Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pectin Extraction
2.2.2. Characterization of the Pectin of Passiflora tripartita var. mollissima
Methoxyl Group Content
Degree of Esterification
Acidity
High-Performance Liquid Chromatography (HPLC)
2.2.3. Film Preparation
2.2.4. Characterization of Pectin Films
Color
Texture
Thickness
Water Vapor Permeability
Differential Scanning Calorimetry (DSC)
Statistical Analysis
3. Results and Discussion
3.1. Pectin Extraction Yield
3.2. Pectin Chemical Characterization
High-Performance Liquid Chromatography (HPLC)
3.3. Characterization of Pectin Films
3.3.1. Thickness
3.3.2. Color and Texture
3.3.3. Water Vapor Permeability
3.3.4. Differential Scanning Calorimetry (DSC)
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gahruie, H.H.; Eskandari, M.H.; Van der Meeren, P.; Hosseini, S.M.H. Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydr. Polym. 2019, 219, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, B.L.; Anzola, C. Estudio del efecto fisiológico del consumo de arepas enriquecidas con pectina extraída de la cáscara de curuba (Passiflora tripartita var. mollissima). Rev. Colomb. Química 2018, 47, 5–11. [Google Scholar] [CrossRef]
- Santos, E.E.; Amaro, R.C.; Cid Bustamante, C.C.; Andrade Guerra, M.H.; Soares, L.C.; Froes, R.E.S. Extraction of pectin from agroindustrial residue with an ecofriendly solvent: Use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. 2020, 107, 105921. [Google Scholar] [CrossRef]
- Valdespino-León, M.; Calderón-Domínguez, G.; De La Paz Salgado-Cruz, M.; Rentería-Ortega, M.; Farrera-Rebollo, R.R.; Morales-Sánchez, E.; Terrazas-Valencia, F. Biodegradable electrosprayed pectin films: An alternative to valorize coffee mucilage. Waste Biomass Valorization 2021, 12, 2477–2494. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M.; Ishihara, S.; Tanaka, R.; Inoue, T.; Phillips, G.O. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocoll. 2011, 25, 221–229. [Google Scholar] [CrossRef]
- Matta, E.; Bertola, N. Development and characterization of high methoxyl pectin film by using isomalt as plasticizer. J. Food Process. Preserv. 2020, 44, e14568. [Google Scholar] [CrossRef]
- Benavides, Y.E.L.; Moreano, H.L.M.; Chasoy, S.A.P. Obtención de pectina a partir de la cáscara de maracuyá, fuente para la elaboración de plástico biodegradable. Boletín Inf. CEI 2022, 9, 107–110. Available online: https://revistas.umariana.edu.co/index.php/BoletinInformativoCEI/article/view/3018 (accessed on 12 February 2023).
- Ibarra-Egas, J.P.; Ordoñez-Villegas, J.A.; Ortiz-Cabrera, I.A. Obtención de pectina a partir del albedo de maracuyá y limón tahití a través de hidrólisis química. Boletín Inf. CEI 2022, 9, 189–198. Available online: https://revistas.umariana.edu.co/index.php/BoletinInformativoCEI/article/view/3180 (accessed on 15 February 2023).
- Cabarcas, E.; Guerra, A.; Henao, C. Extracción y Caracterización de Pectina a Partir de Cáscaras de Plátano Para Desarrollar un Diseño General del Proceso de Producción. Ph.D. Thesis, Universidad de Cartagena, Cartagena, Colombia, 2012. Available online: https://repositorio.unicartagena.edu.co/handle/11227/109 (accessed on 15 February 2023).
