Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = chimeric subunit vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1000 KiB  
Review
Advances and Prospects of Fowl Adenoviruses Vaccine Technologies in the Past Decade
by Chunhua Zhu, Pei Yang, Jiayu Zhou, Xiaodong Liu, Yu Huang and Chunhe Wan
Int. J. Mol. Sci. 2025, 26(13), 6434; https://doi.org/10.3390/ijms26136434 - 4 Jul 2025
Viewed by 285
Abstract
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current [...] Read more.
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current context of intensive poultry production and global trade, co-infections involving multiple FAdVs serotypes, as well as co-infections with FAdVs alongside infectious bursal disease or infectious anemia virus, may occur within the same region or even on the same farm. The frequency of these outbreaks complicates the prevention and control of FAdVs. Therefore, the development of effective, targeted vaccines is essential for providing technical support in the management of FAdVs epidemics. Ongoing vaccine research aims to improve vaccine efficacy and address the challenges posed by emerging FAdVs outbreaks. This review focuses on vaccines developed and studied worldwide for various serotypes of FAdVs in the past decade. It encompasses inactivated vaccines, live attenuated vaccines, e.g., host-adapted attenuated vaccines and gene deletion vaccines, viral vector vaccines, and subunit vaccines (including VLP proteins and chimeric proteins). The current limitations and future development directions of FAdVs vaccine development are also proposed to provide a reference for new-generation vaccines and innovative vaccination strategies against FAdVs, as well as for the rapid development of highly effective vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

11 pages, 2696 KiB  
Article
The Baculovirus Expression System Expresses Chimeric RHDV VLPs as Bivalent Vaccine Candidates for Classic RHDV (GI.1) and RHDV2 (GI.2)
by Yan Wang, Yiyang Fan, Ruixiang Bi, Yapeng Zhao, Wanning Gao, Derong Zhang and Jialin Bai
Vaccines 2025, 13(7), 695; https://doi.org/10.3390/vaccines13070695 - 27 Jun 2025
Viewed by 293
Abstract
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic [...] Read more.
Background: Rabbit hemorrhagic disease (RHD) is an acute, hemorrhagic and highly lethal infectious disease caused by rabbit hemorrhagic disease virus (RHDV), which causes huge economic losses to the rabbit breeding industry. Moreover, there is limited cross-protection between the two different serotypes of classic RHDV (GI.1) and RHDV2 (GI.2). The shortcomings of traditional inactivated vaccines have led to the development of novel subunit vaccines that can protect against both strains, and the VP60 capsid protein is the ideal antigenic protein. This study focused on developing a bivalent RHDV vaccine that can prevent infection with both GI.1 and GI.2 strains. Methodology: Baculovirus vectors containing classic RHDV and RHDV2 VP60 were co-transfected with linearized baculovirus into sf9 cells and transferred to baculovirus via homologous recombination of the VP60 gene. Infected sf9 cells were lysed, and after purification via Ni-NTA chromatography, VLPs were observed using transmission electron microscopy (TEM). In order to evaluate the immunogenicity of the chimeric RHDV VLP vaccine in rabbits, the RHDV VP60-specific antibody, IL-4, IFN-γ and neutralizing antibody titers were analyzed in serum using ELISA and HI. Results: The recombinant baculovirus system successfully expressed chimeric RHDV VLPs with a diameter of 32–40 nm. After immunization, it could produce specific antibodies, IL-4 and IFN-γ. Following the second immunization, neutralizing antibodies, determined using hemagglutination inhibition (HI) assays, were elicited. Conclusions: These data show that the chimeric RHDV VLP bivalent vaccine for immunized New Zealand rabbits can induce humoral immunity and cellular immunity in vivo, and the immunization effect of the high-dose group is similar to that of the current commercial vaccine. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

