Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = chitosan-catechol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3937 KiB  
Article
Sustained Release of Curcumin from Cur-LPs Loaded Adaptive Injectable Self-Healing Hydrogels
by Caixia Wu, Xiaoqun Ning, Qunfeng Liu, Xiaoyan Zhou and Huilong Guo
Polymers 2024, 16(24), 3451; https://doi.org/10.3390/polym16243451 - 10 Dec 2024
Cited by 1 | Viewed by 994
Abstract
Biological tissue defects are typically characterized by various shaped defects, and they are prone to inflammation and the excessive accumulation of reactive oxygen species. Therefore, it is still urgent to develop functional materials which can fully occupy and adhere to irregularly shaped defects [...] Read more.
Biological tissue defects are typically characterized by various shaped defects, and they are prone to inflammation and the excessive accumulation of reactive oxygen species. Therefore, it is still urgent to develop functional materials which can fully occupy and adhere to irregularly shaped defects by injection and promote the tissue repair process using antioxidant and anti-inflammatory mechanisms. Herein, in this work, phenylboronic acid modified oxidized hyaluronic acid (OHAPBA) was synthesized and dynamically crosslinked with catechol group modified glycol chitosan (GCHCA) and guar gum (GG) into a hydrogel loaded with curcumin liposomes (Cur-LPs) which were relatively uniformly distributed around 180 nm. The hydrogel possessed rapid gelation within 30 s, outstanding injectability and tissue-adaptive properties with self-healing properties, and the ability to adhere to biological tissues and adapt to tissue movement. Moreover, good biocompatibility and higher DPPH scavenging efficiency were illustrated in the hydrogel. And a more sustainable release of curcumin from Cur-LPs-loaded hydrogels, which could last for 10 days, was achieved to improve the bioavailability of curcumin. Finally, they might be injected to fully occupy and adhere to irregularly shaped defects and promote the tissue repair process by antioxidant mechanisms and the sustained release of curcumin for anti-inflammation. And the hydrogel would have potential application as candidates in tissue defect repair. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Figure 1

15 pages, 2383 KiB  
Article
A Novel Bio-Adhesive Based on Chitosan-Polydopamine-Xanthan Gum for Glass, Cardboard and Textile Commodities
by Jessica Costa, Maria Camilla Baratto, Daniele Spinelli, Gemma Leone, Agnese Magnani and Rebecca Pogni
Polymers 2024, 16(13), 1806; https://doi.org/10.3390/polym16131806 - 26 Jun 2024
Cited by 7 | Viewed by 2556
Abstract
The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based [...] Read more.
The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan’s solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 2890 KiB  
Article
Immobilization of Horseradish Peroxidase onto Montmorillonite/Glucosamine–Chitosan Composite for Electrochemical Biosensing of Polyphenols
by María Belén Piccoli, Florencia Alejandra Gulotta, Mariana Angélica Montenegro, Noelia Luciana Vanden Braber, Verónica Irene Paz Zanini and Nancy Fabiana Ferreyra
Biosensors 2024, 14(6), 278; https://doi.org/10.3390/bios14060278 - 29 May 2024
Cited by 1 | Viewed by 1577
Abstract
Glucosamine–chitosan synthesized by the Maillard reaction was combined with montmorillonite to obtain a nanohybrid composite to immobilize horseradish peroxidase. The material combines the advantageous properties of clay with those of the chitosan derivative; has improved water solubility and reduced molecular weight and viscosity; [...] Read more.
Glucosamine–chitosan synthesized by the Maillard reaction was combined with montmorillonite to obtain a nanohybrid composite to immobilize horseradish peroxidase. The material combines the advantageous properties of clay with those of the chitosan derivative; has improved water solubility and reduced molecular weight and viscosity; involves an eco-friendly synthesis; and exhibits ion exchange capacity, good adhesiveness, and a large specific surface area for enzyme adsorption. The physicochemical characteristics of the composite were analyzed by infrared spectroscopy and X-ray diffraction to determine clay–polycation interactions. The electrochemical response of the different polyphenols to glassy carbon electrodes modified with the composite was evaluated by cyclic voltammetry. The sensitivity and detection limit values obtained with the biosensor toward hydroquinone, chlorogenic acid, catechol, and resorcinol are (1.6 ± 0.2) × 102 µA mM−1 and (74 ± 8) nM; (1.2 ± 0.1) × 102 µA mM−1 and (26 ± 3) nM; (16 ± 2) µA mM−1 and (0.74 ± 0.09) μM; and (3.7± 0.3) µA mM−1 and (3.3 ± 0.2) μM, respectively. The biosensor was applied to quantify polyphenols in pennyroyal and lemon verbena extracts. Full article
(This article belongs to the Special Issue Biosensing Based on Nanohybrid Materials)
Show Figures

