Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = chemical composition of Passiflora

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 692 KiB  
Review
Current Progress on Passiflora caerulea L. In Vitro Culturing
by Pervin Halkoglu-Hristova, Alexandra Garmidolova, Teodora Yaneva and Vasil Georgiev
Sci 2025, 7(3), 90; https://doi.org/10.3390/sci7030090 - 1 Jul 2025
Viewed by 340
Abstract
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including [...] Read more.
Passiflora caerulea L., commonly known as the blue passionflower, is traditionally grown as an ornamental plant, but has a diverse chemical composition resulting in a wide range of biological activities that determine its pharmacological properties and use in medicine. Traditional propagation methods, including seed germination and vegetative cuttings, are often inefficient due to low germination rates, susceptibility to pathogens, and slow growth. In particular, P. caerulea presents significant challenges in germination due to its slow development. In this context, in vitro cultivation is used to enable rapid, large-scale plant production while maintaining genetic fidelity. The study of Passiflora tissue cultures began in 1966 and has since attracted increasing attention from researchers around the world. However, despite growing interest, studies specifically focused on the in vitro propagation of P. caerulea remain limited. This review aims to summarize existing knowledge on the main techniques used for in vitro culturing and propagation of P. caerulea, including organogenesis, somatic embryogenesis, and callogenesis. Particular attention is paid to the key factors that influence the initiation, growth, and regeneration of cultures, including the type of explant, the composition of the media, and the environmental conditions. Advances in the in vitro cultivation of P. caerulea have greatly improved the understanding and propagation of this species. Although in vitro cultivation offers several advantages, it is crucial to conduct thorough research on the selection of explants, their age, and the appropriate culture media to ensure optimal growth and development. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

18 pages, 4131 KiB  
Article
Phytochemicals from Passiflora coriacea Juss. Have Anti-Inflammatory and Neuroprotective Effects in Mouse Models
by Samir Castolo-Sanchez, Alejandro Zamilpa, Maribel Herrera-Ruiz, José Luis Trejo-Espino, Blanca Eda Domínguez-Mendoza, Manasés González-Cortazar and Gabriela Trejo-Tapia
Pharmaceuticals 2024, 17(11), 1534; https://doi.org/10.3390/ph17111534 - 15 Nov 2024
Cited by 1 | Viewed by 1046
Abstract
Background: Neuroinflammatory diseases trigger an inflammatory response and a state of oxidative stress. Passiflora coriacea Juss. has been used to treat conditions related to inflammatory processes in the central nervous system; however, to date, there has been no study on the anti-inflammatory and [...] Read more.
Background: Neuroinflammatory diseases trigger an inflammatory response and a state of oxidative stress. Passiflora coriacea Juss. has been used to treat conditions related to inflammatory processes in the central nervous system; however, to date, there has been no study on the anti-inflammatory and neuroprotective effects of this species. Methods: The anti-inflammatory effect of P. coriacea was evaluated in a TPA-induced auricular edema model, and the percentage of edema inhibition (Ei) was recorded. The Morris water maze was used to assess the neuroprotective effect, measuring the latency time (LT), and lipopolysaccharide was administered to induce neuroinflammation. The concentrations of cytokines (IL-6, IL-10, and TNF-α) and activities of antioxidant system components (CAT, SOD, GR, NO, and MDA) were measured in the mouse brains. The chemical composition was determined using chromatographic and nuclear magnetic resonance techniques. Results: T1.1, T2.1, and T3.1 showed anti-inflammatory (Ei = 92.5, 88.3, and 64.8%, respectively) and neuroprotective (LT = 27.2, 22.9, and 27.7 s, respectively) effects. T1.1 was identified as scopolin with immunomodulatory (IL-6 = 3307 pg/g) and antioxidant (CAT = 1198 mmol, SOD = 23%, GR = 5.34 units/mL, NO = 11.5 µM, MDA = 1526 nmol/mL) effects; T2.1 was a mixture of terpenes (fitone, 7-dehydrodiosgenin, tremulone) with immunomodulatory (TNF-α = 857 pg/g) and antioxidant (CAT = 1245 mmol, NO = 8.75 µM) effects; and T3.1 was a mixture of isoquercetin and astragalin with immunomodulatory (IL-6 = 3135 pg/g, IL-10 = 1300 pg/g, TNF-α = 751 pg/g) and antioxidant (SOD = 1204 nmol/mL, CAT = 1131 nmol/mL, NO = 6.37 µM, MDA = 1204 nmol/mL) effects. Conclusions: The administration of P. coriacea treatments generated anti-inflammatory, neuroprotective, immunomodulatory, and antioxidant effects. These effects are attributable to its chemical composition, comprising scopolin, terpenes, and a mixture of isoquercetin and astragalin, which have not previously been described in this species. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

