Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (99)

Search Parameters:
Keywords = chemical facies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2088 KiB  
Article
Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil
by Karel Breiter, Hilton Tulio Costi, Zuzana Korbelová and Marek Dosbaba
Minerals 2025, 15(8), 863; https://doi.org/10.3390/min15080863 - 15 Aug 2025
Abstract
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions [...] Read more.
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions for the study of chemistry and shape of zircon and the relation between the contents of particular trace elements in magma vs. in crystallizing zircon. Textural and chemical zircon data obtained using scanning electron microscopy (BSE) and cathodoluminescence (CL) imaging, automated mineralogy by TESCAN Integrated Mineral Analyzer (TIMA), and electron probe microanalyses (EPMA) enabled us to define four albite granite facies containing zircons of specific structures and chemistry. Zircon in the Madeira albite granite was formed during several, largely temporally and spatially independent episodes. During the crystallization of the common facies, occupying most of the intrusion volume, Zr/Hf value in zircon decreased from 40 to 20. This zircon, in some episodes, incorporated a higher amount of Th, which was later unmixed in the form of thorite inclusions. The pegmatoidal facies, representing crystallization of residual magma, contains zircon without thorite inclusions with a Zr/Hf value from 35 to 5. The Th/U and Y/Yb values during this evolution scattered but generally evolved to Th, Yb-enriched compositions (Th/U up to >10, Y/Yb down to 0.1). The Li-poor facies, located in the center of the stock near the cryolite deposit, contains zircon with comparatively high Zr/Hf = 45–70 and higher U and Y contents. Later, part of the common facies was hydrothermally altered to border facies, but zircon did not change noticeably during this process. The contents of minor elements in all zircon varieties are generally low (U + Th + Y + REE ˂ 0.05 apfu); Y and REE are incorporated exclusively in the xenotime component. Many crystals have low analytical totals, down to 95 wt%, and are enriched in Al, Fe, Mn, Ca, and F but this process does not influence the primary Zr/Hf, Th/U, and Y/Yb ratios. Zircons from other Madeira granite facies, including the neighboring Europa pluton, differ mainly in much higher Y/Yb values and in having (Y + REE) >> P, indicating a different than xenotime substitution mechanism. Zircon from the Madeira albite granite differs from zircons from many metaluminous rare-metal granites in low contents of minor elements and a common assemblage with thorite, instead of forming Zrn–Thr–Xnt solid solutions. Full article
20 pages, 6817 KiB  
Review
A Review of Jurassic Paleoclimatic Changes and Tectonic Evolution in the Qaidam Block, Northern Qinghai-Tibetan Plateau
by Ruiyang Chai, Yanan Zhou, Anliang Xiong, Zhenwei Chen, Dongwei Liu, Nan Jiang, Xin Cheng, Jingong Zhang and Hanning Wu
Sustainability 2025, 17(16), 7337; https://doi.org/10.3390/su17167337 - 14 Aug 2025
Viewed by 267
Abstract
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development [...] Read more.
Understanding the mechanisms and speed of paleo-aridification in the Qaidam Block—driven by tectonic uplift and shifts in atmospheric circulation—provides critical long-term context for assessing modern climate variability and anthropogenic impacts on water resources and desertification. This knowledge is essential for informing sustainable development strategies. We reconstruct the post-Triassic–Jurassic extinction tectonic-climatic evolution of the Qaidam Block on the northern Qinghai-Tibet Plateau margin through an integrated analysis of sedimentary facies, palynological assemblages, and Chemical Index of Alteration values from Late Triassic to Jurassic strata. The Indo-Eurasian convergence drove the uplift of the East Kunlun Orogen and strike-slip movement along the Altyn Tagh Fault, establishing a basin-range system. During the initial Late Triassic to Early Jurassic period, warm-humid conditions supported gymnosperm/fern-dominated ecosystems and facilitated coal formation. A Middle Jurassic shift from extensional to compressional tectonics coincided with a climatic transition from warm-humid, through cold-arid, to hot-arid states. This aridification, evidenced by a Bathonian-stage surge in drought-tolerant Classopollis pollen and a sharp decline in Chemical Index of Alteration values, intensified in the Late Jurassic due to the Yanshanian orogeny and distal subduction effects. Resultant thrust-strike-slip faulting and southeastward depocenter migration, under persistent aridity and intensified atmospheric circulation, drove widespread development of aeolian dune systems (e.g., Hongshuigou Formation) and arid fluvial-lacustrine environments. The tectonic-climate-ecosystem framework reveals how Jurassic tectonic processes amplified feedback to accelerate aridification. This mechanism provides a critical geological analog for addressing the current sustainability challenges facing the Qaidam Basin. Full article
Show Figures