- Chaparro, S.P.; Márquez, R.A.; Sánchez, J.P.; Vargas, M.L.; Gil, J.H. Extracción de pectina del fruto del higo (Opuntia ficus indica) y su aplicación en un dulce de piña. Rev. UDCA Actual. Divulg. Científica 2015, 18, 435–443. [Google Scholar]
- Bello-Lara, J.E.; Balois-Morales, R.; Juárez-López, P.; Alia-Tejacal, I.; Peña-Valdivia, C.B.; Jiménez-Zurita, J.O.; Jiménez-Ruíz, E.I. Recubrimientos a base de almidón y pectina de plátano ‘Pera’(Musa ABB), y quitosano aplicados a frutos de mango ‘Ataulfo’en postcosecha. Rev. Chapingo. Ser. Hortic. 2016, 22, 209–218. [Google Scholar] [CrossRef]
- Díaz Bustamante, G. Evaluación del Rendimiento en la Extracción de Pectina de Tuna (Opuntia Ficus Indica). Bachelor’s Thesis, Universidad Nacional de Cajamarga, Cajamarca, Peru, 2019. Available online: https://190.116.36.86/handle/20.500.14074/3703 (accessed on 25 April 2023).
- Lozano-Grande, M.A.; Valle-Guadarrama, S.; Aguirre-Mandujano, E.; Lobato-Calleros, C.S.; Huelitl-Palacios, F. Películas basadas en emulsiones de pectina de frutos de tejocote (Crataegus spp.) y cera de candelilla: Caracterización y aplicación en Pleurotus ostreatus. Agrociencia 2016, 50, 849–866. [Google Scholar]
- Martínez-Mendoza, A.A.; Mora, O.F.; Sánchez-Pale, J.R.; Rodríguez-Núñez, J.R.; Castañeda-Vildózola, A. Evaluación de recubrimiento comestible a base de pectina de tejocote en postcosecha de tihuixocote (Ximenia americana L.; olacaceae). Acta Agrícola y Pecu. 2020, 6, 0061004. [Google Scholar] [CrossRef]
- Rodríguez-Mora, D.A.; Ramírez, A.F.; Altamar, A.D. Extraction of Pectin from the Acid Hydrolysis of Cocoa (Theobroma Cacao L.) and its Application to Obtain Biofilms. Mutis 2022, 13. Available online: https://hdl.handle.net/20.500.12010/28717 (accessed on 27 March 2023).
- Guevara, B.; Garavito, E.C.A.; Cerquera, J.P. Extracción y caracterización de pectina a partir de residuos de cáscaras de piña (ananas comosus) por el método de hidrólisis ácida. ECBTI Work. Pap. 2020, 1. [Google Scholar]
- Kamal, M.M.; Akhtaruzzaman, M.; Sharmin, T.; Rahman, M.; Mondal, S.C. Optimization of extraction parameters for pectin from guava pomace using response surface methodology. J. Agric. Res. 2023, 11, 100530. [Google Scholar] [CrossRef]
- Muñoz, R.; Cuesta, M. Extracción de pectina a partir de la corteza de maracuyá (Passiflora edulis var. flavicarpa degener). Rev. Politécnica 2012, 31. Available online: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/195 (accessed on 17 June 2023).
- Sindoni, M.; Hidalgo, P.R.; Castellano, G.; Núñez, K.; Burgos, M.E.; Méndez, R.R. Efecto de dos fases de maduración sobre la cantidad de pectina obtenida en dos variedades de parchita (Passiflora edulis f. flavicarpa degener) de diferente procedencia. Rev. Iberoam. De. Tecnol. Postcosecha 2013, 14, 93–100. Available online: https://www.redalyc.org/pdf/813/81329290001.pdf (accessed on 26 May 2023).
- Lliuyacc Laurente, R. Efecto de la Temperatura, Tiempo y ph en el Rendimiento de Extracción de Pectina en Cáscara de Tumbo Serrano (Passiflora tripartita L.). Bachelor’s Thesis, Universidad de Acobamba–Huancavelica, Acobamba, Peru, 2018. Available online: https://repositorio.unh.edu.pe/items/850b1840-ee05-4789-a11e-d663612d7a0d (accessed on 23 March 2023).
