Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Collection and Identification
2.2. Drying
2.3. Microorganisms
2.4. Culture Media
2.5. Methods Used
2.5.1. GC-MS
Polar Phase
Nonpolar Phase
2.5.2. HPLC-RID of Sugars
2.5.3. Determination of Moisture, pH, Ash Contents and Titratable Acidity
2.5.4. Determination of Chlorophyll and Pigments
2.5.5. Antioxidant Activity
2.5.6. Total Phenolic Contents (TPC) and Total Flavonoid Contents (TFC)
2.5.7. Inhibition of Albumin Denaturation
2.5.8. Antimicrobial Activity Assay
2.5.9. Determination of Elements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Şesan, T.E.; Sarbu, A.; Smaradache, D.; Oancea, F.; Oancea, A.; Savin, S.; Toma, A.; Ştefan, L.; Negru, G.; Bira, A.F.; et al. Botanical and phytochemical approach on Passiflora spp.—New nutraceutical crop in Romania. J. Plant Dev. 2016, 23, 97–126. [Google Scholar]
- Minteguiaga, M.; Wallace, F.; Basile, P.; Ferreira, F.; Olivaro, C.; Dellacassa, E. Medicinal and Aromatic Plants of South America Vol. 2: Argentina, Chile and Uruguay, 1st ed.; Springer Nature: Cham, Switzerland, 2021; pp. 411–428. [Google Scholar]
- Paniagua-Zambrana, N.Y.; Bussmann, R.W.; Romero, C. Ethnobotany of the Andes, Ethnobotany of Mountain Regions; Springer Nature: Cham, Switzerland, 2020; pp. 1369–1383. [Google Scholar]
- Pereira Leal, A.E.B.; de Lavor, É.M.; de Menezes, B.J.; de Moura, F.M.T.; dos Santos Cerqueira Alves, C.; de Oliveira Jnior, R.G.; de Lima, Á.A.; da Silva Almeida, J.R.G. Pharmacological Activities of the Genus Passiflora (Passifloraceae): A Patent Review. Curr. Top. Med. Chem. 2022, 22, 2315–2328. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Anzoise, M.L.; Marrassini, C.; Bach, H.; Gorzalczany, S. Beneficial properties of Passiflora caerulea on experimental colitis. J. Ethnopharmacol. 2016, 194, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.; Borneo, R. Antioxidant capacity of medicinal plants. In Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease, 1st ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 154–196. [Google Scholar]
- Aumeeruddy, M.Z.; Mahomoodally, M.F. Traditional herbal therapies for hypertension: A systematic review of global ethnobotanical field studies. S. Afr. J. Bot. 2020, 135, 451–464. [Google Scholar] [CrossRef]
- Boboc Oros, P.; Cantor, M.; Hitter, T.; Gocan, T. Passiflora-source of sanogenic compounds, prospects for medicine and current uses. Lucr. Ştiinţifice Ser. Hortic. 2017, 60, 269–274. [Google Scholar] [PubMed]
- Borneo, R.; León, A.E.; Aguirre, A.; Ribotta, P.; Cantero, J.J. Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
- Silva, G.C.; Bottoli, C.B. Analyses of Passiflora compounds by chromatographic and electrophoretic techniques. Crit. Rev. Anal. Chem. 2015, 45, 76–95. [Google Scholar] [CrossRef]
- El-Askarya, H.I.; Haggag, M.Y.; Abou-Husseina, D.R.; Hussein, S.M.; Sleem, A.A. Bioactivity-guided Study of Passiflora caerulea L. Leaf Extracts. Iran. J. Pharm. Res. 2017, 15, 46–57. [Google Scholar]
- Ahmadu, T.; Ahmad, K. An Introduction to Bioactive Natural Products and General Applications. In Bioactive Natural Products for Pharmaceutical Applications, 1st ed.; Springer Nature: Cham, Switzerland, 2021; pp. 41–92. [Google Scholar]
- Smilin Bell Aseervatham, G.; Abbirami, E.; Sivasudha, T.; Ruckmani, K. Passiflora caerulea L. fruit extract and its metabolites ameliorate epileptic seizure, cognitive deficit and oxidative stress in pilocarpine-induced epileptic mice. Metab. Brain Dis. 2020, 35, 159–173. [Google Scholar] [CrossRef]
- Ingale, A.G.; Hivrale, A.U. Pharmacological studies of Passiflora sp. and their bioactive compounds. Afr. J. Plant Sci. 2010, 4, 417–426. [Google Scholar]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; Mikolajczak, P.L.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev. Bras. Farmacogn. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; Facco, E.M.P.; Flôres, S.H.; Rios Rios, A. de O. Stability of functional compounds and antioxidant activity of fresh and pasteurized orange passion fruit (Passiflora caerulea) during cold storage. Food Res. Int. 2018, 106, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, S. Dendrological diversity in Santa Marina Holiday Village-Sozopol as an example of contemporary landscape design trends in Bulgaria. Silva Balc. 2018, 19, 5–19. [Google Scholar]