Figure 1

18 pages, 7472 KiB  
Article
Hydrochemical Characteristics and Controlling Factors of Hengshui Lake Wetland During the Dry Season, North China
by Hongyan An, Tianjiao Wang, Xianzhou Meng, Xueyao Niu, Dongyang Song, Yibing Wang, Ge Gao, Mingming Li, Tong Zhang, Hongliang Song, Xinfeng Wang and Kuanzhen Mao
Water 2025, 17(10), 1468; https://doi.org/10.3390/w17101468 - 13 May 2025
Cited by 1 | Viewed by 447
Abstract
Wetland lakes are crucial ecosystems that serve as vital ecosystems that harbor rich biodiversity and provide essential ecological services, particularly in regulating regional water resources, purifying water quality, and maintaining ecological equilibrium. This study aims to conduct an in-depth investigation into the hydrochemical [...] Read more.
Wetland lakes are crucial ecosystems that serve as vital ecosystems that harbor rich biodiversity and provide essential ecological services, particularly in regulating regional water resources, purifying water quality, and maintaining ecological equilibrium. This study aims to conduct an in-depth investigation into the hydrochemical characteristics and their controlling factors during the dry season of the Hengshui Lake wetland system. By collecting water samples from the lake and shallow groundwater, and using water chemistry diagrams, ion ratios, mineral saturation indices, and multivariate statistical methods, the study systematically analyzes the hydrochemical characteristics of Hengshui Lake Wetland and its controlling factors. The results show: there is significant stratified differentiation in the water chemical composition: the lake water is weakly alkaline and fresh, while the shallow groundwater is highly mineralized and saline. Both are dominated by Na+, Mg2+, SO42−, and Cl. Significant differences exist in water chemistry types between the lake and shallow groundwater. The lake water exhibits homogenized characteristics with a dominant SO4·Cl·HCO3-Na·Mg type, whereas shallow groundwater displays five distinct hydrochemical facies indicative of multi-source recharge processes. Evaporation–rock interaction mechanisms dominate the system, as evidenced by a Gibbs diagram analysis showing evaporation crystallization as the primary control. Ion ratio calculations demonstrate synergistic effects between silicate weathering and evaporite dissolution, while mineral saturation indices confirm cooperative processes involving calcite/dolomite oversaturation and ongoing gypsum dissolution. Cation exchange indexes combined with chloro-alkaline indices reveal unidirectional recharge from lake water to shallow groundwater accompanied by active cationic exchange adsorption. Although the wetland predominantly maintains natural hydrological conditions, elevated γ(NO3)/γ(Na+) ratios in nearshore zones suggest initial agricultural contamination infiltration. This study shows that, as a typical example of a closed wetland, the hydrochemistry evolution of Hengshui Lake during the dry season is primarily dominated by the coupled effects of evaporation and rock–water interaction, with silicate weathering and evaporation rock dissolution as secondary factors, and human activity having a weak influence. The findings provide new insights into the understanding of the hydrochemical evolution process and its controlling factors in closed lakes, offering valuable data support and theoretical basis for the ecological restoration and sustainable management of closed lakes. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

48 pages, 12213 KiB  
Review
Metasomatic Mineral Systems with IOA, IOCG, and Affiliated Critical and Precious Metal Deposits: A Review from a Field Geology Perspective
by Louise Corriveau and Jean-François Montreuil
Minerals 2025, 15(4), 365; https://doi.org/10.3390/min15040365 - 31 Mar 2025
Cited by 2 | Viewed by 1568
Abstract
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and [...] Read more.
Worldwide, a growing list of critical (Bi, Co, Cu, F, Fe, Mo, Ni, P, PGE, REE, W, U, and Zn) and precious metal (Ag and Au) resources have been identified in mineral systems forming Fe-oxide-copper-gold (IOCG) deposits; Fe-oxide-apatite (IOA); Fe-sulfide Cu-Au (ISCG); and affiliated W skarn; Fe-rich Au-Co-Bi or Ni; albitite-hosted U or Au ± Co; and five-element (Ag, As, Co, Ni, and U) vein deposits. This paper frames the genesis of this metallogenic diversity by defining the Metasomatic Iron and Alkali-Calcic (MIAC) mineral system and classifying its spectrum of Fe-rich-to-Fe-poor and alkali-calcic deposits. The metasomatic footprint of MIAC systems consists of six main alteration facies, each recording a distinct stage of mineralization as systems have evolved. The fluid flow pathways and the thermal and chemical gradients inferred from the space–time distribution of the alteration facies within a system are best explained by the ascent and lateral propagation of a voluminous hypersaline fluid plume. The primary fluid plume evolves, chemically and physically, as metasomatism progresses and through periodic ingresses of secondary fluids into the plume. Exploration strategies can take advantage of the predictability and the expanded range of exploration targets that the MIAC system framework offers, the building blocks of which are the alteration facies as mappable prospectivity criteria for the facies-specific critical and precious metal deposits the systems generate. Global case studies demonstrate that these criteria are applicable to MIAC systems worldwide. Full article
Show Figures