Figure 1

20 pages, 5283 KiB  
Article
Expanding the Scope of an Amphoteric Condensed Tannin, Tanfloc, for Antibacterial Coatings
by Somayeh Baghersad, Liszt Y. C. Madruga, Alessandro F. Martins, Ketul C. Popat and Matt J. Kipper
J. Funct. Biomater. 2023, 14(11), 554; https://doi.org/10.3390/jfb14110554 - 18 Nov 2023
Cited by 7 | Viewed by 3391
Abstract
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it [...] Read more.
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings. PEMs are ordinarily formed using a polycation and a polyanion, in which the functional (ionic) groups of the two polymers are complexed to each other. However, using the amphoteric polymer Tanfloc with weakly basic amine and weakly acidic catechol and pyrogallol groups enables PEM formation using only one or the other of its functional groups, leaving the other functional group available to impart antibacterial activity. This work demonstrates Tanfloc-containing PEMs using multiple counter-polyelectrolytes including three polyanionic glycosaminoglycans of varying charge density, and the polycations N,N,N-trimethyl chitosan and polyethyleneimine. The layer-by-layer (LbL) assembly of PEMs was monitored using in situ Fourier-transform surface plasmon resonance (FT-SPR), confirming a stable LbL assembly. X-ray photoelectron spectroscopy (XPS) was used to evaluate surface chemistry, and atomic force microscopy (AFM) was used to determine the surface roughness. The LDH release levels from cells cultured on the Tanfloc-containing PEMs were not statistically different from those on the negative control (p > 0.05), confirming their non-cytotoxicity, while exhibiting remarkable antiadhesive and bactericidal properties against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), respectively. The antibacterial effects were attributed to electrostatic interactions and Tanfloc’s polyphenolic nature. This work underscores the potential of Tanfloc as a versatile biomaterial for combating infections on surfaces. Full article
(This article belongs to the Special Issue Tannins and Other Polyphenols as Functional Biomaterials)
Show Figures

Graphical abstract

19 pages, 8441 KiB  
Article
Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds
by Duo Kang, Wenhai Wang, Yanmei Li, Yi Ma, Yadong Huang and Jufang Wang
Polymers 2023, 15(19), 3919; https://doi.org/10.3390/polym15193919 - 28 Sep 2023
Cited by 13 | Viewed by 2644
Abstract
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold [...] Read more.
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal–polyphenol structure were fabricated to accelerate wound healing. The resulting biological macromolecule hydrogel possesses sufficient mechanical strength, fatigue resistance, and healing properties, including antibacterial, antioxygenic, self-healing, vascularization, hemostatic, and adhesive abilities. Chitosan and recombinant type I collagen formed the scaffold network, which was the first covalent crosslinking network of the hydrogel. The second physical crosslinking network comprised the coordination of a metal–polyphenol structure, i.e., Cu2+ with the catechol group of dopamine methacrylamide (DMA) and stacking of DMA benzene rings. Double-crosslinked networks are interspersed and intertwined in the hydrogel to reduce the mechanical strength and increase its fatigue resistance, making it more suitable for clinical applications. Moreover, the biological macromolecule hydrogel can continuously release Cu2+, which provides strong antibacterial and vascularization properties. An in vivo full-thickness skin defect model confirmed that multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal–polyphenol structure can facilitate the formation of granulation tissue and collagen deposition for a short period to promote wound healing. This study highlights that this biological macromolecule hydrogel is a promising acute wound-healing dressing for biomedical applications. Full article
Show Figures