20 pages, 986 KiB  
Review
Past, Present, and Future of Viral Vector Vaccine Platforms: A Comprehensive Review
by Justin Tang, Md Al Amin and Jian L. Campian
Vaccines 2025, 13(5), 524; https://doi.org/10.3390/vaccines13050524 - 15 May 2025
Viewed by 2495
Abstract
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often [...] Read more.
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often superior to what traditional inactivated or subunit vaccines can achieve. This has accelerated their application to a wide array of pathogens and disease targets, from well-established threats like HIV and malaria to emerging infections such as Ebola, Zika, and SARS-CoV-2. The COVID-19 pandemic further highlighted the agility of viral vector platforms, with several adenovirus-based vaccines quickly authorized and deployed on a global scale. Despite these advances, significant challenges remain. One major hurdle is pre-existing immunity against commonly used vector backbones, which can blunt vaccine immunogenicity. Rare but serious adverse events, including vector-associated inflammatory responses and conditions like vaccine-induced immune thrombotic thrombocytopenia (VITT), have raised important safety considerations. Additionally, scaling up manufacturing, ensuring consistency in large-scale production, meeting rigorous regulatory standards, and maintaining equitable global access to these vaccines present profound logistical and ethical dilemmas. In response to these challenges, the field is evolving rapidly. Sophisticated engineering strategies, such as integrase-defective lentiviral vectors, insect-specific flaviviruses, chimeric capsids to evade neutralizing antibodies, and plug-and-play self-amplifying RNA approaches, seek to bolster safety, enhance immunogenicity, circumvent pre-existing immunity, and streamline production. Lessons learned from the COVID-19 pandemic and prior outbreaks are guiding the development of platform-based approaches designed for rapid deployment during future public health emergencies. This review provides an exhaustive, in-depth examination of the historical evolution, immunobiological principles, current platforms, manufacturing complexities, regulatory frameworks, known safety issues, and future directions for viral vector-based vaccines. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
A Novel BoHV-1-Vectored Subunit RVFV Vaccine Induces a Robust Humoral and Cell-Mediated Immune Response Against Rift Valley Fever in Sheep
by Selvaraj Pavulraj, Rhett W. Stout and Shafiqul I. Chowdhury
Viruses 2025, 17(3), 304; https://doi.org/10.3390/v17030304 - 23 Feb 2025
Viewed by 649
Abstract
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are [...] Read more.
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are no registered vaccines for human use, developing RVF vaccines for use in animals is crucial to protect animals and prevent the spread of the virus from infecting humans. We recently developed a live bovine herpesvirus type 1 quadruple gene-mutant vector (BoHV-1qmv) that lacks virulence and immunosuppressive properties. Further, we engineered a BoHV-1qmv-vectored subunit Rift Valley fever virus (RVFV) vaccine (BoHV-1qmv Sub-RVFV) for cattle, in which a chimeric polyprotein coding for the RVFV Gc, Gn, and bovine granulocyte–macrophage colony-stimulating factor (GMCSF) proteins is fused but cleaved proteolytically in infected cells into individual membrane-anchored Gc and secreted Gn-GMCSF proteins. Calves vaccinated with the BoHV-1qmv Sub-RVFV vaccine generated moderate levels of RVFV-specific serum-neutralizing (SN) antibodies and cellular immune responses. In the current study, we repurposed the BoHV-1qmv Sub-RVFV for sheep by replacing the RVFV Gc and Gn ORF sequences codon-optimized for bovines with the corresponding ovine-codon-optimized sequences and by fusing the sheep GM-CSF ORF sequences with the Gn ORF sequence. A combined primary intranasal-plus-subcutaneous primary immunization induced a moderate level of BoHV-1 (vector)- and vaccine strain MP12-specific SN antibodies and MP-12-specific cellular immune responses. Notably, an intranasal booster vaccination after 29 days triggered a rapid (within 7 days) rise in MP-12-specific SN antibody titers. Therefore, the BoHV-1qmv-vectored subunit RVFV vaccine is safe and highly immunogenic in sheep and can potentially be an efficient subunit vaccine for sheep against RVFV. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Figure 1

