical significance (p = 0.0601) at the dose used (240 nM). GAST siRNA loaded
target-specific NPs decreased the mean number of metastases by >61% (p = 0.0149). The number
of metastases per mouse was also decreased by 68% (p = 0.0163). These results show that
in the AsPC-1 tumors, that make an abundant amount of gastrin, the CCK-BR-targeted NP
loaded with GAST siRNA decreases metastases at the lower 240 nM concentration. Although
metastases were fewer in mice treated with either the GAST or muKRAS siRNA monotherapies,
further decrease in metastases was not observed when the two therapies were administered
in combination. Perhaps providing the siRNA-loaded NPs at a higher concentration or more
frequent intervals would have enhanced the combined effect on lowering metastases. Control
tumors and tumors of GAST siRNA-treated mice were homogenized and analyzed for gastrin
peptide by ELISA. Figure 4B shows the high gastrin peptide concentrations in AsPC-1 control
tumors compared to the significantly lower level (p = 0.0003) of gastrin peptide from the tumors
of mice treated with the GAST siRNA NPs confirming the NP delivered the siRNA payload.

We also confirmed that the changes observed in metastases were indeed secondary
to the siRNAs down regulating their respective mRNAs; hence, RNA was extracted from
the tumors and analyzed by qRT-PCR. Figure 4C shows the gastrin mRNA fold change
in tumors of GAST siRNA NP-treated mice compared to controls. GAST siRNA-treated
mice exhibited a 61% decrease in gastrin mRNA expression, and an 82% decrease in expres-
sion of gastrin mRNA was observed when the combined siRNA NPs were administered
(p = 0.0002), suggesting the potential for an additive or synergistic effect. Similarly, mRNA
expression of muKRAS (Figure 4D) was significantly decreased in tumors of mice treated
with muKRAS siRNA loaded NPs (p = 0.0386); however, no further change in muKRAS
mRNA was found when combined with GAST siRNA loaded NPs.
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Figure 4. Effects of CCK-BR targeted NP on metastases in human pancreatic cancer in AsPC-1 tumor
bearing mice. (A) Mean number of metastases per mouse is shown. Mice treated with PBS and the
scrambled siRNA NP had the greatest number of metastases. MuKRAS siRNA-treated mice had
fewer metastases but not statistically significant (p < 0.06). However, both groups treated with the
NP delivering the siRNA to GAST had fewer metastases (p < 0.02). (B) Gastrin peptide in tumor
homogenates measured by ELISA show less gastrin peptide in tumors of mice treated with GAST
siRNA NPs (p = 0.0003). (C) Tumors were excised and gastrin mRNA expression was confirmed
to be down-regulated by qRT- PCR (p = 0.0024). (D) MuKRAS mRNA expression levels in tumors
of mice treated with the muKRAS siRNA loaded NP is lower than that of control tumors. (E) H&E
image of tumor emboli seen adjacent to the colon in a muKRAS siRNA treated mouse. (F) A tumor
emboli is identified in a central vein in a liver section from a PBS-control treated mouse. (G) Tumor
emboli identified in a hepatic vein of a mouse treated with a scrambled siRNA loaded NP, (scale
bar = 200 µm). * p < 0.05; ** p < 0.01; and *** p < 0.005.

Metastases were confirmed by the team pathologist by histology with H&E staining.
Representative histologic metastases are shown in Supplementary Figure S1 confirming
the invasiveness of this orthotopic AsPC-1 tumor. Tumor emboli were identified adjacent
to the colon mesentery (Figure 4E) in a mouse treated with the NP loaded with siRNA
to muKRAS. A tumor emboli is shown in a PBS-treated control mouse in a hepatic vessel
(Figure 4F), and another liver vessel tumor emboli is shown in a mouse treated with the
scrambled control siRNA loaded NP (Figure 4G). Remarkably, there were no tumor emboli
found in tissue sections from the mice treated with the GAST siRNA-loaded NP. The lack of
tumor emboli in this treatment group may in part explain why fewer metastases occurred
in GAST siRNA-NP treated mice. This experiment confirmed our ability to deliver two
siRNA payloads simultaneously.