Figure 1

18 pages, 5013 KiB  
Article
The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols
by Paweł Krzyczmonik, Marta Klisowska, Andrzej Leniart, Katarzyna Ranoszek-Soliwoda, Jakub Surmacki, Karolina Beton-Mysur and Beata Brożek-Płuska
Materials 2023, 16(14), 5113; https://doi.org/10.3390/ma16145113 - 20 Jul 2023
Cited by 5 | Viewed by 1924
Abstract
The described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ [...] Read more.
The described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs. The influence of AuNPs on the increase in the electrical conductivity of the chitosan layers and on facilitating the oxidation of polyphenols in these layers was demonstrated. The enzymatic sensor was obtained via immobilization of the laccase on the surface of the composite, with glutaraldehyde as the linker. The investigation of the surface morphology of the GCE/PEDOT-PSSLi/chit-AuNPs-GA/Laccase sensor was carried out using SEM and AFM microscopy. Using EDS and Raman spectroscopy, AuNPs were detected in the chitosan layer and in the laccase on the surface of the sensor. Polyphenols were determined using differential pulse voltammetry. The biosensor exhibited catalytic activity toward the oxidation of polyphenols. It has been shown that laccase is regenerated through direct electron transfer between the sensor and the enzyme. The results of the DPV tests showed that the developed sensor can be used for the determination of polyphenols. The peak current was linearly proportional to the concentrations of catechol in the range of 2–90 μM, with a limit of detection (LOD) of 1.7 μM; to those of caffeic acid in the range of 2–90 μM, LOD = 1.9 μM; and to those of gallic acid in the range 2–18 μM, LOD = 1.7 μM. Finally, the research conducted in order to determine gallic acid in a natural sample, for which white wine was used, was described. Full article
(This article belongs to the Special Issue Advanced Electrode Materials Dedicated for Electroanalysis)
Show Figures

Figure 1

13 pages, 2721 KiB  
Article
Dynamic Crosslinked Injectable Mussel-Inspired Hydrogels with Adhesive, Self-Healing, and Biodegradation Properties
by Ruixiao Wang, Liqun Liu, Xiang He, Zongmei Xia, Zhenjie Zhao, Zhenhao Xi, Juan Yu and Jie Wang
Polymers 2023, 15(8), 1876; https://doi.org/10.3390/polym15081876 - 14 Apr 2023
Cited by 14 | Viewed by 4433
Abstract
The non-invasive tissue adhesives with strong tissue adhesion and good biocompatibility are ideal for replacing traditional wound treatment methods such as sutures and needles. The self-healing hydrogels based on dynamic reversible crosslinking can recover their structure and function after damage, which is suitable [...] Read more.
The non-invasive tissue adhesives with strong tissue adhesion and good biocompatibility are ideal for replacing traditional wound treatment methods such as sutures and needles. The self-healing hydrogels based on dynamic reversible crosslinking can recover their structure and function after damage, which is suitable for the application scenario of tissue adhesives. Herein, inspired by mussel adhesive proteins, we propose a facile strategy to achieve an injectable hydrogel (DACS hydrogel) by grafting dopamine (DOPA) onto hyaluronic acid (HA) and mixing it with carboxymethyl chitosan (CMCS) solution. The gelation time and rheological and swelling properties of the hydrogel can be controlled conveniently by adjusting the substitution degree of the catechol group and the concentration of raw materials. More importantly, the hydrogel exhibited rapid and highly efficient self-healing ability and excellent biodegradation and biocompatibility in vitro. Meanwhile, the hydrogel exhibited ~4-fold enhanced wet tissue adhesion strength (21.41 kPa) over the commercial fibrin glue. This kind of HA-based mussel biomimetic self-healing hydrogel is expected to be used as a multifunctional tissue adhesive material. Full article
(This article belongs to the Special Issue Biopolymers: Structure-Function Relationship and Application II)
Show Figures

Figure 1

10 pages, 34862 KiB  
Article
Bioadhesive Gauze Embedded with Chitosan-Butein Bioconjugate: A Redox-Active pH Sensor Platform
by Vinoth Krishnan, Venkatachalam Ananth, Jayasudha Velayutham, Pandiaraj Manickam and Murugan Veerapandian
Biosensors 2023, 13(1), 6; https://doi.org/10.3390/bios13010006 - 21 Dec 2022
Cited by 6 | Viewed by 2233
Abstract
With the ever-growing global wound care market, demand for robust redox-active healthcare material is obvious for the construction of wearable sensor platforms. Surface reactive functional group-rich material like chitosan holds huge potential for electrochemical biosensor application. Herein, a metal-free redox-active chitosan–butein (CSB) bioconjugate [...] Read more.
With the ever-growing global wound care market, demand for robust redox-active healthcare material is obvious for the construction of wearable sensor platforms. Surface reactive functional group-rich material like chitosan holds huge potential for electrochemical biosensor application. Herein, a metal-free redox-active chitosan–butein (CSB) bioconjugate is processed into epidermal bioadhesive electrode material useful for pH sensors promising toward wound site analysis. A two-electrode system devised for conducting carbon-reinforced silver chloride paste and CSB-modified carbon/silver chloride matrix was used as a reference and working electrodes, respectively. Dimensions of working and reference electrodes (4 mm) were designed by 2D cutter plotter-assisted stenciling. The cross-sectional topology of the constructed adhesive CSB-sensor platform exhibits an average surface thickness of 183 ± 2 μm. Cyclic voltammetric analysis revealed the inherent 2e/2H+ transfer attributed to the catechol OH groups of graft polymerized CSB modified on adhesive gauze. As-fabricated modified electrode substrates exhibit distinguishable potential differences with respect to electrolytes of varied pH (between 5 to 9), promising for wound site analysis. Full article
(This article belongs to the Special Issue Feature Issue of Biosensor Materials Section)
Show Figures