25 pages, 1074 KiB  
Review
Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients
by Manuela Victoria Pardo Solórzano, Geison Modesti Costa and Leonardo Castellanos
Sci. Pharm. 2024, 92(4), 57; https://doi.org/10.3390/scipharm92040057 - 18 Oct 2024
Viewed by 3392
Abstract
The cosmetics industry is constantly growing and occupies an important place in South American countries’ economies. Formulations increasingly incorporate ingredients from natural sources to promote sustainable and innovative productions, as well as to gain greater consumer acceptance. According to FAO, waste from post-harvest [...] Read more.
The cosmetics industry is constantly growing and occupies an important place in South American countries’ economies. Formulations increasingly incorporate ingredients from natural sources to promote sustainable and innovative productions, as well as to gain greater consumer acceptance. According to FAO, waste from post-harvest and food processing in developing countries exceeds 40%, generating significant environmental impacts and stimulating interest in adding value to these wastes, particularly in the fruit and vegetable sector in South American countries, thus contributing to the achievement of the UN Sustainable Development Goals (SDGs). By-products from harvesting and fruit processing of Passiflora species such as leaves, stems, peel, and seeds are a source of bioactive compounds; however, most of them are wasted. This study aims to compile reports on the chemical composition of cultivated Passiflora species, find evidence of the cosmetic activity of their extracts, and estimate their potential for inclusion in cosmetic formulations. Full article
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities
by Anelia Gerasimova, Krastena Nikolova, Nadezhda Petkova, Ivan Ivanov, Ivayla Dincheva, Yulian Tumbarski, Velichka Yanakieva, Mina Todorova, Galia Gentscheva, Anna Gavrilova, Ina Yotkovska, Stoyanka Nikolova, Pavlo Slavov and Nikolay Harbaliev
Plants 2024, 13(13), 1731; https://doi.org/10.3390/plants13131731 - 22 Jun 2024
Cited by 3 | Viewed by 2004
Abstract
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as [...] Read more.
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as well as to evaluate the antioxidant, antimicrobial and anti-inflammatory activities of its leaf and pulp extracts. The results showed that the pulp predominantly contained the essential amino acid histidine (7.81 mg g−1), while it was absent in the leaves, with the highest concentration being tryptophan (8.30 mg g−1). Of the fatty acids, palmitoleic acid predominated both in the pulp and in the leaves. A major sterol component was β-sitosterol. Fructose (7.50%) was the predominant sugar in the pulp, while for the leaves, it was glucose—1.51%. Seven elements were identified: sodium, potassium, iron, magnesium, manganese, copper and zinc. The highest concentrations of K and Mg were in the pulp (23,946 mg kg−1 and 1890 mg kg−1) and leaves (36,179 mg kg−1 and 5064 mg kg−1). According to the DPPH, FRAP and CUPRAC methods, the highest values for antioxidant activity were found in 70% ethanolic extracts of the leaves, while for the ABTS method, the highest value was found in 50% ethanolic extracts. In the pulp, for all four methods, the highest values were determined at 50% ethanolic extracts. Regarding the antibacterial activity, the 50% ethanolic leaf extracts were more effective against the Gram-positive bacteria. At the same time, the 70% ethanolic leaf extract was more effective against Gram-negative bacteria such as Salmonella enteritidis ATCC 13076. The leaf extracts exhibited higher anti-inflammatory activity than the extracts prepared from the pulp. The obtained results revealed that P. caerulea is a plant that can be successfully applied as an active ingredient in various nutritional supplements or cosmetic products. Full article
Show Figures