- Rea-Jara, L.C.R.; Moreno, A.M.; Veloz, M.A.L. Determinación del poder gelificante de pectina extraída de cáscara de maracuyá en medio ácido y su aplicación en postres. Ecuadorian J. Steam 2020, 1, 33–43. Available online: https://cimogsys.espoch.edu.ec/direccion-publicaciones/public/docs/books/2021-01-21-164459-ARTICULOS%20CIENTIFICOS%20231120.pdf#page=236 (accessed on 16 April 2023).
- Pereira, Z.C.; dos Anjos Cruz, J.M.; Corrêa, R.F.; Sanches, E.A.; Campelo, P.H.; de Araújo Bezerra, J. Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. J. Food Res. Int. 2023, 166, 112626. [Google Scholar] [CrossRef]
- Narain, N.; Shanmugam, S.; de Souza Araújo, A.A. Antioxidant, antimicrobial, analgesic, anti-inflammatory and antipyretic effects of bioactive compounds from Passiflora species. Med. Plants Farm. Pharm. 2019, 243–274. [Google Scholar] [CrossRef]
- Vera-Cieza, R.; Rufasto-Pérez, E. Caracterización fisicoquímica y reológica en frutos de “poro poro” Passiflora mollissima (Kunth) LH Bailey. (Passifloraceae) en la provincia de Chota: Physicochemical and rheological characterization in “poro poro” fruits Passiflora mollissima (Kunth) LH Bailey. (Passifloraceae) in the province of Chota. Rev. Cienc. Nor@Ndina 2019, 2, 66–71. [Google Scholar] [CrossRef]
- Chumbes Montes, M.M. Hidrólisis ácida de la Cáscara de Maracuyá (Passiflora edulis) Para la Obtención de Pectina Como Agente gelificante. Tesis de Ingeniería, Universidad Nacional José Faustino Sánchez Carrión, Huacho, Peru, 2010. Available online: https://hdl.handle.net/20.500.14067/4411 (accessed on 17 August 2023).
- Owens, H.S.; McCready, R.K.; Sheperd, A.D.; Schultz, T.H.; Pippen, E.L.; Swenson, H.A.; Miers, J.C.; Erlandsen, R.F.; Maclay, W.D. Methods Used at Western Regional Research Laboratory or Extraction and Analysis of Pectic materials. Western. Anal. Chem. 1952, 24, 54–59. [Google Scholar]
- Ball, S.; Bullock, S.; Lloyd, L.; Mapp, K. Analysis of carbohydrates, alcohols and organic acids by ion-exchange chromatography. In Agilent Hi Plex Columns Applications Compendium; Agilent Technologies Inc.: Pirmasens, Germany, 2011; pp. 1–98. [Google Scholar]
- Gaona-Sánchez, V.A.; Calderón-Domínguez, G.; Morales-Sánchez, E.; Chanona-Pérez, J.J.; Arzate-Vázquez, I.; Terrés-Rojas, E. Pectin-based films produced by electrospraying. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Gaona-Sánchez, V.A.; Calderon-Dominguez, G.; Morales-Sanchez, E.; Chanona-Perez, J.J.; Velazquez-De La Cruz, G.; Mendez-Mendez, J.V.; Farrera-Rebollo, R.R. Preparation and characterisation of zein films obtained by electrospraying. Food Hydrocoll. 2015, 49, 1–10. [Google Scholar] [CrossRef]
- Calderon-Dominguez, G.; Vera-Dominguez, M.; Farrera-Rebollo, R.; Arana-Errasquin, R.; Mora-Escobedo, R. Rheological changes of dough and bread quality prepared from a sweet dough: Effect of temperature and mixing time. Int. J. Food Prop. 2004, 7, 165–174. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Calderón-Domínguez, G.; ChanonaPérez, J.J.; Farrera-Rebollo, R.R.; Andraca-Adame, J.A.; ArzateVázquez, I.; Méndez-Méndez, J.V.; Moreno-Ruiz, L.A. Physical and structural characterisation of zein and chitosan edible flms using nanotechnology tools. Int. J. Biol. Macromol. 2013, 61, 196–203. [Google Scholar] [CrossRef]