Figure 1

21 pages, 43952 KiB  
Article
Exploiting Polyelectrolyte Complexation for the Development of Adhesive and Bioactive Membranes Envisaging Guided Tissue Regeneration
by Mário C. Fonseca, Ana Catarina Vale, Rui R. Costa, Rui L. Reis and Natália M. Alves
J. Funct. Biomater. 2023, 14(1), 3; https://doi.org/10.3390/jfb14010003 - 20 Dec 2022
Cited by 2 | Viewed by 2272
Abstract
Mussels secrete protein-based byssal threads to tether to rocks, ships, and other organisms underwater. The secreted marine mussel adhesive proteins (MAPs) contain the peculiar amino acid L-3,4-dihydroxyphenylalanine (DOPA), whose catechol group content contributes greatly to their outstanding adhesive properties. Inspired by such mussel [...] Read more.
Mussels secrete protein-based byssal threads to tether to rocks, ships, and other organisms underwater. The secreted marine mussel adhesive proteins (MAPs) contain the peculiar amino acid L-3,4-dihydroxyphenylalanine (DOPA), whose catechol group content contributes greatly to their outstanding adhesive properties. Inspired by such mussel bioadhesion, we demonstrate that catechol-modified polysaccharides can be used to obtain adhesive membranes using the compaction of polyelectrolyte complexes (CoPEC) method. It is a simple and versatile approach that uses polyelectrolyte complexes as building blocks that coalesce and dry as membrane constructs simply as a result of sedimentation and mild temperature. We used two natural and biocompatible polymers: chitosan (CHI) as a polycation and hyaluronic acid (HA) as a polyanion. The CoPEC technique also allowed the entrapment of ternary bioactive glass nanoparticles to stimulate mineralization. Moreover, combinations of these polymers modified with catechol groups were made to enhance the adhesive properties of the assembled membranes. Extensive physico-chemical characterization was performed to investigate the successful production of composite CoPEC membranes in terms of surface morphology, wettability, stability, mechanical performance, in vitro bioactivity, and cellular behavior. Considering the promising properties exhibited by the obtained membranes, new adhesives suitable for the regeneration of hard tissues can be envisaged. Full article
(This article belongs to the Special Issue Women in Science: Functional Biomaterials)
Show Figures

Figure 1

14 pages, 2076 KiB  
Article
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates
by A. Basak Kayitmazer, Fatih Comert, Henning H. Winter and Phillip B. Messersmith
Biomolecules 2022, 12(12), 1817; https://doi.org/10.3390/biom12121817 - 5 Dec 2022
Cited by 18 | Viewed by 4718
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly [...] Read more.
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives. Full article
(This article belongs to the Special Issue Mechanisms and Kinetics of Interactions of Biomolecules at Interfaces)
Show Figures