In the second human pancreatic cancer orthotopic model with PANC-1 tumors, in or-
der to simulate a scenario more representative of human subjects presenting with advanced
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pancreatic cancer, we allowed the tumors to grow up to 5 weeks before initiating therapy
such that the mice had heavy tumor burdens and probable metastatic disease when the
treatment was initiated. The mice were imaged by abdominal ultrasound one week after
orthotopic tumor cell implantation (Figure 5A) to confirm tumor formation and again after
5 weeks of tumor growth (Figure 5B). These representative ultrasound images confirmed
tumor growth and the large tumor burden at the time therapy was started. A Kaplan Meier
survival curve (Figure 5C) of untreated control mice compared to mice treated with the
CCK-BR targeted NP loaded with GAST siRNA (480 nM) shows a significant survival
benefit (p = 0.02) even in mice with a large tumor burden. Over one month after the last
control mouse died, there were still 3 surviving mice out of the 10 mice treated in the GAST
siRNA targeted NP group. The mean tumor mass of the surviving mice was significantly
(53%) less than that of the control mice and the GAST siRNA NP-treated mice that died
before the experiment was terminated (Figure 5D). Tumors and metastases were confirmed
by H&E histology. Overall, the number of metastases in the GAST siRNA NP-treated mice
was 64% fewer than the control mice (Figure 5E). Of the 3 mice that were surviving when
the experiment was terminated, 2 had no metastases and one had a single metastasis to the
spleen. This experiment shows that the GAST siRNA loaded NP is capable of improving
survival and lowering metastases even when the treatment is started late, similar to that of
many human subjects diagnosed in late stages with pancreatic cancer.Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 23 
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Figure 5. Treatment of mice with a large PANC-1 tumor burden and late disease with a NP loaded
with GAST siRNA still improves survival and decreases metastases. (A) A representative ultrasound
image confirms the presence of a PANC-1 tumor one week after inoculation. (B) A representative
abdominal ultrasound of a mouse is shown 5 weeks after PANC-1 inoculation and at the initiation of
therapy with an extensive large tumor. (C) Kaplan Meier survival curve shows improved survival
benefit (p = 0.02) in mice treated with NP loaded with GAST siRNA. Top arrow points to the time
when the treatment was started. The second arrow on the right points to the time when the study was
terminated and to the N = 3 surviving mice in the GAST siRNA-treated group over 1 month after the
last control mouse had died. (D) Final tumor weights in grams are shown for the N = 8 control mice
and GAST siRNA NP- treated mice that died during the study. The tumor weights of the N = 3 GAST
siRNA NP treated surviving mice are shown. (E) The mean number of metastases counted and
confirmed histologically was significantly less in the GAST siRNA -treated mice compared to control
(p = 0.037). * p < 0.05; ** p = 0.02.
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2.5. Targeted NP Therapy with Kras siRNA Improves Survival in an Immune Competent Mouse

In the third orthotopic tumor model, the effect of the CCK-BR targeted NP to deliver
siRNA to silence muKras and WT-Kras in immune competent mice bearing orthotopic syn-
geneic mT3 murine pancreatic cancer cells was evaluated. The goal of this experiment was
to analyze whether the NPs would improve survival and decrease tumor proliferation in
an immune competent syngeneic model. Representative images of the Ki67 immunoreac-
tivity in tumors from each treatment group are shown in Figure 6A–C. The proliferation
index of the tumors from the control mice and the mice treated with the scrambled siRNA-
loaded NP was high with numerous Ki67 immunoreactive positive cells (Figure 6A,B, re-
spectively). The number of Ki67+ cells was visibly less (Figure 6C) in the tumors of mice
treated with the NP loaded with muKras and WT-Kras siRNA implying that proliferation
was decreased by this treatment. Quantitative analysis of the number of Ki67 reactive cells
revealed 63% fewer immunoreactive cells in the WT-Kras/muKras siRNA-NP treated mice
compared to controls (Figure 6D; p < 0.0001). Although the number of immunoreactive
Ki67+ cells were decreased in the tumors of the scrambled siRNA treated mice, this differ-
ence was not significant. Since the NPs loaded with the scrambled siRNA are also targeting
the CCK-BR, it is possible that transient blockade of this receptor prevented the activation
by the endogenous peptides. We noted a similar slight decrease in tumor size of BxPC-3
pancreatic tumors in our prior work [20] when treated with a CCK-BR-targeted NP loaded
with a scrambled siRNA. Survival of mice was significantly greater in the mice treated with
the NP loaded with siRNA for muKras as shown in the Kaplan Meier curve (Figure 6E;
p = 0.0178). At a time when all the control and scrambled siRNA-treated mice had died, 50% of
the mice treated with NPs loaded with siRNA to WT-Kras/muKras were alive. The number of
metastases per mouse were also decreased by 42% in the mice treated with the NPs loaded
with the WT-Kras/muKras siRNA compared to control and scrambled siRNA treated mice
(p = 0.005). This study shows that the CCK-BR targeted NP also can deliver siRNA payload
and decrease pancreatic cancer growth and metastases, and improve survival in an immune
competent mouse model.
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2.6. CCK-BR Targeted NPs Exhibit Broad Safety Profile and Lack off Target Toxicity 