Figure 1

31 pages, 6101 KiB  
Article
Genesis of the Upper Jurassic Continental Red Sandstones in the Yongjin Area of the Central Junggar Basin: Evidence from Petrology and Geochemistry
by Yongming Guo, Chao Li, Likuan Zhang, Yuhong Lei, Caizhi Hu, Lan Yu, Zongyuan Zheng, Bingbing Xu, Naigui Liu, Yuedi Jia and Yan Li
Minerals 2025, 15(4), 347; https://doi.org/10.3390/min15040347 - 27 Mar 2025
Cited by 1 | Viewed by 704
Abstract
The sandstone sections in the Upper Jurassic red beds of the Yongjin area in the central Junggar Basin are important oil and gas reservoirs. The debate over whether red beds are of primary depositional or secondary diagenetic origin persists, leading to uncertainties in [...] Read more.
The sandstone sections in the Upper Jurassic red beds of the Yongjin area in the central Junggar Basin are important oil and gas reservoirs. The debate over whether red beds are of primary depositional or secondary diagenetic origin persists, leading to uncertainties in the interpretation of reservoir sedimentary facies. This study uses core samples and employs thin section microscope observations, scanning electron microscopy, X-ray diffraction, and major and trace element analyses to investigate the formation period and paleoclimate conditions of red beds and explore the origin of red sandstone. The Upper Jurassic red beds are mainly deposited in arid delta plain environments. The framework grains of the red sandstone are composed of quartz (averaging 22.6%), feldspar (averaging 16.3%), and rock fragments (averaging 36.7%). The rock fragments in the sandstone are mainly composed of intermediate basic volcanic rocks and cryptocrystalline acid volcanic rocks, which are rich in mafic silicate minerals such as olivine, pyroxene, ilmenite, and magnetite. In situ hematitization of ilmenite is observed in the rock fragments, suggesting that the in situ alteration of mafic silicate minerals in the parent rock is the main source of iron ions for hematite. Tiny hematite crystals (2.1 μm) are observed in clay mineral micropores via SEM. Abundant mixed-layer illite/smectite clay indicates early smectite transformation, providing a minor source of iron ions for hematite. Hematite in the red sandstone occurs as a grain-coating type, predating quartz overgrowth, feldspar overgrowth, and (ferroan) calcite and (ferroan) dolomite precipitation. Residual hematite coatings between detrital grain point contacts indicate that hematite is a product of syn-sedimentary or very early diagenetic precipitation, ruling out the possibility that red sandstone formation was caused by later atmospheric water leaching during the fold and thrust belt stage. The average chemical index of alteration (CIA) for the red sandstone is 52.2, whereas the CIA for the red mudstone averages 59.5, and the chemical index of weathering (CIW) reached a maximum of 69. These values indicate that the rocks have undergone mild chemical weathering in arid climates. Additionally, the ratios of trace elements indicate that the water bodies were in an oxidizing state during the sedimentary period. The arid climate and oxidative water conditions were ideal for hematite preservation, thus facilitating red bed formation. The red bed sediments in the study area represent a direct response to the Late Jurassic aridification event and can be compared to global climate change. The results have important implications for stratigraphic correlation and interpretation of reservoir sedimentary facies in the study area while also providing a valuable case study for global research on red beds. Full article
(This article belongs to the Topic Recent Advances in Diagenesis and Reservoir 3D Modeling)
Show Figures

Figure 1

15 pages, 6484 KiB  
Article
Multivariate Statistics and Hydrochemistry Combined to Reveal the Factors Affecting Shallow Groundwater Evolution in a Typical Area of the Huaibei Plain, China
by Xi Qin, Hesheng Wang, Jianshi Gong, Yonghong Ye, Kaie Zhou, Naizheng Xu, Liang Li and Jie Li
Water 2025, 17(7), 962; https://doi.org/10.3390/w17070962 - 26 Mar 2025
Viewed by 421
Abstract
Understanding the characteristics of groundwater chemistry is essential for water resource development and utilization. However, few studies have focused on the chemical evolution processes of shallow groundwater in typical areas of the Huaibei Plain. We analyzed 28 water samples from the study area [...] Read more.
Understanding the characteristics of groundwater chemistry is essential for water resource development and utilization. However, few studies have focused on the chemical evolution processes of shallow groundwater in typical areas of the Huaibei Plain. We analyzed 28 water samples from the study area using hydrogeochemical mapping, multivariate statistical analysis, and other approaches. The study found that the hydrogeochemical facies of groundwater are mainly HCO3-Ca·Mg (64.3%), mixed SO4·Cl-Ca·Mg, and SO4·Cl-Na. The hydrochemical composition is primarily controlled by natural water–rock interactions, including carbonate weathering and cation exchange processes. Correlation analysis and principal component analysis (PCA) revealed that mineral dissolution was the predominant source of Na+, Mg2+, Cl, and SO42− in shallow groundwater, significantly contributing to total dissolved solids (TDS) accumulation. Hierarchical cluster analysis (HCA) identified three characteristic zones: (1) agricultural/urban-influenced areas, (2) high-F/low-hardness zones, and (3) nitrate-contaminated regions. These findings provide critical insights for assessing the geochemical status of groundwater in the Huaibei Plain and formulating targeted resource management strategies. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Figure 1