Graphical abstract

17 pages, 4548 KiB  
Article
Gelation and the Self-Healing Behavior of the Chitosan–Catechol Hydrogel
by Yu-Ting Lan, Qian-Pu Cheng, Junpeng Xu, Shih-Ho Lin, Jhih-Min Lin and Shan-hui Hsu
Polymers 2022, 14(21), 4614; https://doi.org/10.3390/polym14214614 - 30 Oct 2022
Cited by 23 | Viewed by 5094
Abstract
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan [...] Read more.
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan alone have not yet been explored. Herein, catechol-grafted chitosan (CC) was synthesized and further concentrated to obtain the self-healing CC hydrogels. The gelation mechanism of CC hydrogels may be attributed to the formation of hydrogen bonding, cation–π interactions, Michael addition, or Schiff base reactions during concentration phases. Rheological studies showed that the CC hydrogel owned self-healing properties in repeated damage–healing cycles. Coherent small-angle X-ray scattering (SAXS) analyses revealed the formation of a mesoscale structure (~9 nm) as the solid content of the hydrogel increased. In situ SAXS combined with rheometry verified the strain-dependent behavior of the CC hydrogel. The CC hydrogel displayed the osmotic-responsive behavior and enhanced adhesive strength (0.38 N/cm2) after immersion in the physiological saline. The CC scaffold prepared by lyophilizing the CC hydrogel revealed a macroporous structure (~200 µm), a high swelling ratio (9656%), good compressibility, and durability. This work provides an insight into the design of using chitosan–catechol alone to produce hydrogels or scaffolds with tunable mechanical properties for further applications in biomedical fields. Full article
(This article belongs to the Special Issue Smart Natural-Based Polymers)
Show Figures

Graphical abstract

20 pages, 6502 KiB  
Article
Wellbore Stability through Novel Catechol-Chitosan Biopolymer Encapsulator-Based Drilling Mud
by Zhichuan Tang, Zhengsong Qiu, Hanyi Zhong, Yujie Kang and Baoyu Guo
Gels 2022, 8(5), 307; https://doi.org/10.3390/gels8050307 - 16 May 2022
Cited by 4 | Viewed by 2912
Abstract
The problem of wellbore stability has a marked impact on oil and gas exploration and development in the process of drilling. Marine mussel proteins can adhere and encapsulate firmly on deep-water rocks, providing inspiration for solving borehole stability problem and this ability comes [...] Read more.
The problem of wellbore stability has a marked impact on oil and gas exploration and development in the process of drilling. Marine mussel proteins can adhere and encapsulate firmly on deep-water rocks, providing inspiration for solving borehole stability problem and this ability comes from catechol groups. In this paper, a novel biopolymer was synthesized with chitosan and catechol (named “SDGB”) by Schiff base-reduction reaction, was developed as an encapsulator in water-based drilling fluids (WBDF). In addition, the chemical enhancing wellbore stability performance of different encapsulators were investigated and compared. The results showed that there were aromatic ring structure, amines, and catechol groups in catechol-chitosan biopolymer molecule. The high shale recovery rate demonstrated its strong shale inhibition performance. The rock treated by catechol-chitosan biopolymer had higher tension shear strength and uniaxial compression strength than others, which indicates that it can effectively strengthen the rock and bind loose minerals in micro-pore and micro-fracture of rock samples. The rheological and filtration property of the WBDF containing catechol-chitosan biopolymer is stable before and after 130 °C/16 h hot rolling, demonstrating its good compatibility with other WBDF agents. Moreover, SDGB could chelate with metal ions, forming a stable covalent bond, which plays an important role in adhesiveness, inhibition, and blockage. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications)
Show Figures

Graphical abstract

16 pages, 3775 KiB  
Article
Spontaneous Gelation of Adhesive Catechol Modified Hyaluronic Acid and Chitosan
by Guillermo Conejo-Cuevas, Leire Ruiz-Rubio, Virginia Sáez-Martínez, Raul Pérez-González, Oihane Gartziandia, Amaia Huguet-Casquero and Leyre Pérez-Álvarez
Polymers 2022, 14(6), 1209; https://doi.org/10.3390/polym14061209 - 17 Mar 2022
Cited by 9 | Viewed by 4371
Abstract
Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rapid gelation and tissue adhesion are [...] Read more.
Spontaneously formed hydrogels are attracting increasing interest as injectable or wound dressing materials because they do not require additional reactions or toxic crosslinking reagents. Highly valuable properties such as low viscosity before external application, adequate filmogenic capacity, rapid gelation and tissue adhesion are required in order to use them for those therapeutic applications. In addition, biocompatibility and biodegradability are also mandatory. Accordingly, biopolymers, such as hyaluronic acid (HA) and chitosan (CHI), that have shown great potential for wound healing applications are excellent candidates due to their unique physiochemical and biological properties, such as moisturizing and antimicrobial ability, respectively. In this study, both biopolymers were modified by covalent anchoring of catechol groups, and the obtained hydrogels were characterized by studying, in particular, their tissue adhesiveness and film forming capacity for potential skin wound healing applications. Tissue adhesiveness was related to o-quinone formation over time and monitored by visible spectroscopy. Consequently, an opposite effect was observed for both polysaccharides. As gelation advances for HA-CA, it becomes more adhesive, while competitive reactions of quinone in CHI-CA slow down tissue adhesiveness and induce a detriment of the filmogenic properties. Full article
Show Figures