Figure 1

20 pages, 5041 KiB  
Review
Chemical Compositions, Pharmacological Properties and Medicinal Effects of Genus Passiflora L.: A Review
by Krastena Nikolova, Margarita Velikova, Galia Gentscheva, Anelia Gerasimova, Pavlo Slavov, Nikolay Harbaliev, Lubomir Makedonski, Dragomira Buhalova, Nadezhda Petkova and Anna Gavrilova
Plants 2024, 13(2), 228; https://doi.org/10.3390/plants13020228 - 13 Jan 2024
Cited by 9 | Viewed by 8286
Abstract
Practically all aboveground plants parts of Passiflora vines can be included in the compositions of dietary supplements, medicines, and cosmetics. It has a diverse chemical composition and a wide range of biologically active components that determine its diverse pharmacological properties. Studies related to [...] Read more.
Practically all aboveground plants parts of Passiflora vines can be included in the compositions of dietary supplements, medicines, and cosmetics. It has a diverse chemical composition and a wide range of biologically active components that determine its diverse pharmacological properties. Studies related to the chemical composition of the plant are summarized here, and attention has been paid to various medical applications—(1) anti-inflammatory, nephroprotective; (2) anti-depressant; (3) antidiabetic; (4) hepatoprotective; (5) antibacterial and antifungal; and (6) antipyretic and other. This review includes studies on the safety, synergistic effects, and toxicity that may occur with the use of various dietary supplements based on it. Attention has been drawn to its application in cosmetics and to patented products containing passionflower. Full article
Show Figures

Figure 1

16 pages, 1254 KiB  
Article
Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima
by Minerva Rentería-Ortega, María de Lourdes Colín-Alvarez, Víctor Alfonso Gaona-Sánchez, Mayra C. Chalapud, Alitzel Belém García-Hernández, Erika Berenice León-Espinosa, Mariana Valdespino-León, Fatima Sarahi Serrano-Villa and Georgina Calderón-Domínguez
Membranes 2023, 13(9), 797; https://doi.org/10.3390/membranes13090797 - 16 Sep 2023
Cited by 4 | Viewed by 5201
Abstract
The inadequate management of organic waste and excessive use of plastic containers cause damage to the environment; therefore, different studies have been carried out to obtain new biomaterials from agricultural subproducts. The objective of this work was to evaluate the feasibility of using [...] Read more.
The inadequate management of organic waste and excessive use of plastic containers cause damage to the environment; therefore, different studies have been carried out to obtain new biomaterials from agricultural subproducts. The objective of this work was to evaluate the feasibility of using the pectin extracted from the peel of Passiflora tripartita var. mollissima (PT), characterizing its type and viability for the production of edible biodegradable films. In addition, films of two thicknesses (23.45 ± 3.02 µm and 53.34 ± 2.28 µm) were prepared. The results indicated that PT is an excellent raw material for the extraction of pectin, with high yields (23.02 ± 0.02%), high galacturonic acid content (65.43 ± 2.241%), neutral sugars (ribose, xylose, glucose) and a high degree of esterification (76.93 ± 1.65%), classifying it as a high-methoxy pectin. Regarding the films, they were malleable and flexible, with a water vapor permeability from 2.57 × 10−10 ± 0.046 to 0.13 × 10−10 ± 0.029 g/s mPa according to thickness, being similar to other Passiflora varieties of edible films. The pectin extraction yield from PT makes this fruit a promising material for pectin production and its chemical composition a valuable additive for the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Recent Advances in Biodegradable and Edible Biopolymer-Based Films)
Show Figures