- Ali, S.M.A.; Niaz, T.; Munir, A.; Shahid, R.; Shabbir, S.; Noor, T.; Imran, M. Potential of pectin-chitosan based composite films embedded with quercetin-loaded nanofillers to control meat associated spoilage bacteria. Food Biosci. 2023, 53, 102547. [Google Scholar]
- Xie, J.; Zhang, Y.; Klomklao, S.; Simpson, B.K. Pectin from plantain peels: Green recovery for transformation into reinforced packaging films. Waste Manag. 2023, 161, 225–233. [Google Scholar] [CrossRef]
- Arriaga Perea, J.A. Evaluación de las Propiedades Físicas de Películas de Gliadinas con el uso de Formaldehído Como Agente Entrecruzante. Tesis de ingeniería, Universidad de La Salle, Bogotá, Colombia, 2019. Available online: https://ciencia.lasalle.edu.co/ing_alimentos/260 (accessed on 13 May 2023).
- Cengel, Y.A.; Boles, M.A.; Kanoğlu, M. Thermodynamics: An Engineering Approach; McGraw-hill: New York, NY, USA, 2011; Volume 5, p. 445. [Google Scholar]
- García-Hernández, A.B.; Morales-Sánchez, E.; Berdeja-Martínez, B.M.; Escamilla-García, M.; Salgado-Cruz, M.P.; Rentería-Ortega, M.; Calderón-Domínguez, G. PVA-based electrospun biomembranes with hydrolyzed collagen and ethanolic extract of Hypericum perforatum for potential use as wound dressing: Fabrication and characterization. Polymers 2022, 14, 1981. [Google Scholar] [CrossRef]
- Charchalac, L.R. Efecto del Agente de Extracción y Tiempo de Hidrólisis Ácida en el Rendimiento de Pectina de Cáscaras de Maracuyá (Passiflora Edulis var. Flavicarpa). Ph.D. Thesis, Escuela Agricola Panamericana, Zamorano, Honduras, 2008. Available online: https://bdigital.zamorano.edu/handle/11036/5401 (accessed on 20 February 2023).
- Lin, Y.; An, F.; He, H.; Geng, F.; Song, H.; Huang, Q. Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing. Food Hydrocoll. 2020, 114, 106555. [Google Scholar] [CrossRef]
- D’Addosio, R.; Paéz, G.; Marı’n, M.; Ma’rmol, Z.; Ferrer, J. Obtainment and characterization of pectin since of the peel of passion fruit (Passiflora edulis F. Flavicarpa Degener). Rev. Fac. Agron. J—LUZ 2005, 22, 240–249. Available online: https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182005000300004&lng=es&nrm=iso> (accessed on 19 June 2023).
- Kulkarni, S.G.; Vijayanand, P. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci. Technol. 2010, 43, 1026–1031. [Google Scholar] [CrossRef]
- Calvete-Torre, I.; Muñoz-Almagro, N.; Pacheco, M.T.; Antón, M.J.; Dapena, E.; Ruiz, L.; Moreno, F.J. Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydr. Polym. 2021, 264, 117980. [Google Scholar] [CrossRef] [PubMed]
- Freitas de Oliveira, C.F.; Giordani, D.; Lutckemier, R.; Gurak, P.D.; Cladera-Olivera, F.; Marczak, L.D.F. Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Sci. Technol. 2016, 71, 110–115. [Google Scholar] [CrossRef]
- Mendoza-Vargas, L.; Jiménez-Forero, J.; Ramírez-Niño, M. Evaluation Of Pectin Extracted Enzymatically From Cocoa (Theobroma Cacao L.) Pod Husks. Rev. UDCA Actual. Divulg. Científica 2017, 20, 131–138. Available online: http://www.scielo.org.co/pdf/rudca/v20n1/v20n1a15.pdf (accessed on 29 April 2023).