Figure 6. Effects of targeted NP loaded with muKras and WT-Kras siRNA on growth and survival
of mice bearing mT3 syngeneic orthotopic pancreatic tumors. (A) Ki67 immunohistochemistry
staining of a representative control tumor shows abundant proliferating cells. (B) Representative
image from a tumor of a scrambled-siRNA NP treated mouse, Ki67 immunohistochemistry staining.
(C) Representative image from an mT3 tumor of a mouse treated with the NP loaded with siRNA for
muKras and WT-Kras shows fewer Ki67 immunoreactive cells. (D) Quantitative analysis of all the
tumors reacted with the Ki67 antibody shows fewer immunoreactive cells in the mice treated with
the muKras and WT-Kras siRNA compared to controls (p < 0.0001). (E) Kaplan Meier survival curves
shows a significant survival benefit in mice treated with the NP loaded with Kras siRNA compared to
controls and those treated with the scrambled siRNA (p = 0.0178). **** p < 0.0001.
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2.6. CCK-BR Targeted NPs Exhibit Broad Safety Profile and Lack off Target Toxicity

The major organs (intestine, stomach, liver, kidney, and spleen) were excised at
necropsy from the KC mice and examined grossly and microscopically by the team pathol-
ogist after staining with H&E to determine if the high dose (480 nM) NP therapy admin-
istered chronically over 4 months induced any off-site toxicity or inflammation. Organs
from each of the treatment groups (scrambled and muKRAS siRNA NPs) were compared to
the histology of organs from the untreated age-matched control mice. Representative H&E
stained tissues are shown in the Supplementary Materials for the following tissues: mouse
intestine (Figure S2); stomach (Figure S3); liver (Figure S4); kidney (Figure S5); and spleen
(Figure S6). No inflammation or abnormality was observed in any of the organs including
the stomach, an organ that also has CCK-B receptors.

Mouse serum that was collected at the time of euthanasia was assayed for biochemical
changes. Routine chemistry, liver transaminases, and amylase values from wild type
C57BL/6 mice with short term (4 weeks) exposure and P48-Cre/LSL-KrasG12D (KC) mice
with chronic (14 weeks) exposure to CCK-BR targeted NPs loaded with siRNAs are shown
in Table 1. No significant changes in serum chemistries were noted between control mice
and NP-treated mice. The serum amylase levels were higher in the KC mice compared to
the wild type mice and this most likely was due to the inflammation induced by muKras in
the mouse pancreas. There was no statistical difference between the serum amylase levels
of untreated KC mice and those treated chronically with NPs.

Table 1. Serum chemistries in wild type C57BL/6 mice or mutant Kras mice (KC).

Mouse Strain C57BL/6 C57BL/6 KC KC KC

Treatment Control GAST siRNA Control Scrambled
siRNA MuKras siRNA

Blood Test/(Range)

Alkaline Phosphatase
56 ± 12 29 ± 5 76 ± 7 77 ± 8 74 ± 6(9.6–218.85 U/L)

Alanine aminotransferase
26 ± 6 13 ± 2 38 ± 9 60 ± 11 55 ±17(15.00–80.10 U/L)

Aspartate aminotransferase
159 ± 24 167 ± 52 156.75 122 ± 39 165 ± 22(33.95–268.47 U/L)

Albumin
3.2 ± 0.1 2.5 ± 0.2 3.3 ± 0.1 3.3 ± 0.2 3.2 ± 0.2(1.92–4.11 g/dL)

Bilirubin
0.3 ± 0.04 0.3 ± 0.05 0.33 ± 0.08 0.35 ± 0.09 0.3 ± 0.04(0.17–0.53 mg/dL)

Calcium
10.9 ± 0.6 10.9 ± 0.3 11.2 ± 0.2 11.5 ± 0.2 11.4 ± 0.4(8.28–12.27 mg/dL)

Creatinine
0.4 ± 0.03 0.3 ± 0.07 0.4 ± 0.04 0.4 ± 0.01 0.4 ± 0.04(0.12–0.43 mg/dL)

BUN
24 ± 2.7 30 ± 2.6 25 ± 2.1 25 ± 4.1 25 ± 2.1(9.42–31.53 mg/dL)

Amylase
529 ± 34 533 ± 199 853 ± 126 1274 ± 503 1254 ± 323(351-1563 U/L)

Sodium
141 ± 0.6 141 ± 0.4 141 ± 0.6 142 ± 0.8 143 ± 0.6(124.8–160.3 mmol/L)

Potassium
4 ± 0.06 4 ± 0.06 4.1 ± 0.04 4.2 ± 0.09 4.2 ± 0.04(2.17–8.18 mmol/L)

Chloride
106 ± 1.6 105 ± 2.3 109 ± 1.0 106 ± 2.6 108 ± 0.8(99.96–121.75 mmol/L)