35 pages, 6458 KiB  
Article
Comprehensive Assessment of Paleogene Hydrocarbon Source Rocks in the Hydrocarbon-Rich Sub-Sag of the Zhu-1 Depression
by Junyan Zhan, Guosheng Xu, Yuling Shi, Wanlin Xiong and Shengli Niu
Processes 2025, 13(3), 914; https://doi.org/10.3390/pr13030914 - 20 Mar 2025
Viewed by 577
Abstract
There are two sets of hydrocarbon source rock formations developed in the Paleogene of the Zhu-1 Depression: the Wenchang Formation of semi deep lacustrine facies and the Enping Formation of lacustrine facies. Their basic geochemical characteristics, chemical structures, kerogen components, sedimentary paleoenvironments, etc., [...] Read more.
There are two sets of hydrocarbon source rock formations developed in the Paleogene of the Zhu-1 Depression: the Wenchang Formation of semi deep lacustrine facies and the Enping Formation of lacustrine facies. Their basic geochemical characteristics, chemical structures, kerogen components, sedimentary paleoenvironments, etc., are not the same. High quality hydrocarbon source rocks are the basic conditions for oil and gas generation. This article comprehensively evaluates the key depression Paleogene hydrocarbon source rocks in the Zhu-1 Depression, and studies the development mechanism and controlling factors of hydrocarbon source rocks in this area, which is of great significance for understanding the development conditions, quality, and predicting potential high-quality hydrocarbon source rocks. After conducting rock pyrolysis, major and trace element analysis, and infrared spectroscopy experiments on the samples, it was found that the main source rock type of the Wenchang Formation is type II1, which has a high HI value; the Enping Formation is mainly composed of II2-III types with low HI values (with a small number of II1 types), and the source rocks of the Wenchang Formation have a strong hydrocarbon producing aliphatic structure, with the sapropelic and shell formations being larger than the Enping Formation source rocks. By using methods such as CIA values, C values, and Mo-U covariant models, it can be concluded that during the Wenchang to Enping periods, the climate changed from warm and dry to cool and humid, and the overall environment was characterized by freshwater, weak oxidation weak reduction, and gradually decreasing paleo-productivity. At the same time, it was analyzed that the formation of organic rich sediments in the source rocks of the Zhu-1 Depression played an important role in the relative oxygen phase. The ratio of V/(V + Ni) to V/Cr can better indicate the redox environment of the water body and show a good correlation with TOC. Two sets of development models of source rocks controlled by paleooxygen phase were initially established, providing sufficient scientific basis for oil and gas exploration in the area. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

