Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (749)

Search Parameters:
Keywords = chemical impurities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

15 pages, 5625 KiB  
Article
Effect of Phosphogypsum Characteristics on the Properties of Phosphogypsum-Based Binders
by Nataliya Alfimova, Kseniya Levickaya, Il’ya Buhtiyarov, Ivan Nikulin, Marina Kozhukhova and Valeria Strokova
J. Compos. Sci. 2025, 9(8), 413; https://doi.org/10.3390/jcs9080413 - 4 Aug 2025
Viewed by 193
Abstract
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such [...] Read more.
Phosphogypsum, a byproduct of orthophosphoric acid production, is one of the large-tonnage wastes. Since phosphogypsum mainly consists of CaSO4 2H2O, it can be considered as an alternative gypsum-bearing raw material in the production of gypsum binders. However, its features, such as particle morphology and the presence of impurities, can negatively affect the characteristics of phosphogypsum-based binders. Identification of these factors will allow us to develop methods for their minimization and increasing the efficiency of phosphogypsum use from the required source as a raw material for the production of phosphogypsum-based binders. In this regard, the manuscript contains a comprehensive and comparative analysis of phosphogypsum and natural gypsum, which makes it possible to establish their differences in chemical composition and structural and morphological features, which subsequently affect the properties of the phosphogypsum-based binder. It has been established that the key factor negatively affecting the strength of phosphogypsum-based paste (2.58 MPa) is its high water demand (0.89), which is due to the high values of the specific surface area of the particles and the presence of a large number of conglomerates with significant porosity in phosphogypsum. It has been suggested that preliminary grinding of phosphogypsum can help reduce the amount of water required to obtain fresh phosphogypsum-based paste with a standard consistency and improve its physical and mechanical properties. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials, 2nd Edition)
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 - 31 Jul 2025
Viewed by 180
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

10 pages, 609 KiB  
Communication
Scalable Synthesis of 2D TiNCl via Flash Joule Heating
by Gabriel A. Silvestrin, Marco Andreoli, Edson P. Soares, Elita F. Urano de Carvalho, Almir Oliveira Neto and Rodrigo Fernando Brambilla de Souza
Physchem 2025, 5(3), 30; https://doi.org/10.3390/physchem5030030 - 28 Jul 2025
Viewed by 313
Abstract
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural [...] Read more.
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural and chemical properties of the synthesized TiNCl were characterized through multiple analytical techniques. X-ray diffraction (XRD) patterns confirmed the presence of TiNCl phase, while Raman spectroscopy data showed no detectable oxide impurities. Fourier transform infrared spectroscopy (FTIR) analysis revealed characteristic Ti–N stretching vibrations, further confirming successful titanium nitride synthesis. Transmission electron microscopy (TEM) imaging revealed thin, plate-like nanostructures with high electron transparency. These analyses confirmed the formation of highly crystalline TiNCl flakes with nanoscale dimensions and minimal structural defects. The material exhibits excellent structural integrity and phase purity, demonstrating potential for applications in photocatalysis, electronics, and energy storage. This work establishes FJH as a sustainable and scalable approach for producing MXenes with controlled properties, facilitating their integration into emerging technologies. Unlike conventional methods, FJH enables rapid, energy-efficient synthesis while maintaining material quality, providing a viable route for industrial-scale production of two-dimensional materials. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Figure 1

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 343
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