Figure 1

4 pages, 222 KiB  
Comment
Comment on Tremmel et al. In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Int. J. Mol. Sci. 2021, 22, 6566
by Monika Beszterda and Rafał Frański
Int. J. Mol. Sci. 2022, 23(8), 4445; https://doi.org/10.3390/ijms23084445 - 18 Apr 2022
Cited by 1 | Viewed by 2842
Abstract
In recent years, growing attention has been paid to the chemical composition of aerial parts extracts and the bioavailability of active compounds from different species of Passiflora genus [...] Full article
(This article belongs to the Section Molecular Plant Sciences)
13 pages, 1018 KiB  
Article
Zingerone in the Flower of Passiflora maliformis Attracts an Australian Fruit Fly, Bactrocera jarvisi (Tryon)
by Soo Jean Park, Stefano G. De Faveri, Jodie Cheesman, Benjamin L. Hanssen, Donald N. S. Cameron, Ian M. Jamie and Phillip W. Taylor
Molecules 2020, 25(12), 2877; https://doi.org/10.3390/molecules25122877 - 22 Jun 2020
Cited by 11 | Viewed by 3807
Abstract
Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis’s fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of [...] Read more.
Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis’s fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of the inner and outer coronal filaments, anther, stigma, ovary, sepal, and petal of P. maliformis were separately extracted with ethanol and analyzed using gas chromatography-mass spectrometry (GC-MS). Polyisoprenoid lipid precursors, fatty acids and their derivatives, and phenylpropanoids were detected in P. maliformis flowers. Phenylpropanoids included raspberry ketone, cuelure, zingerone, and zingerol, although compositions varied markedly amongst the flower parts. P. maliformis flowers were open for less than one day, and the amounts of some of the compounds decreased throughout the day. The attraction of male B. jarvisi to P. maliformis flowers is most readily explained by the presence of zingerone in these flowers. Full article
Show Figures

Graphical abstract

14 pages, 929 KiB  
Article
Chemical Composition and Antioxidant Activity of the Main Fruits Consumed in the Western Coastal Region of Ecuador as a Source of Health-Promoting Compounds
by Mabel Guevara, Eduardo Tejera, María G. Granda-Albuja, Gabriel Iturralde, Maribel Chisaguano-Tonato, Silvana Granda-Albuja, Tatiana Jaramillo-Vivanco, Francesca Giampieri, Maurizio Battino and José M. Alvarez-Suarez
Antioxidants 2019, 8(9), 387; https://doi.org/10.3390/antiox8090387 - 10 Sep 2019
Cited by 44 | Viewed by 6394
Abstract
We studied 19 different tropical fruits traditionally consumed in the coastal lowlands of Ecuador to determine their chemical composition and antioxidant activity. Carambola (Averrhoa carambola L.) had the highest total phenolic, flavonoid, and total antioxidant capacity values, whereas guava fruits (Psidium [...] Read more.
We studied 19 different tropical fruits traditionally consumed in the coastal lowlands of Ecuador to determine their chemical composition and antioxidant activity. Carambola (Averrhoa carambola L.) had the highest total phenolic, flavonoid, and total antioxidant capacity values, whereas guava fruits (Psidium guajava L.) had the highest vitamin C values. The main organic acids identified were lactic, citric, and acetic acids, and the highest amount of lactic acid was found in soursop fruits (Annona muricata L.), whereas Ecuadorian ivory palm (Phytelephas aequatorialis Spruce) and guava fruits had the highest acetic acid content. Guava also had the highest citric acid content; the highest concentration of oxalic acid was found in carambola. In terms of sugar content, giant granadilla (Passiflora quadrangularis L.) had the highest values of glucose, and red mombin (Spondias mombin L.) had the largest values for fructose and guava for sucrose. Chili pepper (Capsicum chinense Jacq) proved to be the main source of carotenoids, lutein, and β-carotene, anthocyanins, and vitamin C. The results here increase our knowledge regarding the composition of the main fruits consumed on the west coast of Ecuador to facilitate recommendations as potential sources of health-promoting compounds. Full article
Show Figures

Figure 1

Back to TopTop