21 pages, 2330 KiB  
Article
Hydrochemical Characterization, Source Identification, and Irrigation Water Quality Assessment in the Voghji River Catchment Area, Southern Armenia
by Gor Gevorgyan, Gor Khachatryan, Anita Varagyan, Vahagn Varagyan and Ashok Vaseashta
Water 2025, 17(6), 854; https://doi.org/10.3390/w17060854 - 17 Mar 2025
Cited by 1 | Viewed by 1329
Abstract
Water quality is a fundamental parameter for assessing the suitability of surface waters. Likewise, the hydrochemical behavior is critically important to understand for rivers used in irrigation. This study aims to evaluate and characterize the surface water quality of the Voghji River catchment [...] Read more.
Water quality is a fundamental parameter for assessing the suitability of surface waters. Likewise, the hydrochemical behavior is critically important to understand for rivers used in irrigation. This study aims to evaluate and characterize the surface water quality of the Voghji River catchment basin for irrigation, as it reveals the hydrochemical origins in the catchment basin. Nine key parameters, including EC, Cl, SO42−, Ca2+, Mg2+, Na+, K+, CO32−, and HCO3, were measured at seven sampling points in July and September 2017. The ion concentration patterns in July followed the sequence: Ca2+ > Na+ > K+ > Mg2+ and HCO3 > SO42− > Cl > CO32−, while in September, they were Ca2+ > Na+ > Mg2+ > K+ and HCO3 > SO42− > Cl > CO32−. The sequences were almost similar between the two months, with minor differences in cation distribution, particularly between Mg2+ and K+. Overall, Ca2+ and HCO3 were the dominant ions in the studied surface water samples. The concentrations of K+, Na+, Mg2+, Ca2+, Cl, SO42−, and HCO3 were found to be well below the FAO irrigation water standards, indicating that the waters of the Voghji River and its tributaries (Achanan, Vachagan, and Geghi) were generally safe for irrigation. However, the FAO threshold value was exceeded only for CO32− in the Vachagan River in Kapan Town. The chemical analysis of surface waters in the Voghji River catchment basin revealed dominant Ca2+-HCO3 and mixed Ca2+-K+-SO42−-Cl facies, with key geochemical processes including carbonate and gypsum dissolution, silicate weathering, and cation exchange. Ionic correlations indicated that Na+ and Cl sources were influenced by both natural (e.g., halite dissolution, weathering) and anthropogenic inputs, while Ca2+ and Mg2+ primarily originated from carbonate dissolution. The Gibbs diagram suggested that rock–water interactions were the primary natural mechanism controlling the water chemistry, with evaporation also playing a significant role. Various indices, including the Kelly index, magnesium adsorption ratio, sodium percentage, sodium adsorption ratio, permeability index, potential salinity, residual sodium carbonate, soluble sodium percentage, and irrigation water quality index, were applied, along with US Salinity Laboratory diagram and Wilcox diagram, to further assess the irrigation suitability. Most indices confirmed the suitability of the waters for irrigation; however, the Achanan River near the mouth and the Voghji River downstream of Kapan Town exhibited moderate salinity levels, underscoring the need for water management to prevent potential soil degradation. Full article
Show Figures

Figure 1

23 pages, 14258 KiB  
Article
Geochemical Variations of Kerolite, Stevensite, and Saponite from the Pre-Salt Sag Interval of the Santos Basin: An Approach Using Electron Probe Microanalysis
by Maurício Dias da Silva, Márcia Elisa Boscato Gomes, André Sampaio Mexias, Manuel Pozo, Susan Martins Drago, Everton Marques Bongiolo, Paulo Netto, Victor Soares Cardoso, Lucas Bonan Gomes and Camila Wense Ramnani
Minerals 2025, 15(3), 285; https://doi.org/10.3390/min15030285 - 11 Mar 2025
Viewed by 1047
Abstract
This study investigates the mineralogy and chemical characteristics of pre-salt clay minerals, classifies them, and defines assemblages in reactive microsites. Using Electron Probe Micro-Analysis (EPMA), the chemical formulas of Mg-rich clays were determined. Stevensite exhibited low interlayer charge and aluminum content, while kerolite [...] Read more.
This study investigates the mineralogy and chemical characteristics of pre-salt clay minerals, classifies them, and defines assemblages in reactive microsites. Using Electron Probe Micro-Analysis (EPMA), the chemical formulas of Mg-rich clays were determined. Stevensite exhibited low interlayer charge and aluminum content, while kerolite was characterized by a minimal charge. K/S (kerolite/stevensite) mixed layer showed intermediate compositions and charges between these endmembers. Saponite was distinguished by higher levels of Al, K, and Fe, along with a higher interlayer charge. The proposed assemblages are as follows: saponite in mudstone facies (without spherulites/shrubs), with a hybrid matrix; pure kerolite in spherulstone and shrubstone facies, marked by the absence of significant reactions and high preservation of matrix and textures; stevensite in facies with extensive matrix replacement by dolomitization/silicification; and K/S and kerolite in similar facies with intermediate matrix replacement levels and the coexistence of two intimately related clay mineral compositions. This study enables reliable differentiation of these species based on point mineral chemistry and mapping, combined with a microsite approach and conventional techniques. Additionally, it discusses the formation of pre-salt clays, influenced by significant kinetic and chemical interactions during their genesis and burial to depths of approximately 5 km. Full article
Show Figures