14 pages, 2281 KiB  
Article
Development and Efficacy Evaluation of a Novel Nanoparticle-Based Hemagglutination Inhibition Assay for Serological Studies of Porcine Epidemic Diarrhea Virus
by Fengyan Liang, Wenyue Qiao, Mengjia Zhang, Zhangtiantian Hu, Shan Zhao, Qigui Yan, Wentao Li and Yifei Lang
Vet. Sci. 2025, 12(2), 101; https://doi.org/10.3390/vetsci12020101 - 1 Feb 2025
Viewed by 1361
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen that causes serious economic losses to the swine industry. To aid PEDV clinical diagnosis and vaccine development, sensitive and precise serological methods are demanded for rapid detection of (neutralizing) antibodies. Aiming for the development [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is a major pathogen that causes serious economic losses to the swine industry. To aid PEDV clinical diagnosis and vaccine development, sensitive and precise serological methods are demanded for rapid detection of (neutralizing) antibodies. Aiming for the development of a novel virus-free hemagglutination inhibition (HI) assay, the N-terminal region of the PEDV S1 subunit, encompassing the sialic acid-binding motif, was first expressed as an Fc-fusion protein with a C-terminal Spy Tag (S10A-Spy). The S10A-Spy protein was then presented on SpyCatcher-mi3 nanoparticles, forming virus-like particles designated S10A-NPs. Electron microscopy and dynamic light scattering analysis confirmed its topology, and the hemagglutination assay showed that S10A-NPs can efficiently agglutinate red blood cells. The HI assay based on S10A-NPs was then validated with PEDV-positive and -negative samples. The results showed that the HI assay had high specificity for the detection of PEDV antibodies. Next, a total of 253 clinical serum samples were subjected to the HI testing along with virus neutralization (VN) assay. The area under the receiver operating characteristic curve with VN was 0.959, and the kappa value was 0.759. Statistical analysis of the results indicated that the HI titers of the samples tested exhibited high consistency with the VN titers. Taken together, a novel virus-free HI assay based on the multivalent display of a chimeric PEDV spike protein upon self-assembling nanoparticles was established, providing a new approach for PEDV serological diagnosis. Full article
Show Figures

Figure 1

12 pages, 1908 KiB  
Article
Enhanced Immunogenicity and Affinity with A35R-Fc-Based Chimeric Protein Compared to MPXV A35R Protein
by Shimeng Bai, Yanxin Cui, Qibin Liao, Hongyang Yi, Zhonghui Liao, Gengwei Zhang, Fenfang Wu and Hongzhou Lu
Viruses 2025, 17(1), 116; https://doi.org/10.3390/v17010116 - 16 Jan 2025
Cited by 1 | Viewed by 1202
Abstract
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a [...] Read more.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal. We then assessed its reactivity with A35R-specific antibodies and human convalescent plasma, as well as its immunogenicity. Our findings indicate that the A35R-Fc protein significantly enhances affinity to A35R antibodies compared to the commercially available A35R protein and exhibits considerable reactivity to human plasma. Additionally, mice immunized with A35R-Fc exhibited increased neutralizing antibody titers against the live MPXV. These results support the potential of Fc domain chimeric antigens as a strategy to enhance the efficacy of subunit vaccines targeting the MPXV. Full article
Show Figures