3. Discussion

In this investigation, we developed a novel nanovehicle to safely deliver and silence
muKras in vivo resulting in inhibition of growth and metastases of pancreatic cancer in
murine models. Others have used methods such as electroporation [32] to effectively
deliver siRNA to muKras to tumors in mouse models, but this technique is not practical for
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translational therapies for human subject. DOPC (1,2-dioleoyl-sn-glycero-3- phosphatidyl-
choline) nanoliposomes loaded with Kras siRNAs have also been used in animal models
of lung and colon cancer with success in decreasing metastases, but this platform did not
selectively target a codon mutation [33]. In most human pancreatic cancers a transition in
the 12th codon of KRAS occurs with a change from GGU in the sense strand of the wild
type KRAS mRNA to GAU in the mutant sense mRNA. This minor change, however, leads
to significant phenotypic alterations in the pancreas and drives carcinogenesis. Such a small
alteration renders the gene more challenging to target and difficult to confirm effective
knockdown of the target. We had designed several primers to confirm efficient knockdown
of mutant KRAS and found that the primer with the altered codon placed at the 5′ position
resulted in effective detection by qRT-PCR of the down-regulation by qRT-PCR. Indeed, we
confirmed that the muKRAS mRNA was down-regulated in the pancreatic tumors; hence,
the targeting polyplex vehicle utilized was effective.

Obviously, the best strategies to improve survival from cancer involve prevention. In
the P48-Cre/LSL-KrasG12D mouse model that spontaneously develops pancreatic cancer
through Kras-stimulated progression of PanIN lesions [34], we showed that treatment with
the NP loaded with muKras siRNA significantly halted PanIN progression and altered the
fibrosis of the pancreas extracellular matrix thus preventing cancer. High grade or PanIN-3
lesions are considered carcinoma in situ [35] and those with a strong family history of
pancreatic cancer often have multi-focal precursor neoplastic PanIN-3 lesions [36]. These
subjects could potentially benefit from strategies to prevent the progression of PanINs to
cancer. Unfortunately, the majority of those diagnosed with pancreatic cancer has no family
history and are considered sporadic in occurrence. Using this same polyplex nanoparticle
platform that targets the CCK-B receptor, we are developing an imaging tool that can detect
PanIN-3 lesions [26]; such a method could facilitate early detection of high grade PanINs
lesions that would be amenable for therapy.

We demonstrated important changes in the pancreas extracellular matrix in the KC
mice treated chronically (14 weeks) with the targeted NPs loaded with muKras siRNA;
there was a considerable decrease in pancreatic fibrosis and an alteration in the immune
cell signature. CCK receptors have been reported on rodent pancreatic stellate cells [37]
and when stimulated, these release collagen to form the fibrosis in the extracellular matrix.
We previously showed that a CCK receptor antagonist, proglumide, prevents fibrosis in
the pancreas extracellular matrix in Pdx1-Cre/LSL-KrasG12D transgenic mice [25] and also
decreased the fibrosis in models of pancreatic cancer [38,39]. One explanation for the
decreased fibrosis observed in the mice treated with the CCK-BR targeted NPs may have
been due to blocking activation of these receptors on stellate cells in the pancreas and also
decreasing inflammation mediated by Kras.

Macrophages can polarize to be either tumor killing (M1) or tumor promoting (M2) [40]
and arginase I (ARGI) expression is associated with M2, tumor-promoting macrophages [41].
The cancer-promoting pancreatic microenvironment has an abundance of M2 polarized [42,43]
as was observed in the pancreas in this investigation of the control and scrambled siRNA NP
treated KC mice. Macrophages release chemokines and cytokines known to activate pancreatic
stellate cells or fibroblasts [44] contributing to the increase inflammation and fibrosis. The
decreased numbers of M2-polarized macrophages seen in the pancreas of mice treated with
targeted NP loaded with muKras reflect a change in the immune cell signature to a less
tumorigenic phenotype.

In addition to mutant KRAS, other growth factors have been shown to stimulate
growth of human pancreatic cancer, including gastrin [24]. In fact, we previously showed
that gastrin collaborates with mutant Kras to promote PanIN progression and carcinogenesis
in the P48-Cre/LSL-KrasG12D mouse model [45]. In the presence of gastrin, signal transduc-
tion in the KC mouse pancreas occurs by phosphorylation of HER family members includ-
ing HER2 and EGFR and activation of RAS mitogenic pathways. This proto-oncogenic
MAP-kinase signaling pathway leads to cellular proliferation by a non-canonical pathway
that is reversed in the absence of gastrin [45]. The polyplex nanoparticle platform used in
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this investigation was previously used to deliver GAST siRNA and was shown to decrease
metastases in mice bearing human pancreatic cancers [20]. In fact, down-regulating gastrin
expression appears to be as effective in treating pancreatic cancer as down-regulation of
muKRAS. When both siRNAs were administered in combination, no significant additive or
synergistic effect was observed at the doses used.