- Cerón-Salazar, I.; Cardona-Alzate, C. Evaluación del proceso integral para la obtención de aceite esencial y pectina a partir de cáscara de naranja. Ing. Y Cienc. 2011, 7, 65–86. Available online: http://www.scielo.org.co/pdf/ince/v7n13/v7n13a04.pdf (accessed on 13 May 2023).
- Fredes Monsalves, C.; Loyola López, N.; Muñoz Cruz, J.C. Extracción de pectinas de Vitis labrusca CV. Concord para producir jaleas. Idesia 2009, 27, 9–14. [Google Scholar] [CrossRef]
- Campo-Vera, Y.E.; Villada-Castillo, D.C.; Meneses-Ortega, J.D. Effect of The Pre-Tratamiento With Ultrasound In The Extraction Of Pectin Contained In The Albedo Of The Maracuyá (Passiflora edulis). Biotecnol. En. El Sect. Agropecu. Y Agroindustrial 2016, 14, 103–109. [Google Scholar] [CrossRef]
- Duran, V.; Honores, M.; Cáceres, P.; Obtención de Pectina en Polvo a Partir de la Cáscara de Maracuyá (Passiflora edulis). FIMCP 2012. Available online: https://www.dspace.espol.edu.ec/handle/123456789/20660 (accessed on 19 June 2023).
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Seixas, F.L.; Fukuda, D.L.; Turbiani, F.R.B.; Garcia, P.S.; Petkowicz, C.L.d.O.; Jagadevan, S.; Gimenes, M.L. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll. 2014, 38, 186–192. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Younis, H.G.R.; Abdellatif, H.R.S.; Ye, F.; Zhao, G. Tuning the physicochemical properties of apple pectin films by incorporating chitosan/pectin fiber. Int. J. Biol. Macromol. 2020, 159, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, T.A.; Calado, V.; Carvalho, C.W.P. Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Res. Int. 2012, 49, 588–595. [Google Scholar] [CrossRef]
- Brion-Espinoza, I.A.; Iniguez-Moreno, M.; Ragazzo-Sánchez, J.A.; Barros-Castillo, J.C.; Calderón-Chiu, C.; Calderón-Santoyo, M. Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis. Food Chem. X 2021, 12, 100170. [Google Scholar] [CrossRef]
- Saurabh, C.K.; Gupta, S.; Bahadur, J.; Mazumder, S.; Variyar, P.S.; Sharma, A. Mechanical and barrier properties of guar gum based nano-composite films. Carbohydr. Polym. 2015, 124, 77–84. [Google Scholar] [CrossRef]
- Otoni, C.G.; de Moura, M.R.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; Soares, N.F.F.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Márquez, R.; Escobar, D.; Sala, A.; Silvera, C.; Repiso, L. Elaboración, caracterización y comparación de películas comestibles en base a aislado de proteínas de suero lácteo (WPI). INNOTEC (3 ene-dic) 2008, 57–62. [Google Scholar] [CrossRef]
- Trujillo Rivera, C.T. Obtención de películas biodegradables a partir de almidón de yuca (Manihot esculente Crantz) doblemente modificado para uso en empaque de alimentos. Bachelor’s Thesis, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru, 2014. Available online: https://hdl.handle.net/20.500.14070/65 (accessed on 26 April 2023).