Figure 1

20 pages, 40447 KiB  
Article
Exploring the Hydrochemical Characteristics and Controlling Processes of Groundwater in Agricultural Lower Reaches of a Typical Arid Watershed on Tibetan Plateau
by Zhen Zhao, Gongxi Liu, Guangxiong Qin, Huijuan Chen, Huizhu Chen, Wenxu Hu, Shaokang Yang, Jie Wang, Yuqing Zhang, Dongyang Zhao, Yu Liu and Yong Xiao
Sustainability 2025, 17(5), 2117; https://doi.org/10.3390/su17052117 - 28 Feb 2025
Cited by 1 | Viewed by 662
Abstract
Groundwater is crucial for domestic, agricultural, and ecological uses, particularly in the lower reaches of arid basins, where its quality often limits availability. A total of 26 phreatic groundwater samples were collected from a typical endorheic watershed on the Tibetan Plateau to assess [...] Read more.
Groundwater is crucial for domestic, agricultural, and ecological uses, particularly in the lower reaches of arid basins, where its quality often limits availability. A total of 26 phreatic groundwater samples were collected from a typical endorheic watershed on the Tibetan Plateau to assess the hydrochemical characteristics of phreatic groundwater in the lower reaches of arid inland watersheds. The hydrochemical characteristics, quality, and formation mechanisms of groundwater were analyzed using the Entropy-Weight Water Quality Index (EWQI), irrigation water quality indexes (such as sodium adsorption ratio, soluble sodium percentage, and permeability index), hydrochemical diagrams, and correlation analysis. The findings indicate that phreatic groundwater in the lower reaches is slightly alkaline, with a substantial TDS variation from 252.58 to 1810.41 mg/L. Groundwater is predominantly characterized by fresh hydrochemical facies of HCO3-Ca and HCO3-Na types, with a few saline Cl-Na types present. The concentrations of NO3, NO2 and NH4+, in groundwater range from 0.32 to 100.00 mg/L, 0.00 to 0.48 mg/L, and 0.00 to 0.20 mg/L, respectively, and 3.59%, 26.92%, and 7.69% of the samples exceeding the permissible drinking limits recommended by Chinese guideline and World Health Organization. Groundwater is classified as fresh at 80.8% of sampling sites and brackish at 19.2%. Approximately 96.2% of the sampled groundwaters is rated as excellent to medium quality according to EWQI assessments, suitable for domestic use, while 3.8% is of extremely poor quality and should be avoided for direct consumption. Groundwater from all sampling sites is suitable for agricultural irrigation and does not pose permeability hazards to the soil. Most groundwaters are suitable for long-term irrigation in terms of sodium hazards, with only 3.8% and 7.7% of samples falling into the “Permissible to Doubtful” and “Doubtful to Unsuitable” categories, respectively. Salinity poses the primary threat in long-term irrigation, with 38.5%, 53.8%, and 7.7% of sampled groundwaters exhibiting moderate, high, and very high salinity risks, respectively. Groundwater chemistry is primarily governed by water-rock interaction and evaporation, with additional impacts from agricultural inputs of nitrogen contaminants and chemicals. Agricultural practices contribute to elevated groundwater salinity in the study area, while natural evaporation drives salinity accumulation in the lower parts. In managing and utilizing groundwater resources in the study area and similar arid regions globally, attention should be paid to salinity caused by agricultural activities and natural evaporation, as well as nitrogen pollution from farming. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

23 pages, 8665 KiB  
Article
Hydrochemical and Isotopic Characterization of Groundwater in the Nakivale Sub-Catchment of the Transboundary Lake Victoria Basin, Uganda
by Emmanuel Nabala Hyeroba, Robert M. Kalin and Christine Mukwaya
Water 2024, 16(23), 3394; https://doi.org/10.3390/w16233394 - 25 Nov 2024
Viewed by 1686
Abstract
This study characterized groundwater resources for the Nakivale sub-catchment of the transboundary Victoria Basin in Uganda using classical hydrochemical and stable isotopic approaches. Groundwater in the study area is essential for domestic, agricultural, and industrial uses. As a sub-domain of the larger Victoria [...] Read more.
This study characterized groundwater resources for the Nakivale sub-catchment of the transboundary Victoria Basin in Uganda using classical hydrochemical and stable isotopic approaches. Groundwater in the study area is essential for domestic, agricultural, and industrial uses. As a sub-domain of the larger Victoria Basin, it also plays a crucial role in shaping the hydrological characteristics of this vital transboundary basin, both in terms of quality and quantity fronts. This makes its sustainable management and development vital. The predominant groundwater type is Ca-SO4, with other types including Ca-HCO3, Na-Cl, Na-HCO3, and Ca-Mg-SO4-Cl. Hydrochemical facies analysis highlights the importance of rock–water interactions in controlling groundwater chemistry, mainly through incongruent chemical weathering of Ca-rich plagioclase feldspars and the oxidation of sulfide minerals, such as pyrite, which are prevalent in the study area. Groundwater recharge is primarily influenced by the area’s topography, with recharge zones characterized by lineament networks, located in elevated areas. Stable isotope analyses indicate that groundwater mainly originates from local precipitation, while tritium data suggest the presence of both recent and older groundwater (likely over 20 years old). The study’s comprehensive approach and findings contribute significantly to the understanding of groundwater systems in the region, thus providing valuable insights for policymakers and stakeholders involved in water resource management and development strategies. Full article
Show Figures