Mice bearing heavy tumor burdens were purposely studied in this investigation to
represent models that parallel the majority of human subjects at the time of diagnosis. Only
10–15% of those with pancreatic cancer have resectable disease at the time of diagnosis
and approximately 40–45% of subjects already have metastases [46]. Even at this late stage
of disease, we showed that treatment with targeted NPs loaded with siRNA to GAST or
muKRAS decreased the number of metastases and prolonged survival. A unique feature
observed in this study was the histologic absence of tumor emboli noted in the mice
treated with the GAST siRNA loaded NP, while present in the mice treated with the other
loaded NPs. We have also shown that inhibition of the gastrin: CCK receptor signaling
pathway with a receptor antagonist, proglumide, blocked metastases by decreasing tumoral
genes associated with epithelial to mesenchymal transition (EMT) [39]. CCK receptor
antagonists also decrease tumor emboli by decreasing the expression of VEGF-A [47].
A cancer vaccine that induces neutralizing antibodies to gastrin was shown to improve
survival in a murine model of pancreatic cancer and reduce metastases by decreasing
components of the metastases cascade and EMT, including protein expression of paxillin,
β-catenin, and MMP-7 [48]. These mechanisms most likely explain the findings in this
investigation of decreased metastases and tumor emboli in the murine models treated with
the GAST siRNA loaded NP.

In drug development, assurance of the safety of the new product is crucial. In this
investigation, we examined the efficacy of the targeted NP to decrease pancreatic cancer
tumor proliferation and improve survival in an immune competent mouse model. One
purpose of using a model with an intact immune system is to assure the therapeutic
agent is not immunogenic and is not inactivated in an animal with the ability to generate
neutralizing antibodies. Although cationic nanoliposomes provide an efficient way to
complex with negatively charged siRNAs, these positively charged nanoparticles are highly
toxic [49] eliciting dose-dependent toxicity and pulmonary inflammation, hepatotoxicity
and a systemic interferon type I response [50]. Safety and off-target toxicity was examined
in our study with immune competent mice over a short (4 weeks) or long (4 months)
duration of NP administration. No serological abnormalities were noted in chemistries
between control and treated mice. Furthermore, histologic sections of the major organs
failed to reveal any inflammation or other pathological changes. Since our polyplex NP
was designed to selectively target cells that over-express the CCK-B receptor (like PanINs
and pancreatic cancer), this form of precision medicine decreases the likelihood of uptake
and off-target toxicity in other organs that lack this receptor. In fact, there was a concern
in using this target-specific NP since the mouse and human stomach also expresses the
CCK-B receptor and our targeted NP could potentially bind to these receptors. However,
no histologic alterations were identified in the mouse stomach sections. Even if the CCK-B
receptor targeted NP were to bind to the gastric CCK-B receptor, the enterochromaffin-like
cells and parietal cells in the stomach body that have low expression of the CCK-B receptor
do not express gastrin mRNA or muKRAS so adverse outcomes would not be expected.
These data are consistent with the lack of gastric tissue uptake observed in previous imaging
studies using this CCK-B receptor targeted polyplex [26]. With the recent broad use and
safety of mRNA COVID-19 vaccines [51,52], development of other platforms to deliver
mRNA therapies or siRNA therapies, as in our research, may hopefully be accelerated.

4. Materials and Methods
4.1. Characterization of Cell Lines

AsPC-1 and PANC-1 human pancreatic tumors were obtained from the American Type
Culture Collection (Rockville, MD, USA). Cells were maintained in the appropriate media:
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DMEM with 10% FBS for PANC-1 and RPMI-1640 with 10% FBS for AsPC-1 in humidified
air with 5% CO2. We previously showed that AsPC-1 and PANC-1 cells express CCK-B
receptors and make endogenous gastrin [31]. Before inoculation in mice, the cells were
tested by IMPACT II PCR Profile (IDEXX BioAnalytics, Columbia, MO, USA) and were
negative for all pathogens. The mT3-2D cells (mT3 cells) were a gift from the laboratory
of Dr. David Tuveson, Cold Spring Harbor, NY. This murine pancreatic cancer cell line
was derived from Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx-Cre (KPC) mice and are syngeneic
to C57BL/6 mice [53]. These cells were maintained in DMEM media with 10% FBS in
humidified air with 5% CO2. The mT3 murine cells have also been shown to have CCK-BR
and make endogenous gastrin [48].

4.2. Nanoparticle Polyplex (NP) Formulation and Characterization

In order to develop the targeted NP, a thiol functionalized polyethylene glycol-block-
poly(L-lysine) (SH-PEG-PLL) polymer was synthesized as previously described [20,26]. To
render the NP target-specific for the cholecystokinin-B receptor (CCK-BR) we conjugated
maleimide functionalized Gastrin-10 peptide (Glu-Glu-Glu-Ala-Tyr-Gly-Trip-Met-Asp-Phe-
NH2, MW 1426.48 g/mol) (custom synthesis by GenScript USA Inc., Piscataway, NJ, USA)
to SH-PEG-PLL via a Michael addition reaction. The resulting Ga-PEG-PLL was extensively
purified by dialysis using 7 kDa MWCO dialysis cassettes against 0.1 M sodium phosphate
buffer, pH 7.4 with 0.3 M NaCl. The polyplex micelle was prepared by mixing 1 mg/mL
of the Ga-PEG-PLL with double stranded siRNA that selectively targeted GAST, human
muKRAS, murine mutant Kras, wild-type (WT)-Kras or a nonspecific scrambled sequence
control (Supplementary Table S1). The sequences for the muKRAS and the scrambled control
had been previously validated by Réjiba et al. [32]. NCBI blast confirms the homology of
the sequences for human and mouse.