Figure 1

12 pages, 2281 KiB  
Article
CD40 Ligand Potentiates Immunogenecity of Mycoplasma pneumoniae Subunit Vaccine Candidate in a Murine Model
by Jinqi Shu, Gaojian Li, Jianhong Shu, Huapeng Feng and Yulong He
Curr. Issues Mol. Biol. 2025, 47(1), 37; https://doi.org/10.3390/cimb47010037 - 9 Jan 2025
Viewed by 1076
Abstract
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the [...] Read more.
Mycoplasma hyopneumoniae (Mhp) infection severely affects the daily weight gain and feed-to-meat ratio of pigs, while secondary infections with other pathogens can further lead to increased mortality, causing significant economic losses to the pig industry. CD40L is a molecular adjuvant that enhances the cellular and humoral immune responses to vaccines. In this study, the CD40L peptide was fused to the C-terminus of the chimeric P97R1P46P42 protein by genetic engineering using the pFastBac Dual vector. The recombinant chimeric protein P97R1P46P42 and its fusion P97R1P46P42-CD40L were expressed in Sf9 cells and purified. Mice were immunized with P97R1P46P42 or its fusion protein. Seppic ISA 201 emulsified protein, conventional Mhp vaccine and PBS control groups were included. Immunogenecity was assessed by specific IgG antibody response, splenic lymphocyte proliferation, and cytokine IL-4 and IFN-γ levels. We found that CD40L fusion significantly enhanced specific antibody response, lymphocyte proliferation and IL-4 level in the immunized mouse sera as compared to the P97R1P46P42 or conventional vaccine group. This study provides clear evidence that CD40L potentiates the humoral and cellular immune responses to the Mhp chimeric protein P97R1P46P42 in the mouse model. This CD40L-fused chimeric protein could be a MPS subunit vaccine candidate to be tested for its efficacy in pigs in response to challenges with pathogenic Mycoplasma hyopneumoniae strain(s). Full article
Show Figures

Figure 1

28 pages, 1184 KiB  
Review
Immune Responses to Respiratory Syncytial Virus Vaccines: Advances and Challenges
by Gabriela Souza da Silva, Sofia Giacomet Borges, Bruna Bastos Pozzebon and Ana Paula Duarte de Souza
Microorganisms 2024, 12(11), 2305; https://doi.org/10.3390/microorganisms12112305 - 13 Nov 2024
Cited by 5 | Viewed by 3227
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory infections, particularly in children and the elderly. This virus primarily infects ciliated epithelial cells and activates alveolar macrophages and dendritic cells, triggering an innate antiviral response that releases pro-inflammatory cytokines. However, immunity [...] Read more.
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory infections, particularly in children and the elderly. This virus primarily infects ciliated epithelial cells and activates alveolar macrophages and dendritic cells, triggering an innate antiviral response that releases pro-inflammatory cytokines. However, immunity generated by infection is limited, often leading to reinfection throughout life. This review focuses on the immune response elicited by newly developed and approved vaccines against RSV. A comprehensive search of clinical studies on RSV vaccine candidates conducted between 2013 and 2024 was performed. There are three primary target groups for RSV vaccines: pediatric populations, infants through maternal immunization, and the elderly. Different vaccine approaches address these groups, including subunit, live attenuated or chimeric, vector-based, and mRNA vaccines. To date, subunit RSV vaccines and the mRNA vaccine have been approved using the pre-fusion conformation of the F protein, which has been shown to induce strong immune responses. Nevertheless, several other vaccine candidates face challenges, such as modest increases in antibody production, highlighting the need for further research. Despite the success of the approved vaccines for adults older than 60 years and pregnant women, there remains a critical need for vaccines that can protect children older than six months, who are still highly vulnerable to RSV infections. Full article
(This article belongs to the Special Issue Human Respiratory Syncytial Virus—Biology, Diagnosis and Prevention)
Show Figures