14 pages, 1428 KiB  
Article
Extraction of Chitin, Chitosan, and Calcium Acetate from Mussel Shells for Sustainable Waste Management
by Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Pesak Rungrojchaipon, Wimonmat Boonmee, Sirichet Punthipayanon and Montree Thongkam
Int. J. Mol. Sci. 2025, 26(15), 7107; https://doi.org/10.3390/ijms26157107 - 23 Jul 2025
Viewed by 503
Abstract
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions [...] Read more.
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions and calcium solution. The solid was further purified to produce chitin by deproteinization and decolorization processes, and then the deacetylation process was used to obtain chitosan. The calcium solution was evaporated to produce calcium acetate powder. The yields of extracted chitin, chitosan, and calcium acetate from 100 g of mussel shells were 2.98, 2.70, and 165.23 g, respectively. The prepared chitin, chitosan, and calcium acetate were analyzed by Fourier transform infrared (FTIR) spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to confirm the chemical and physical properties. The analysis results of chitin and chitosan revealed the similarity to chitosan derived from crustaceans and insects in terms of functional group, structure and morphologies. The prepared calcium acetate shows FTIR and XRD data corresponding to calcium acetate monohydrate (Ca(CH3COO)2·H2O) similar to synthesized calcium acetate in previous research. In addition, the mineral contents of calcium acetate identified by X-ray fluorescence (XRF) analysis exhibit 97.8% CaO with non-toxic impurities. This work demonstrated the potential of the production process of chitin, chitosan, and calcium acetate for the development of a sustainable industrial process with competitive functional performance against the commercial chitin and chitosan production process using crustacean shells and supported the implementation of a circular economy. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 8459 KiB  
Article
Membrane Processes for Remediating Water from Sugar Production By-Product Stream
by Amal El Gohary Ahmed, Christian Jordan, Eva Walcher, Selma Kuloglija, Reinhard Turetschek, Antonie Lozar, Daniela Tomasetig and Michael Harasek
Membranes 2025, 15(7), 207; https://doi.org/10.3390/membranes15070207 - 12 Jul 2025
Viewed by 565
Abstract
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates [...] Read more.
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates and dissolved impurities. This study evaluates membrane-based separation as a sustainable alternative for water reclamation and sugar recovery from sugar industry effluents, focusing on replacing evaporation with membrane processes, ensuring high permeate quality, and mitigating membrane fouling. Cross-flow filtration experiments were conducted on a lab-scale membrane system at 70 °C to suppress microbial growth, comparing direct reverse osmosis (RO) of the raw effluent to an integrated ultrafiltration (UF)–RO process. Direct RO resulted in rapid membrane fouling. A tight UF (5 kDa) pre-treatment before RO significantly mitigated fouling and improved performance, enabling 28% water recovery and 79% sugar recovery, maintaining permeate conductivity below 0.5 mS/cm, sustaining stable flux, and reducing membrane blocking. Additionally, the UF and RO membranes were tested via SEM, EDS, and FTIR to elucidate the fouling mechanisms. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

26 pages, 7085 KiB  
Review
Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
by Weijian Yu, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang and Honghu Tang
Separations 2025, 12(7), 180; https://doi.org/10.3390/separations12070180 - 7 Jul 2025
Viewed by 355
Abstract
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews [...] Read more.
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews the harmless process and resource technology of EMR, efficiency bottlenecks, and the current status of industrial applications. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed. Among these, electrochemical purification stands out for its efficiency and environmental benefits, positioning it as a promising option for broad industrial use. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed, revealing the complementarity between building materials and chemical materials (microcrystalline glass) in scale and high-value-added production. But the lack of impurity separation accuracy and market standards restricts its promotion. Finally, it proposes future directions for EMR resource utilization based on practical and economic considerations. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

16 pages, 3737 KiB  
Article
Liquid Selenium Granulation
by Sergey A. Trebukhov, Bagdaulet K. Kenzhaliyev, Valeriy N. Volodin, Alina V. Nitsenko, Xeniya A. Linnik and Brajendra Mishra
Processes 2025, 13(7), 2094; https://doi.org/10.3390/pr13072094 - 2 Jul 2025
Cited by 1 | Viewed by 317
Abstract
The equipment has been developed and the process of granulation of liquid selenium into water has been implemented. The process of selenium granulation is implemented at a temperature of 225–250 °C through unheated sieves with a diameter of holes of 1–2 mm at [...] Read more.
The equipment has been developed and the process of granulation of liquid selenium into water has been implemented. The process of selenium granulation is implemented at a temperature of 225–250 °C through unheated sieves with a diameter of holes of 1–2 mm at a density of perforation from 279 to 417 holes/dm2. The specific productivity reaches 180 kg/(dm2 × h), which corresponds to industrial-scale production. Electron microscopy studies revealed the localization of impurity elements in both the raw and granulated selenium. The composition and concentration of elements in localized areas were found to be random. For example, one area contained (by mass %) C—7.64; S—6.04; As—4.85; and Pb—40.72. Another, located nearby, contained C—4.68; Te—45.42; and Pb—12.67. In granulated selenium there was a noted increase in the number of spherical or close to spherical in shape voids, on the boundaries of which impurity elements were concentrated. The change in chemical composition of granules in comparison with the initial selenium was not established. The use of a granulated element is accompanied by simplification of manipulations with dispersed material and improvement of dosing conditions in technological processes using selenium. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