The self-assembled targeted dual siRNA polyplex NPs were characterized for hy-
drodynamic size distribution by dynamic light scattering (DLS) using photon correlation
spectroscopy with an optical glass round cuvette with a diameter of 5 mm in a 3D LS
Spectrometer (LS Instruments, Fribourg, Switzerland), equipped with a HeNe laser at 633
nm (25 ◦C, 633 nm laser, 90◦ scattering angle).

4.3. In Vivo Animal Models

All animal studies were performed in an ethical fashion and approved by the In-
stitutional Animal Care and Use Committee (IACUC) at Georgetown University. Three
experiments included orthotopically grown pancreatic tumors: two were with athymic
nude mice (Charles Rivers) with human AsPC-1 and PANC-1 tumors and the third exper-
iment used immune competent C57BL/6 mice (Charles Rivers) with syngeneic murine
mT3 tumors orthotopically explanted in the pancreas. For cancer prevention studies and
chronic safety studies, P48-Cre/LSL-KrasG12D male and female littermates were used. For
short-term safety studies male and female wild-type C57BL/6 mice were used. A summary
of the different animal models and experiments performed is shown in Table 2. Mice were
housed in the Comparative Medicine facility at Georgetown University with 5 mice per
cage in filter top cages and fed standard chow and water ad libitum. The rooms were on
automatic lighting with a 12-h on-off cycle. Immunodeficient athymic nude mice received
autoclaved food, bedding and water.
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Table 2. Experimental design of five separate in vivo models.

Mouse Strain Experiment Treatments (N) Objective Sex

Athymic nude

Orthotopic Human
AsPC-1 PBS control (7), Delivering 2 payloads.

Measuring metastases
Female106 cells/mouse NPs: Scrambled (7), GAST, (8) Dose 240 nM TIW

muKRAS (8), Combination
siRNA (8)

Athymic nude
Orthotopic Human

PANC-1 × 106

cells/mouse

PBS control (8) Survival study, large
tumor burden & Female
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4.4. Evaluation of the Effectiveness of Targeted NPs with siRNA to MuKras to Prevent
PanIN Progression

Mice were bred in a transgenic colony and genotyped to obtain P48-Cre/LSL-KrasG12D

mice for experimentation. Male (N = 15) and female (N = 10) littermates were used.
Starting at 10 weeks of age (a time when PanIN lesions are beginning to develop, mice
were randomly divided into three groups: no treatment (control), targeted nanoparticle
with scrambled siRNA, or targeted nanoparticle with muKras siRNA. The mice received an
ip injection of 480 nM of each NP in a volume of 100 µl twice a week for 14 weeks or until
the mice reached 24 weeks of age. The mice were ethically euthanized, blood collected
for serum chemistries, pancreas and other organs excised and examined histologically
for off-target toxicity. A small sample of pancreas was collected for RNA extraction and
the remainder of the pancreas was fixed, paraffin embedded and stained with H&E for
histologic evaluation and grading of PanIN lesions.

The pancreata were stained with H&E, scanned with the Aperio GT450 machine, and
histology compared between the three cohorts. Using the Aperio Image software, the
normal acinar area of each pancreas was measured and compared to the area of pancreas
replaced with PanIN lesions. Using the annotation feature on the Aperio software, PanIN
lesions in each pancreas were counted and categorized as low grade (PanIN-1 and 2), or high
grade (PanIN-3) lesions. The mean number of PanINs at each grade was determined per
treatment group. Sections of mouse pancreata were also reacted with Masson’s trichrome
stain to analyze the extent of intra-pancreatic fibrosis and with Sirius red to evaluate
collagen in the pancreas microenvironment. Stained slides were analyzed with Image-J
computer software and integrative density of fibrosis quantified.

RNA was extracted from part of the pancreas (Qiagen, Germantown, MD) and sub-
jected to qRT-PCR using a thermal cycler 7300 (Applied Biosystems, Waltham, MA, USA) as
above to examine the expression of muKras mRNA using selective primers (Supplementary
Table S2). A dissociation curve analysis of PCR products was carried out to confirm the
specificity of amplification. The relative differences between two groups were calculated
using ∆∆CT method. Hprt was used as the normalizer.