Figure 1

18 pages, 2445 KiB  
Article
Immunogenicity and Neutralization of Recombinant Vaccine Candidates Expressing F and G Glycoproteins against Nipah Virus
by Seo Young Moon, Rochelle A. Flores, Min Su Yim, Heeji Lim, Seungyeon Kim, Seung Yun Lee, Yoo-kyoung Lee, Jae-Ouk Kim, Hyejin Park, Seong Eun Bae, In-Ohk Ouh and Woo H. Kim
Vaccines 2024, 12(9), 999; https://doi.org/10.3390/vaccines12090999 - 31 Aug 2024
Cited by 2 | Viewed by 2583
Abstract
Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion [...] Read more.
Nipah virus (NiV), of the Paramyxoviridae family, causes highly fatal infections in humans and is associated with severe neurological and respiratory diseases. Currently, no commercial vaccine is available for human use. Here, eight structure-based mammalian-expressed recombinant proteins harboring the NiV surface proteins, fusion glycoprotein (F), and the major attachment glycoprotein (G) were produced. Specifically, prefusion NiV-F and/or NiV-G glycoproteins expressed in monomeric, multimeric (trimeric F and tetra G), or chimeric forms were evaluated for their properties as sub-unit vaccine candidates. The antigenicity of the recombinant NiV glycoproteins was evaluated in intramuscularly immunized mice, and the antibodies in serum were assessed. Predictably, all homologous immunizations exhibited immunogenicity, and neutralizing antibodies to VSV-luciferase-based pseudovirus expressing NiV-GF glycoproteins were found in all groups. Comparatively, neutralizing antibodies were highest in vaccines designed in their multimeric structures and administered as bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet). Additionally, while all adjuvants were able to elicit an immunogenic response in vaccinated groups, bivalent (GMYtet + GBDtet) and trivalent (Ftri + GMYtet + GBDtet) induced more potent neutralizing antibodies when administered with oil-in-water nano-emulsion adjuvant, AddaS03. For all experiments, the bivalent GMYtet + GBDtet was the most immunogenic vaccine candidate. Results from this study highlight the potential use of these mammalian-expressed recombinant NiV as vaccine candidates, deserving further exploration. Full article
Show Figures

Figure 1

21 pages, 3806 KiB  
Article
Structural Assessment of Chlamydia trachomatis Major Outer Membrane Protein (MOMP)-Derived Vaccine Antigens and Immunological Profiling in Mice with Different Genetic Backgrounds
by Shea K. Roe, Tianmou Zhu, Anatoli Slepenkin, Aym Berges, Jeff Fairman, Luis M. de la Maza and Paola Massari
Vaccines 2024, 12(7), 789; https://doi.org/10.3390/vaccines12070789 - 18 Jul 2024
Cited by 5 | Viewed by 3204
Abstract
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. Ct infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against Chlamydia is crucial. The Chlamydia major outer membrane [...] Read more.
Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. Ct infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against Chlamydia is crucial. The Chlamydia major outer membrane protein (MOMP) is a prime vaccine antigen candidate, and it can elicit both neutralizing antibodies and protective CD4+ T cell responses. We have previously designed chimeric antigens composed of immunogenic variable regions (VDs) and conserved regions (CDs) of MOMP from Chlamydia muridarum (Cm) expressed into a carrier protein (PorB), and we have shown that these were protective in a mouse model of Cm respiratory infection. Here, we generated corresponding constructs based on MOMP from Ct serovar F. Preliminary structure analysis of the three antigens, PorB/VD1-3, PorB/VD1-4 and PorB/VD1-2-4, showed that they retained structure features consistent with those of PorB. The antigens induced robust humoral and cellular responses in mice with different genetic backgrounds. The antibodies were cross-reactive against Ct, but only anti-PorB/VD1-4 and anti-PorB/VD1-2-4 IgG antibodies were neutralizing, likely due to the antigen specificity. The cellular responses included proliferation in vitro and production of IFN-γ by splenocytes following Ct re-stimulation. Our results support further investigation of the PorB/VD antigens as potential protective candidates for a Chlamydia subunit vaccine. Full article
Show Figures