Figure 1

11 pages, 2847 KiB  
Article
Mussel-Inspired Carboxymethyl Chitosan Hydrogel Coating of Titanium Alloy with Antibacterial and Bioactive Properties
by Yanru Ren, Xiaoyan Qin, Mike Barbeck, Yi Hou, Haijun Xu, Luo Liu and Chaoyong Liu
Materials 2021, 14(22), 6901; https://doi.org/10.3390/ma14226901 - 15 Nov 2021
Cited by 20 | Viewed by 3542
Abstract
Infection-related titanium implant failure rates remain exceedingly high in the clinic. Functional surface coating represents a very promising strategy to improve the antibacterial and bioactive properties of titanium alloy implants. Here, we describe a novel bioactive surface coating that consists of a mussel-inspired [...] Read more.
Infection-related titanium implant failure rates remain exceedingly high in the clinic. Functional surface coating represents a very promising strategy to improve the antibacterial and bioactive properties of titanium alloy implants. Here, we describe a novel bioactive surface coating that consists of a mussel-inspired carboxymethyl chitosan hydrogel loaded with silver nanoparticles (AgNPs) to enhance the bioactive properties of the titanium alloy. The preparation of hydrogel is based on gallic acid grafted carboxymethyl chitosan (CMCS-GA) catalyzed by DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride). To build a firm bonding between the hydrogel and titanium alloy plate, a polydopamine layer was introduced onto the surface of the titanium alloy. With HRP/H2O2 catalysis, CMCS-GA can simply form a firm gel layer on the titanium alloy plate through the catechol groups. The surface properties of titanium alloy were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle. Silver nanoparticles were loaded into the gel layer by in situ reduction to enhance the antibacterial properties. In vitro antibacterial and cell viability experiments showed that the AgNPs-loaded Ti-gel possesses excellent antibacterial properties and did not affect the proliferation of rabbit mesenchymal stem cells (MSCs). Full article
(This article belongs to the Special Issue Functional Materials/Surfaces in Biomedical Applications)
Show Figures

Figure 1

12 pages, 5712 KiB  
Article
Strength, Carbonation Resistance, and Chloride-Ion Penetrability of Cement Mortars Containing Catechol-Functionalized Chitosan Polymer
by Se-Jin Choi, Sung-Ho Bae, Jae-In Lee, Eun-Ji Bang and Haye-Min Ko
Materials 2021, 14(21), 6395; https://doi.org/10.3390/ma14216395 - 25 Oct 2021
Cited by 16 | Viewed by 2529
Abstract
There have been numerous recent studies on improving the mechanical properties and durability of cement composites by mixing them with functional polymers. However, research into applying modified biopolymer such as catechol-functionalized chitosan to cement mortar or concrete is rare to the best of [...] Read more.
There have been numerous recent studies on improving the mechanical properties and durability of cement composites by mixing them with functional polymers. However, research into applying modified biopolymer such as catechol-functionalized chitosan to cement mortar or concrete is rare to the best of our knowledge. In this study, catechol-functionalized chitosan (Cat-Chit), a well-known bioinspired polymer that imitates the basic structures and functions of living organisms and biological materials in nature, was synthesized and combined with cement mortar in various proportions. The compressive strength, tensile strength, drying shrinkage, accelerated carbonation depth, and chloride-ion penetrability of these mixes were then evaluated. In the ultraviolet–visible spectra, a maximum absorption peak appeared at 280 nm, corresponding to catechol conjugation. The sample containing 7.5% Cat-Chit polymer in water (CPW) exhibited the highest compressive strength, and its 28-day compressive strength was ~20.2% higher than that of a control sample with no added polymer. The tensile strength of the samples containing 5% or more CPW was ~2.3–11.5% higher than that of the control sample. Additionally, all the Cat-Chit polymer mixtures exhibited lower carbonation depths than compared to the control sample. The total charge passing through the samples decreased as the amount of CPW increased. Thus, incorporating this polymer effectively improved the mechanical properties, carbonation resistance, and chloride-ion penetration resistance of cement mortar. Full article
(This article belongs to the Special Issue Various Substitute Aggregate Materials for Sustainable Concrete)
Show Figures

Figure 1

Back to TopTop