4.5. Orthotopic Pancreatic Cancer Experiments

Forty female athymic nude mice were each anesthetized and 106 AsPC-1 human
pancreatic cancer cells were injected into the pancreas as we previously described [20].
Two mice died after surgery or as a complication of the anesthetic. The remaining 38 mice
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were imaged by ultrasound after 7 days and had evidence of visible tumors; therefore,
these mice were divided into the 5 following groups with equal size tumors: control mice
(N = 7) were treated with PBS (100 µl) three time per week (TIW); the second control
group (N = 7) received the targeted NP with a nonselective scrambled siRNA; the third
group received a targeted NP with the GAST siRNA (N = 8); the forth group received the
targeted NP with the muKRAS siRNA (N = 8); and the last group received the targeted
NPs with a combination of the GAST and the muKRAS siRNA (N = 8). The NP injections
were administered intraperitoneally (ip) TIW in a volume of 100 µl and with a siRNA
concentration of 240 nM. Mice were ethically euthanized when they lost 10% of the body
weight, developed ascites, or exhibited morbidity. The metastases were counted, tissues
dissected, fixed, paraffin embedded and the slides with tissues stained with H&E for
histologic confirmation of metastases by the team pathologist. The goal of this study was
to determine the efficacy of a NP loaded with either GAST siRNA or siRNA for muKRAS in
decreasing metastases in an aggressive tumor that expresses very high levels of gastrin.

In another experiment, 20 female athymic nude mice received an orthotopic injection
of 106 human PANC-1 cells in the pancreas. In this experiment, the tumors were allowed to
grow and metastasize for 31 days before initiating therapy with the intention of resembling
a scenario similar to that of human subjects who present with pancreatic cancer. After
1 week, the mice were imaged by ultrasound and two mice did not have evidence of tumors
and were not included in the investigation. After 31 days, the mice were reimaged by
ultrasound to confirm growth of the tumors and the presence of a heavy cancer burden
before initiation of the study. The mice were divided into two groups and treated with PBS
(N = 8) or targeted-specific NPs carrying GAST siRNA 480 nM (N = 10), each in a volume
of 100 µl administered ip three times weekly (TIW). As above, mice were treated until they
became moribund and then were ethically euthanized, and tumors removed, weighed and
metastases counted. The primary goal of this experiment was to determine if treatment
with a target-specific NP with GAST siRNA could prolong survival when treatment was
initiated in a very advanced stage.

The third orthotopic study was performed in immune competent C57BL/6 mice bear-
ing syngeneic murine pancreatic cancers. Tumors were established by injecting 100,000 lu-
ciferase tagged mT3 cells into the pancreas of thirty mice. One week after surgery, luciferin
(30 mg/mL) (Nanolight Technology, Pinetop, AZ, USA) was administered to mice by an ip
injection in a volume of 100 µl, in order to measure tumor size with the IVIS Lumina III
In Vivo Optical Imaging System (Perkin Elmer). Mice were divided into three treatment
groups (N = 10 mice each) of equal tumor size at baseline. Treatment was initiated on day
9 after surgery with either PBS (Control), targeted NP carrying scrambled siRNA for Kras,
or targeted NPs with siRNA for both WT- Kras and muKras. Treatments were given TIW ip
in a volume of 100 µl, and NP siRNA concentrations were 240 nM. The goal of the study
was to analyze the growth and survival of mice with the administration of NPs containing
two Kras siRNA (wild-type and muKras) compared to controls.

4.6. Confirmation of Gastrin Peptide Down-Regulation by ELISA

Tumors from control mice and GAST siRNA-treated mice were homogenized in a
buffer containing Tri-HCl 50mM with proteases. Homogenates were centrifuged and the
supernatant (100 µL) was assayed in duplicate from each sample using an ELISA from Enzo
Life Sciences (Cat# 25-0417; Farmingdale, NY, USA). This assay has 100% reactivity with
human gastrin and only 2.67% reactivity with CCK. The standard curve was generated
with the following concentrations of gastrin: 10,000, 2500, 625, 156.25 and 39.1 pg/mL.
After the incubation period the Colorimetric ELISA was read in a plate-reader at 405 nm
and unknowns were calculated using MyAssays software.

4.7. Confirmation That the siRNA Was Delivered and Down-Regulated the Gene by qRT-PCR

Total RNA (Qiagen, Germantown, MD, USA) was extracted from each of the tumors at
necropsy and subjected to qRT-PCR for determination of expression of genes targeted by the
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siRNAs. The primers designed to analyze the gene expression are shown in Supplementary
Table S2. Synthesis of cDNA was performed using a qScript cDNA Synthesis Kit (Quanta
Biosciences, Gaithersburg, MD, USA). Real-time PCR was performed using a Perfecta SYBR
Green FastMix ROX kit (Quanta Biosciences, Gaithersburg, MD, USA) with an Applied
Biosystems 7300 Real Time PCR System machine to assess the expression of GAST and
muKRAS. Samples were subjected in triplicate to qRT-PCR or 40 cycles at 60o C. GAPDH
was used as the normalizer for human tumors.