Figure 1

13 pages, 1159 KiB  
Article
Evaluation of the Humoral Response after Immunization with a Chimeric Subunit Vaccine against Shiga Toxin-Producing Escherichia coli in Pregnant Sows and Their Offspring
by Roberto M. Vidal, David A. Montero, Adriana Bentancor, Carolina Arellano, Alhejandra Alvarez, Cecilia Cundon, Ximena Blanco Crivelli, Felipe Del Canto, Juan C. Salazar and Angel A. Oñate
Vaccines 2024, 12(7), 726; https://doi.org/10.3390/vaccines12070726 - 29 Jun 2024
Cited by 1 | Viewed by 2105
Abstract
Shiga toxin-producing Escherichia coli (STEC) poses a significant public health risk due to its zoonotic potential and association with severe human diseases, such as hemorrhagic colitis and hemolytic uremic syndrome. Ruminants are recognized as primary reservoirs for STEC, but swine also contribute to [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) poses a significant public health risk due to its zoonotic potential and association with severe human diseases, such as hemorrhagic colitis and hemolytic uremic syndrome. Ruminants are recognized as primary reservoirs for STEC, but swine also contribute to the epidemiology of this pathogen, highlighting the need for effective prevention strategies across species. Notably, a subgroup of STEC that produces Shiga toxin type 2e (Stx2e) causes edema disease (ED) in newborn piglets, economically affecting pig production. This study evaluates the immunogenicity of a chimeric protein-based vaccine candidate against STEC in pregnant sows and the subsequent transfer of immunity to their offspring. This vaccine candidate, which includes chimeric proteins displaying selected epitopes from the proteins Cah, OmpT, and Hes, was previously proven to be immunogenic in pregnant cows. Our analysis revealed a broad diversity of STEC serotypes within swine populations, with the cah and ompT genes being prevalent, validating them as suitable antigens for vaccine development. Although the hes gene was detected less frequently, the presence of at least one of these three genes in a significant proportion of STEC suggests the potential of this vaccine to target a wide range of strains. The vaccination of pregnant sows led to an increase in specific IgG and IgA antibodies against the chimeric proteins, indicating successful immunization. Additionally, our results demonstrated the effective passive transfer of maternal antibodies to piglets, providing them with immediate, albeit temporary, humoral immunity against STEC. These humoral responses demonstrate the immunogenicity of the vaccine candidate and are preliminary indicators of its potential efficacy. However, further research is needed to conclusively evaluate its impact on STEC colonization and shedding. This study highlights the potential of maternal vaccination to protect piglets from ED and contributes to the development of vaccination strategies to reduce the prevalence of STEC in various animal reservoirs. Full article
(This article belongs to the Special Issue Vaccines and Animal Health)
Show Figures

Figure 1

15 pages, 1621 KiB  
Article
Layered Double Hydroxides (LDH) as Delivery Vehicles of a Chimeric Protein Carrying Epitopes from the Porcine Reproductive and Respiratory Syndrome Virus
by María José Alonso-Cerda, Mariano J. García-Soto, Arleth Miranda-López, René Segura-Velázquez, José Ivan Sánchez-Betancourt, Omar González-Ortega and Sergio Rosales-Mendoza
Pharmaceutics 2024, 16(7), 841; https://doi.org/10.3390/pharmaceutics16070841 - 21 Jun 2024
Cited by 3 | Viewed by 1905
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries [...] Read more.
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries have the need for vaccines covering the local, circulating variants. This project aims at developing a new chimeric antigen targeting specific epitopes from PRRSV and evaluating two test adjuvants to formulate a vaccine candidate. The test antigen was called LTB–PRRSV, which was produced recombinantly in Escherichia coli and consisted of the heat labile enterotoxin B subunit from E. coli (LTB) and four epitopes from PRRSV. LTB–PRRSV was rescued as inclusion bodies and methods for its solubilization, IMAC-based purification, and refolding were standardized, leading to mean yields of 18 mg of pure protein per liter culture. Layered double hydroxides (LDH) have been used as vaccine adjuvants given their biocompatibility, low cost, and positive surface charge that allows an efficient adsorption of negatively charged biomolecules. Therefore, LDH were selected as delivery vehicles of LTB–PRRSV. Pure LTB–PRRSV was adsorbed onto LDH by incubation at different LDH:LTB–PRRSV mass ratios (1:0.25, 1:0.5, 1:1, and 1:2) and at pH 9.5. The best adsorption occurred with a 1:2 mass ratio, and in a sucrose-tween solution. The conjugates obtained had a polydispersity index of 0.26, a hydrodynamic diameter of 192 nm, and a final antigen concentration of 64.2 μg/mL. An immunogenicity assessment was performed by injecting mice with LDH:LTB–PRRSV, Alum/LTB–PRRSV, or LTB–PRRSV in a scheme comprising three immunizations at two-week intervals and two dose levels (1 and 5 μg). LTB–PRRSV was capable of inducing strong humoral responses, which lasted for a longer period when LDH was used as the delivery vehicle/adjuvant. The potential of LDH to serve as an attractive carrier for veterinary vaccines is discussed. Full article
(This article belongs to the Special Issue Transport of Drugs through Biological Barriers—an Asset or Risk)
Show Figures