- Sood, A.; Saini, C.S. Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocoll. 2022, 123, 107135. [Google Scholar] [CrossRef]
- Fu, X.; Chang, X.; Ding, Z.; Xu, H.; Kong, H.; Chen, F.; Ding, S. Fabrication and Characterization of Eco-Friendly Polyelectrolyte Bilayer Films Based on Chitosan and Different Types of Edible Citrus Pectin. Foods 2022, 11, 3536. [Google Scholar] [CrossRef]
- Segura-Ceniceros, E.P.; Ilyinб, A.D.; Montalvo-Arredondo, J.I.; Zaragoza-Contreras, A.; Flores-Gallardo, S.G.; Vargas-Dominguez, C.I. Evaluation of the effect of pectin-papain interactions on the enzyme stability and mechanical properties of maracuya’s pectin films for the treatment of skin wounds. Вестник Мoскoвскoгo Университета Серия 2. Химия 2006, 47, 66–72. [Google Scholar]
- López, D.F.; Osorio, O.; Checa, O.E. Propiedades mecánicas de un material de pectina para revestimiento de fibras naturales utilizadas en aplicaciones agrícolas. Inf. Tecn. 2019, 30, 189–198. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, Y.; Feng, X.; Gao, C.; Wu, D.; Cheng, W.; Meng, L.; Zhang, Y.; Tang, X. Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. Int. J. Biol. Macromol. 2020, 156, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Morillon, V.; Debeaufort, F.; Blond, G.; Capelle, M.; Voilley, A. Factors affecting the moisture permeability of lipid-based edible films: A review. Crit. Rev. Food Sci. Nutr. 2002, 42, 67–89. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.; Gregersen, Ø.W.; Männle, F.; Brachet, P. Effects of hydrophobic polyhedral oligomeric silsesquioxane coating on water vapour barrier and water resistance properties of paperboard. J. Sol-Gel Sci. Technol. 2014, 69, 237–249. [Google Scholar] [CrossRef]
- Thakur, R.; Saberi, B.; Pristijono, P.; Stathopoulos, C.E.; Golding, J.B.; Scarlett, C.J.; Bowyer, M.; Vuong, Q.V. Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J. Food Sci. Technol. 2017, 54, 2270–2278. [Google Scholar] [CrossRef]
- Fadini, A.L.; Rocha, F.S.; Alvim, I.D.; Sadahira, M.S.; Queiroz, M.B.; Alves, R.M.V.; Silva, L.B. Mechanical properties and water vapour permeability of hydrolysed collagen–cocoa butter edible films plasticised with sucrose. Food Hydrocoll. 2013, 30, 625–631. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr. Polym. 2004, 56, 129–135. [Google Scholar] [CrossRef]
- Salazar, V.M.S.; Márquez, M.A.T.; Vargas, A.L. Propiedades físicas, mecánicas y de barrera de películas comestibles a base de mucílago de Nopal como alternativa para la aplicación en frutos. Rev. Iberoam. De. Tecnol. Postcosecha 2015, 16, 193–198. Available online: https://www.redalyc.org/articulo.oa?id=81343176007 (accessed on 9 May 2023).
- Nisar, T.; Wang, Z.-C.; Yang, X.; Tian, Y.; Iqbal, M.; Guo, Y. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2018, 106, 670–680. [Google Scholar] [CrossRef]
- Linares García, J.A. Estudio de las Propiedades Físicas y Texturales de Geles de Pectinas de alto y Bajo Metoxilo Obtenidas de Crataegus pubescens (Tejocote). Ph.D. Thesis, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico, 2015. Available online: https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/1377/SSIT0013102.pdf?sequence=1 (accessed on 18 July 2023).
- Muñoz Labrador, A. Caracterización de pectinas industriales de cítricos y su aplicación como recubrimientos de fresas. Master’s Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2016. Available online: https://digital.csic.es/bitstream/10261/176559/1/LabradorTFMpectinasfresas.pdf (accessed on 13 June 2023).