14 pages, 2423 KiB  
Article
Properties of Cast Iron Produced with a Limited Share of Pig Iron in the Charge
by Krzysztof Janerka and Jan Jezierski
Crystals 2025, 15(7), 614; https://doi.org/10.3390/cryst15070614 - 30 Jun 2025
Viewed by 237
Abstract
The article presents issues related to the melting of cast iron with a limited or zero share of pig iron in the charge. The results of melts conducted in electric induction furnaces are presented. The elimination of pig iron and its replacement with [...] Read more.
The article presents issues related to the melting of cast iron with a limited or zero share of pig iron in the charge. The results of melts conducted in electric induction furnaces are presented. The elimination of pig iron and its replacement with steel or return scrap is highly significant in the context of sustainable production and product life cycle assessment (LCA). The paper presents the results of research carried out during melts conducted under both laboratory and industrial conditions. The chemical composition of the cast iron, its physicochemical properties obtained from the analysis of the cooling curve and its derivative, as well as the structure, were analyzed. It was found that cast iron produced using high-quality steel scrap contains fewer sulfur and phosphorus impurities. However, it was also observed that such cast iron exhibits reduced nucleation ability, which can be improved by applying an inoculation process. Full article
Show Figures

Figure 1

55 pages, 16837 KiB  
Review
A Comprehensive Review of Plasma Cleaning Processes Used in Semiconductor Packaging
by Stephen Sammut
Appl. Sci. 2025, 15(13), 7361; https://doi.org/10.3390/app15137361 - 30 Jun 2025
Viewed by 816
Abstract
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the [...] Read more.
Semiconductor device fabrication is conducted through highly precise manufacturing processes. An essential component of the semiconductor package is the lead frame on which the silicon dies are assembled. Impurities such as oxides or organic matter on the surfaces have an impact on the process yield. Plasma cleaning is a vital process in semiconductor manufacturing, employed to enhance production yield through precise and efficient surface preparation essential for device fabrication. This paper explores the various facets of plasma cleaning, with a particular emphasis on its application in the cleaning of lead frames used in semiconductor packaging. To provide comprehensive context, this paper also reviews the critical role of plasma in advanced and emerging packaging technologies. This study investigates the fundamental physics governing plasma generation, the design of plasma systems, and the composition of the plasma medium. A central focus of this work is the comparative analysis of different plasma systems in terms of their effectiveness in removing organic contaminants and oxide residues from substrate surfaces. By utilizing reactive species generated within the plasma—such as oxygen radicals, hydrogen ions, and other chemically active constituents—these systems enable a non-contact, damage-free cleaning method that offers significant advantages over conventional wet chemical processes. Additionally, the role of non-reactive species, such as argon, in sputtering processes for surface preparation is examined. Sputtering is the ejection of individual atoms from a target surface due to momentum transfer from an energetic particle (usually an ion). Sputtering is therefore a physical process driven by momentum transfer. Energetic ions, such as argon (Ar+), are accelerated from the plasma to bombard a target surface. Upon impact, these ions transfer sufficient kinetic energy to atoms within the material’s lattice to overcome their surface binding energy, resulting in their physical ejection. This paper also provides a comparative assessment of various plasma sources, including direct current, dielectric barrier discharge, radio frequency, and microwave-based systems, evaluating their suitability and efficiency for lead frame cleaning applications. Furthermore, it addresses critical parameters affecting plasma cleaning performance, such as gas chemistry, power input, pressure regulation, and substrate handling techniques. The ultimate aim of this paper is to provide a concise yet comprehensive resource that equips technical personnel with the essential knowledge required to make informed decisions regarding plasma cleaning technologies and their implementation in semiconductor manufacturing. This paper provides various tables which provide the reader with comparative assessments of the various plasma sources and gases used. Scoring mechanisms are also introduced and utilized in this paper. The scores achieved by both the sources and the plasma gases are then summarized in this paper’s conclusions. Full article
Show Figures