Graphical abstract

21 pages, 6060 KiB  
Article
Development of a Plant-Expressed Subunit Vaccine against Brucellosis
by Daria A. Rutkowska, Lissinda H. Du Plessis, Essa Suleman, Martha M. O’Kennedy, Deepak B. Thimiri Govinda Raj and Yolandy Lemmer
Microorganisms 2024, 12(6), 1047; https://doi.org/10.3390/microorganisms12061047 - 22 May 2024
Cited by 3 | Viewed by 1675
Abstract
Brucellosis is an important bacterial disease of livestock and the most common zoonotic disease. The current vaccines are effective but unsafe, as they result in animal abortions and are pathogenic to humans. Virus-like particles are being investigated as molecular scaffolds for foreign antigen [...] Read more.
Brucellosis is an important bacterial disease of livestock and the most common zoonotic disease. The current vaccines are effective but unsafe, as they result in animal abortions and are pathogenic to humans. Virus-like particles are being investigated as molecular scaffolds for foreign antigen presentation to the immune system. Here, we sought to develop a new-generation vaccine by presenting selected Brucella melitensis T cell epitopes on the surface of Orbivirus core-like particles (CLPs) and transiently expressing these chimeric particles in Nicotiana benthamiana plants. We successfully demonstrated the assembly of five chimeric CLPs in N. benthamiana plants, with each CLP presenting a different T cell epitope. The safety and protective efficacy of three of the highest-yielding CLPs was investigated in a mouse model of brucellosis. All three plant-expressed chimeric CLPs were safe when inoculated into BALB/c mice at specific antigen doses. However, only one chimeric CLP induced protection against the virulent Brucella strain challenge equivalent to the protection induced by the commercial Rev1 vaccine. Here, we have successfully shown the assembly, safety and protective efficacy of plant-expressed chimeric CLPs presenting B. melitensis T cell epitopes. This is the first step in the development of a safe and efficacious subunit vaccine against brucellosis. Full article
(This article belongs to the Special Issue Animal Virology, Molecular Diagnostics and Vaccine Development)
Show Figures