Figure 1

30 pages, 11211 KiB  
Article
Hydro-Geochemistry and Water Quality Index Assessment in the Dakhla Oasis, Egypt
by Mahmoud H. Darwish, Hanaa A. Megahed, Asmaa G. Sayed, Osman Abdalla, Antonio Scopa and Sedky H. A. Hassan
Hydrology 2024, 11(10), 160; https://doi.org/10.3390/hydrology11100160 - 30 Sep 2024
Cited by 3 | Viewed by 1809
Abstract
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the [...] Read more.
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the Dakhla Oasis in Egypt. A total of thirty-nine groundwater samples representing the Nubian Sandstone Aquifer (NSSA) and seven surface water samples from wastewater lakes and canals were collected for analysis. Key parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were measured on-site, while major ions and trace elements (Fe+2 and Mn+2) were analyzed in the laboratory. The water quality index (WQI) method was employed to assess the overall water quality. Hydro-chemical facies were investigated using Piper’s, Scholler’s, and Stiff diagrams, revealing sodium as the dominant cation and chloride, followed by bicarbonate as the dominant anion. The hydro-chemical composition indicates that Na–Cl constitutes the primary water type in this study. This points to the dissolution of evaporates and salt enrichment due to intense evaporation resulting from the region’s hyper-aridity. In groundwater samples, the order of hydro-chemical facies is HCO3 > Cl > SO4−2 > Na+ > Ca+2 > K+ > Mg+2, while in wastewater samples, it is Cl > Na+ > SO4−2 > HCO3 > Ca+2 > Mg+2 > K+. When considering iron and manganese parameters, the water quality index (WQI) values suggest that most groundwater samples exhibit excellent to good quality but become poor or very poor when these elements are included. This study could prove valuable for water resource management in the Dakhla Oasis. Full article
Show Figures

Figure 1

22 pages, 37035 KiB  
Article
Diagenesis Variation in Different Distributary Channels of Shallow Water Lacustrine Delta Deposits and Implication for High-Quality Reservoir Prediction: A Case Study in the Chang 8 Member in Caijiamiao Area, Sw Ordos Basin, China
by Xiaolong Bi, Yiping Wang, Xiao Tang, Weiyun Luo, Chenxi Hao, Mingqiu Hou and Li Zhang
Minerals 2024, 14(10), 987; https://doi.org/10.3390/min14100987 - 30 Sep 2024
Cited by 3 | Viewed by 1325
Abstract
Tight oil reservoirs are considered important exploration targets in lacustrine basins. High-quality reservoir prediction is difficult as the reservoirs have complex distributions of depositional facies and diagenesis processes. Previous research has found that the diagenesis process of tight oil sandstones varies greatly in [...] Read more.
Tight oil reservoirs are considered important exploration targets in lacustrine basins. High-quality reservoir prediction is difficult as the reservoirs have complex distributions of depositional facies and diagenesis processes. Previous research has found that the diagenesis process of tight oil sandstones varies greatly in different depositional facies. However, diagenesis variation in different depositional facies is still poorly studied, especially in distributary channels of shallow water delta deposits in lacustrine basins. Based on the description of core samples, the observation of rock slices, the interpretation of well logging data, and the analysis of porosity and permeability data, the differences in the lithofacies types, diagenesis processes, and pore structures of different distributary channels have been clarified. Ultimately, a model of diagenesis and reservoir heterogeneity distribution in the shallow-water delta of Chang 8 Member of the Yanchang Formation in the Caijiamiao area of the Ordos Basin has been established. This research indicates that the main distributary channels in the study area are dominated by massive bedding sandstone lithofacies, while the secondary distributary channels are primarily characterized by cross-bedding sandstone lithofacies. There are significant differences in the compaction, dissolution, and cementation of authigenic chlorite and carbonate among different parts of the distributary channels. Plastic mineral components, such as clay and mica, are abundant in sheet sands, and are more influenced by mechanical and chemical compaction. Influenced by the infiltration of meteoric water and hydrocarbon generation, dissolution pores are relatively well-developed in the underwater distributary channel reservoirs. A large amount of carbonate cementation, such as calcite and siderite, is found within the sandstone at the interface between sand and mud. The occurrence of authigenic chlorite exhibits a clear sedimentary microfacies zonation, but there is little difference in the kaolinite and siliceous cementation among different microfacies reservoirs. Finally, a model of diagenetic differences and reservoir quality distribution within dense sand bodies has been established. This model suggests that high-quality reservoirs are primarily developed in the middle of distributary channels, providing a theoretical basis for the further fine exploration and development of oil and gas in the study area. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