4.8. Immunohistochemistry Evaluation of Proliferation Index and M2-Polarized Macrophages

Tumors from immune competent mice (mT3) were fixed and paraffin embedded. To
determine the proliferation index of the tumors, tissue sections (5 µm) were reacted with
a rabbit monoclonal antibody for Ki67 (Biocare, cat# CRM325; 1:80). Slides were scanned
using an Aperio GT450 machine and images captured with software from Aperio Image
Scope. Ki67 staining was analyzed by densitometry with Image-J software corrected for
area of tissue examined. Average Ki67+ stains were analyzed from PBS images (N = 30),
scrambled siRNA NP-treated tumors (N = 19), and muKras & WT-Kras siRNA NP-treated
tumors (N = 19). Mean Ki67 staining for each group was analyzed and plotted by Prism
GraphPad version 9.

Pancreas tissue macrophages were stained for F4/80 epitope by exposing performing
heat induced epitope retrieval (HIER) by immersing the 5 µm tissue sections at 37 ◦C for
14 min in Pronase. Immunohistochemical staining was performed using a horseradish
peroxidase labeled polymer from Vector MP-7444, according to manufacturer’s instructions.
Briefly, slides were treated with 3% hydrogen peroxide and 2.5% normal goat serum (from
Kit) for 20 min each, and exposed to a rat monoclonal primary antibody for F4/80 against
mouse, (eBioscience, San Diego, CA, USA) at a titer of 1:35 for overnight at 4 ◦C. Slides
were exposed to the Impress Anti-Rat IgG (mouse adsorbed) labeled polymer for 30 min
and DAB chromagen (Dako) for 5 min. Slides were counterstained with Hematoxylin
(Sigma, Harris Modified Hematoxylin, St. Louis, MO, USA) at 1/10 dilution for 2 min
at RT, blued in 1% ammonium hydroxide for 1 min at room temperature, dehydrated,
and mounted with Acrymount. Sections with the omitted primary antibody were used
as negative controls. Slides were scanned using an Aperio GT450 machine and images
captured with software from Aperio Image Scope.

Pancreas from the KC mice were fixed and embedded and after antigen retrieval as
above, 5 µm sections were reacted with rabbit polyclonal arginase antibody (ThermoFisher,
Cat# PA5-29645) at a dilution of 1:1800 to detect M2 macrophages. All slides were reacted
with HRP-conjugated anti-rabbit secondary antibody (Agilent Cat# K400311-2). Images
were taken on an Olympus BX61 microscope with a DP73 camera. The number of im-
munoreactive cells per slide area was counted with image-J computer software by an
assistant blinded to the treatments.

4.9. Safety and Toxicity Assessment

Safety and off-target toxicity of the targeted NP were evaluated in immune competent
mice. Wild-type male and female C57BL/6 mice were treated with targeted nonspecific
NPs (480 nM) ip in a volume of 100 µl twice weekly for 4 weeks (short term) or an equal
number with PBS control. After 4 weeks, blood was collected at euthanasia by cardiac
stick and evaluated for serum chemistries, including liver profile, electrolytes, calcium and
amylase. Five major organs were dissected (stomach, intestine, kidney, liver and spleen)
fixed, paraffin embedded and stained with H&E. Histology slides were examined by the
team pathologist for inflammation or off target toxicity.

Safety and off-target toxicity were also evaluated after long-term (14 weeks, chronic
therapy) in the P48-Cre/LSL-KrasG12D transgenic mice treated twice weekly with 480 nM
targeted NPs (scrambled or muKras) compared to untreated controls. Similar to the wild-
type mice, blood was collected at euthanasia and analyzed for serum chemistry and the
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5 major organs were dissected, fixed, embedded and stained with H&E and examined by
the team pathologist for off-target toxicity.

4.10. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software version 9.1 or
Minitab Version 19. Differences between the treatments were performed using two-way
ANOVA. When only two groups were compared (i.e., gastrin ELISA assay, student’s t-test
was done. Significance was set at the 95% confidence interval with p < 0.05 considered
significant. Survival analysis was performed with a Kaplan Meier Survival Curve of mice.
Log-rank analysis was performed comparing controls to each treatment group by applying
a Cox proportional hazard model.

5. Conclusions

In conclusion, we demonstrated a safe and effective strategy to decrease growth and
metastases of pancreatic cancer using CCK-B receptor targeted polyplex NPs. These NPs
effectively down-regulated the expression of muKRAS and GAST; both have been shown
to serve as drivers of pancreatic cancer. Since NP delivery platforms have demonstrated
safety and ability to scale-up for clinical translation, use of our NP that selectively targets
the CCK-B receptor further increases optimism that muKRAS can be targeted and survival
from pancreatic cancer improved.

6. Patents

Georgetown University and the NIH have an issued patent (US11,246,881).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010752/s1, Figure S1. Confirmation of AsPC-1 tumor
metastases by histology; Figure S2. Mouse intestine; Figure S3. Mouse stomach; Figure S4. Mouse
liver; Figure S5. Mouse kidney; Figure S6. Mouse spleen; Table S1: Sequences of the siRNAs loaded
to nanoparticles; and Table S2: Primers used for qRT-PCR.
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