Figure 1

14 pages, 2440 KiB  
Article
Enhanced Immunogenicity and Protective Effects against SARS-CoV-2 Following Immunization with a Recombinant RBD-IgG Chimeric Protein
by Mariângela de Oliveira Silva, Maria Fernanda Castro-Amarante, Alexia Adrianne Venceslau-Carvalho, Bianca da Silva Almeida, Isabela Pazotti Daher, Guilherme Antonio de Souza-Silva, Marcio Massao Yamamoto, Gabriela Koike, Edmarcia Elisa de Souza, Carsten Wrenger, Luís Carlos de Souza Ferreira and Silvia Beatriz Boscardin
Vaccines 2024, 12(4), 356; https://doi.org/10.3390/vaccines12040356 - 27 Mar 2024
Cited by 3 | Viewed by 2501
Abstract
The unprecedented global impact caused by SARS-CoV-2 imposed huge health and economic challenges, highlighting the urgent need for safe and effective vaccines. The receptor-binding domain (RBD) of SARS-CoV-2 is the major target for neutralizing antibodies and for vaccine formulations. Nonetheless, the low immunogenicity [...] Read more.
The unprecedented global impact caused by SARS-CoV-2 imposed huge health and economic challenges, highlighting the urgent need for safe and effective vaccines. The receptor-binding domain (RBD) of SARS-CoV-2 is the major target for neutralizing antibodies and for vaccine formulations. Nonetheless, the low immunogenicity of the RBD requires the use of alternative strategies to enhance its immunological properties. Here, we evaluated the use of a subunit vaccine antigen generated after the genetic fusing of the RBD with a mouse IgG antibody. Subcutaneous administration of RBD-IgG led to the extended presence of the protein in the blood of immunized animals and enhanced RBD-specific IgG titers. Furthermore, RBD-IgG immunized mice elicited increased virus neutralizing antibody titers, measured both with pseudoviruses and with live original (Wuhan) SARS-CoV-2. Immunized K18-hACE2 mice were fully resistant to the lethal challenge of the Wuhan SARS-CoV-2, demonstrated by the control of body-weight loss and virus loads in their lungs and brains. Thus, we conclude that the genetic fusion of the RBD with an IgG molecule enhanced the immunogenicity of the antigen and the generation of virus-neutralizing antibodies, supporting the use of IgG chimeric antigens as an approach to improve the performance of SARS-CoV-2 subunit vaccines. Full article
Show Figures

Figure 1

18 pages, 4347 KiB  
Article
Production and Immunogenicity Assessment of LTp50: An Escherichia coli-Made Chimeric Antigen Targeting S1- and S2-Epitopes from the SARS-CoV-2/BA.5 Spike Protein
by Alejandra Wong-Arce, Omar Gonzalez-Ortega, Andrea Romero-Maldonado, Arleth Miranda-López, Mariano García-Soto, Susan Farfán-Castro, Lourdes Betancourt-Mendiola, Samaporn Teeravechyan, Kanjana Srisutthisamphan, Mauricio Comas-García, Karla I. Solís Andrade and Sergio Rosales-Mendoza
Pharmaceuticals 2024, 17(3), 302; https://doi.org/10.3390/ph17030302 - 27 Feb 2024
Cited by 1 | Viewed by 2496
Abstract
Subunit vaccines stand as a leading approach to expanding the current portfolio of vaccines to fight against COVID-19, seeking not only to lower costs but to achieve long-term immunity against variants of concern and have the main attributes that could overcome the limitations [...] Read more.
Subunit vaccines stand as a leading approach to expanding the current portfolio of vaccines to fight against COVID-19, seeking not only to lower costs but to achieve long-term immunity against variants of concern and have the main attributes that could overcome the limitations of the current vaccines. Herein a chimeric protein targeting S1 and S2 epitopes, called LTp50, was designed as a convenient approach to induce humoral responses against SARS-CoV-2. LTp50 was produced in recombinant Escherichia coli using a conventional pET vector, recovering the expected antigen in the insoluble fraction. LTp50 was purified by chromatography (purity > 90%). The solubilization and refolding stages helped to obtain a stable protein amenable for vaccine formulation. LTp50 was adsorbed onto alum, resulting in a stable formulation whose immunogenic properties were assessed in BALB/c mice. Significant humoral responses against the S protein (BA.5 variant) were detected in mice subjected to three subcutaneous doses (10 µg) of the LTp50/alum formulation. This study opens the path for the vaccine formulation optimization using additional adjuvants to advance in the development of a highly effective anti-COVID-19 vaccine directed against the antigenic regions of the S protein, which are less prone to mutations. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

Back to TopTop