Figure 1

19 pages, 1124 KiB  
Article
A Targeted Approach to Critical Mineral Recovery from Low-Grade Magnesite Ore Using Magnetic and Flotation Techniques
by Mohammadbagher Fathi, Mostafa Chegini and Fardis Nakhaei
Minerals 2025, 15(7), 698; https://doi.org/10.3390/min15070698 - 30 Jun 2025
Viewed by 329
Abstract
As a critical mineral, magnesite plays a vital role in industries such as steelmaking, construction, and advanced technologies due to its high thermal stability and chemical resistance. However, the beneficiation of low-grade magnesite ores (~38.36% MgO) remains challenging due to the presence of [...] Read more.
As a critical mineral, magnesite plays a vital role in industries such as steelmaking, construction, and advanced technologies due to its high thermal stability and chemical resistance. However, the beneficiation of low-grade magnesite ores (~38.36% MgO) remains challenging due to the presence of iron, silica, and calcium-bearing impurities. This study proposes an integrated beneficiation strategy combining medium-intensity magnetic separation and flotation techniques to upgrade a low-grade magnesite ore. After grinding to 75 µm (d80), the sample was subjected to two-stage magnetic separation at 5000 Gauss to remove Fe-bearing minerals, reducing Fe2O3 below 0.5%. The non-magnetic fraction was then treated through a two-stage reverse flotation process using dodecylamine (350 g/t) and diesel oil (60 g/t) at pH 7 to reject silicate gangue. This was followed by a four-stage direct flotation using sodium oleate (250 g/t), sodium silicate (350 g/t), and SHMP (100 g/t) at pH 10 to selectively recover magnesite while suppressing Ca-bearing minerals. The optimized flowsheet achieved a final concentrate with MgO > 46.5%, SiO2 ≈ 1.05%, Fe2O3 ≈ 0.44%, and CaO ≈ 0.73%, meeting the specifications for refractory-grade magnesite. These results highlight the effectiveness of a combined magnetic–flotation route in upgrading complex, low-grade magnesite deposits for commercial use. Full article
Show Figures

Figure 1

13 pages, 5123 KiB  
Article
Biogas Purification by Intensified Absorption in a Micromixer
by Tarsida N. Wedraogo, Souhila Djerid, Jing Wu and Huai Z. Li
Methane 2025, 4(3), 14; https://doi.org/10.3390/methane4030014 - 25 Jun 2025
Viewed by 289
Abstract
Biogas is a renewable energy source produced by anaerobic digestion of organic waste. It can be upgraded to bio-methane by removing carbon dioxide, water and impurities. The present work focuses on carbon dioxide removal using both physical and chemical absorption in a micromixer. [...] Read more.
Biogas is a renewable energy source produced by anaerobic digestion of organic waste. It can be upgraded to bio-methane by removing carbon dioxide, water and impurities. The present work focuses on carbon dioxide removal using both physical and chemical absorption in a micromixer. The absorption efficiency in the micromixer was studied under various conditions of co-current gas–liquid flow. With physical absorption, 25% of carbon dioxide could be removed from the biogas stream (with a liquid flowrate of 40 mL/min and a gas flowrate of 25 mL/min). In absorption with a chemical reaction, up to 88% of the carbon dioxide was eliminated with a catalyst concentration of 77.4 mol·m−3. In both cases, the space time was below 3 s. Liquid-side mass transfer coefficients as large as 3.5 s−1 were achieved, which is at least two orders of magnitude higher than those reported in conventional absorbers. Full article
Show Figures

Graphical abstract

20 pages, 1729 KiB  
Article
Development of a Cyclodextrin-Based Drug Delivery System to Improve the Physicochemical Properties of Ceftobiprole as a Model Antibiotic
by Dariusz Boczar, Wojciech Bocian, Jerzy Sitkowski, Karolina Pioruńska and Katarzyna Michalska
Int. J. Mol. Sci. 2025, 26(13), 5953; https://doi.org/10.3390/ijms26135953 - 20 Jun 2025
Viewed by 375
Abstract
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility [...] Read more.
This study presents a methodology for developing a cyclodextrin-based delivery system for ceftobiprole, a poorly water-soluble and amphoteric drug, chemically stable in acidic conditions. Ceftobiprole is a broad-spectrum cephalosporin antibiotic administered clinically as its water-soluble prodrug, ceftobiprole medocaril, due to limited aqueous solubility of the parent compound. Solubility enhancement was achieved through complexation with anionic sulfobutylether-β-cyclodextrin (SBE-β-CD). At a pH below 3, ceftobiprole is protonated and cationic, which facilitates electrostatic interactions with the anionic cyclodextrin. An optimised high-performance liquid chromatography (HPLC) method was used to assess solubility, the impurity profile, and long-term chemical stability. X-ray powder diffraction (XRPD) confirmed the amorphous nature of the system and the absence of recrystallization. Nuclear magnetic resonance (NMR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy supported the formation of a host–guest complex. The freeze-dried system prepared from 0.1 M formic acid solution contained negligible residual acid due to nearly complete sublimation. The most promising formulation was a ternary system of ceftobiprole, maleic acid, and SBE-β-CD (1:25:4 molar ratio), showing ~300-fold solubility improvement, low levels of degradation products, and stability after eight months at −20 °C. After pH adjustment to a parenterally acceptable level, the formulation demonstrated solubility and a pH comparable to the marketed drug product. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

Back to TopTop