- Pasini Cabello, S.D.; Takara, E.A.; Marchese, J.; Ochoa, N.A. Influence of plasticizers in pectin films: Microstructural changes. Mater. Chem. Phys. 2015, 162, 491–497. [Google Scholar] [CrossRef]
- Rezvanian, M.; Ahmad, N.; Mohd Amin, M.C.I.; Ng, S.-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017, 97, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Del Angel Purata, F.M. Películas Para Recubrimiento De Alimentos Base Pectina, Alginato Y Quitosano. Master’s Thesis, Tecnológico Nacional de México, Ciudad Madero, Mexico, 2019. Available online: https://200.188.131.162:8080/jspui/handle/123456789/395 (accessed on 25 August 2023).
- Ghanbarzadeh, B.; Oromiehie, A.R.; Musavi, M.; D-Jomeh, Z.E.; Rad, E.R.; Milani, J. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Res. Int. 2006, 39, 882–890. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Mattoso, L.H.C.; Wood, D.; Williams, T.G.; Avena-Bustillos, R.J.; McHugh, T.H. Nanocomposite Edible Films from Mango Puree Reinforced with Cellulose Nanofibers. J. Food Sci. 2009, 74, N31–N35. [Google Scholar] [CrossRef] [PubMed]
- Falcaorodrigues, M.; Moldaomartins, M.; Beiraodacosta, M. Dsc As A Tool To Assess Physiological Evolution Of Apples Preserved By Edibles Coatings. Food Chem. 2007, 102, 475–480. [Google Scholar] [CrossRef]
Parameter | PPT | PC |
---|---|---|
% R-OCH3 | 7.8 ± 0.28 a | 11.6 ± 0.29 b |
% AGal | 65.4 ± 2.24 a | 72.4 ± 1.83 b |
DE | 76.9 ± 1.66 a | 95.9 ± 3.05 b |
% Acidity (citric acid meq) | 0.64 ± 0.06 a | 1.1 ± 0.07 b |
Properties/Samples | PPT1 | PPT2 |
---|---|---|
Color | ||
L* | 92.12 ± 2.21 a | 85.24 ± 1.33 b |
a* | 11.72± 0.54 a | 9.27± 0.30 b |
b* | 45.62 ± 3.17 a | 65.61 ± 2.21 b |
Mechanical properties | ||
Deformation modulus (MPa) | 6.68 ± 0.13 a | 3.7 ± 0.17 b |
Ts (MPa) | 4.07 ± 0.45 a | 4.80 ± 0.33 b |
Toughness (J/m3) | 3.7 ± 0.36 a | 1.87 ± 0.21 b |
Elongation at break | 22.7 ± 1.6 a | 19.62 ± 2.05 b |
Barrier properties | ||
WVP (g/s·m·Pa) | 0.128 × 10−10 ± 0.029 a | 3.187 × 10−10 ± 0.080 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rentería-Ortega, M.; Colín-Alvarez, M.d.L.; Gaona-Sánchez, V.A.; Chalapud, M.C.; García-Hernández, A.B.; León-Espinosa, E.B.; Valdespino-León, M.; Serrano-Villa, F.S.; Calderón-Domínguez, G. Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima. Membranes 2023, 13, 797. https://doi.org/10.3390/membranes13090797
Rentería-Ortega M, Colín-Alvarez MdL, Gaona-Sánchez VA, Chalapud MC, García-Hernández AB, León-Espinosa EB, Valdespino-León M, Serrano-Villa FS, Calderón-Domínguez G. Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima. Membranes. 2023; 13(9):797. https://doi.org/10.3390/membranes13090797
Chicago/Turabian StyleRentería-Ortega, Minerva, María de Lourdes Colín-Alvarez, Víctor Alfonso Gaona-Sánchez, Mayra C. Chalapud, Alitzel Belém García-Hernández, Erika Berenice León-Espinosa, Mariana Valdespino-León, Fatima Sarahi Serrano-Villa, and Georgina Calderón-Domínguez. 2023. "Characterization and Applications of the Pectin Extracted from the Peel of Passiflora tripartita var. mollissima" Membranes 13, no. 9: 797. https://doi.org/10.3390/membranes13090797