29 pages, 19572 KiB  
Article
Morphology, Internal Architecture, Facies Model, and Emplacement Mechanisms of Lava Flows from the Central Atlantic Magmatic Province (CAMP) of the Hartford and Deerfield Basins (USA)
by Abdelhak Moumou, Nasrrddine Youbi, Hind El Hachimi, Khalil El Kadiri, José Madeira, João Mata, Isma Amri and Abdelkarim Ait Baha
Geosciences 2024, 14(8), 204; https://doi.org/10.3390/geosciences14080204 - 31 Jul 2024
Viewed by 1843
Abstract
The morphology, internal architecture, and emplacement mechanisms of the Central Atlantic Magmatic Province (CAMP) lava flows of the Hartford and Deerfield basins (USA) are presented. The Talcott, Holyoke, and Hampden formations within the Hartford basin constitute distinct basaltic units, each exhibiting chemical, mineralogical, [...] Read more.
The morphology, internal architecture, and emplacement mechanisms of the Central Atlantic Magmatic Province (CAMP) lava flows of the Hartford and Deerfield basins (USA) are presented. The Talcott, Holyoke, and Hampden formations within the Hartford basin constitute distinct basaltic units, each exhibiting chemical, mineralogical, and structural differences corresponding to flow fields. Each flow field was the result of several sustained eruptions that produced both inflated pahoehoe flows and subaquatic extrusions: 1–5 eruptions in the Talcott formation and 1–2 in Holyoke and Hampden basalts, where simple flows are dominant. The Deerfield basin displays the Deerfield basalt unit, characterized by pillow lavas and sheet lobes, aligning chemically and mineralogically with the Holyoke basalt unit. Overall, the studied flow fields are composed of thick, simple pahoehoe flows that display the entire range of pahoehoe morphology, including inflated lobes. The three-partite structure of sheet lobes, vertical distribution of vesicles, and segregation structures are typical. The characteristics of the volcanic pile suggest slow emplacement during sustained eruptive episodes and are compatible with a continental basaltic succession facies model. The studied CAMP basalts of the eastern United States are correlated with the well-exposed examples on both sides of the Atlantic Ocean (Canada, Portugal, and Morocco). Full article
Show Figures

Figure 1

22 pages, 10418 KiB  
Article
Update of the Interpretive Conceptual Model of Ladeira de Envendos Hyposaline Hydromineral System (Central Portugal): A Contribution to Its Sustainable Use
by José M. Marques, Paula M. Carreira, Pedro Caçador and Manuel Antunes da Silva
Sustainability 2024, 16(12), 5179; https://doi.org/10.3390/su16125179 - 18 Jun 2024
Viewed by 1305
Abstract
The aim of this paper is to describe the surveys performed in order to update the interpretive conceptual circulation model of the Ladeira de Envendos hyposaline hydromineral system (Central Portugal). The geology of the Ladeira de Envendos region is strongly controlled by the [...] Read more.
The aim of this paper is to describe the surveys performed in order to update the interpretive conceptual circulation model of the Ladeira de Envendos hyposaline hydromineral system (Central Portugal). The geology of the Ladeira de Envendos region is strongly controlled by the Amêndoa-Carvoeiro synform, of Ordovician-Silurian age, presenting continuous and aligned quartzite ridges on the NE flank, that form the basic structure of a set of inselbergs. The physico-chemical analysis of the Ladeira de Envendos natural mineral spring and borehole waters was provided by the Super Bock Group Enterprise (Concessionaire of the Ladeira de Envendos). Furthermore, two sampling campaigns took place to increase knowledge on the isotopic composition of the studied natural mineral waters. The stable (δ2H, δ18O) isotopic data indicate that local meteoric waters infiltrate around 400 m altitude and evolve to the natural mineral waters (of Cl-Na facies) through a NW–SE underground flow path ascribed to the highly fractured and permeable quartzite rocks. From recharge to discharge, the infiltrated meteoric waters acquire silica (±9 mg/L) due to water–quartzite rock interaction. These natural mineral waters emerge at temperatures around 21 °C, being the up flow of these waters controlled by the rock fractures and local faults. The natural mineral waters mean residence time range between 25 and 40 years, as indicated by the 3H content of these waters, enhancing an active recharge of this hydromineral system. The results obtained indicate existence of three hydrogeological subsystems, ascribed to three inselbergs, with similar groundwater circulation paths. These multi and interdisciplinary studies should be seen as an important contribution to the sustainable management of this type of natural mineral water resources. Full article
(This article belongs to the Special Issue Sustainable Development of Hydrogeology)
Show Figures

Figure 1

Back to TopTop