- Rentería, J.L.; Buddenhagen, C. Invasive plants in the Scalesia pedunculata forest at Los Gemelos, Santa Cruz, Galápagos. Galápagos Res. 2006, 64, 31–35. [Google Scholar]
- Koehler-Santos, P.; Lorenz-Lemke, A.P.; Muschner, V.C.; Bonatto, S.L.; Salzano, F.M.; Freitas, L.B. Molecular genetic variation in Passiflora alata (Passifloraceae), an invasive species in southern Brazil. Biol. J. Linn. Soc. 2006, 88, 611–630. [Google Scholar] [CrossRef]
- Beavon, M.A.; Kelly, D. Invasional meltdown: Pollination of the invasive liana Passiflora tripartita var. mollissima (Passifloraceae) in New Zealand. N. Z. J. Ecol. 2012, 36, 100–107. [Google Scholar]
- Beavon, M.A.; Kelly, D. Dispersal of banana passionfruit (Passiflora tripartita var. mollissima) by exotic mammals in New Zealand facilitates plant invasiveness. N. Z. J. Ecol. 2015, 39, 43–49. [Google Scholar]
- Jucker, T.; Long, V.; Pozzari, D.; Pedersen, D.; Fitzpatrick, B.; Yeoh, P.B.; Webber, B.L. Developing effective management solutions for controlling stinking passionflower (Passiflora foetida) and promoting the recovery of native biodiversity in Northern Australia. Biol. Invasions 2020, 22, 2737–2748. [Google Scholar] [CrossRef]
- Minghetti, E.; Maestro, M.; Dellapé, P.M. Engytatus passionarius sp. nov. (Hemiptera: Miridae), a new natural enemy of the invasive stinking passion flower Passiflora foetida L. Austral Entomol. 2021, 60, 295–300. [Google Scholar] [CrossRef]
- Walsh, S.; Pender, R.; Gomes, N. Hawaiian endemic honeycreepers (Drepanidinae) are nectar robbers of the invasive banana poka (Passiflora tarminiana, Passifloraceae). J. Pollinat. Ecol. 2022, 31, 8–15. [Google Scholar] [CrossRef]
- Petrova, A.; Vladimírov-Hurban, V.; Georgiev, V. Invasive Alien Species of Vascular Plants in Bulgaria; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2013. [Google Scholar]
- Kozuharova, E.; Pasdaran, A.; Al Tawaha, A.R.; Todorova, T.; Naychov, Z.; Ionkova, I. Assessment of the potential of the invasive arboreal plant Ailanthus altissima (Simaroubaceae) as an economically prospective source of natural pesticides. Diversity 2022, 14, 680. [Google Scholar] [CrossRef]
- Simeonova, R.; Shkondrov, A.; Kozuharova, E.; Ionkova, I.; Krasteva, I. A Study on the Safety and Effects of Amorpha fruticosa Fruit Extract on Spontaneously Hypertensive Rats with Induced Type 2 Diabetes. Curr. Issues Mol. Biol. 2022, 44, 2583–2592. [Google Scholar] [CrossRef]
- Petkova, N.; Vrancheva, R.; Denev, P.; Ivanov, I.; Pavlov, A. HPLC-RID method for determination of inulin and fructooligosacharides. Acta Sci. Nat. 2014, 1, 99. [Google Scholar]
- Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Available online: http://www.eoma.aoac.org/methods/info.asp?ID=21670 (accessed on 18 June 2024).
- Lichtenthaler, H.K.; Wellburn, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Ivanov, I.; Vrancheva, R.; Marchev, A.; Petkova, N.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Kivrak, İ.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Milusheva, M.; Todorova, M.; Gledacheva, V.; Stefanova, I.; Feizi-Dehnayebi, M.; Pencheva, M.; Nedialkov, P.; Tumbarski, Y.; Yanakieva, V.; Tsoneva, S.; et al. Novel Anthranilic Acid Hybrids-An Alternative Weapon against Inflammatory Diseases. Pharmaceuticals 2023, 16, 1660. [Google Scholar] [CrossRef] [PubMed]
- Milusheva, M.; Gledacheva, V.; Stefanova, I.; Feizi-Dehnayebi, M.; Mihaylova, R.; Nedialkov, P.; Cherneva, E.; Tumbarski, Y.; Tsoneva, S.; Todorova, M.; et al. Synthesis, Molecular Docking, and Biological Evaluation of Novel Anthranilic Acid Hybrid and Its Diamides as Antispasmodics. Int. J. Mol. Sci. 2023, 24, 13855. [Google Scholar] [CrossRef] [PubMed]
- Tumbarski, Y.; Lincheva, V.; Petkova, N.; Nikolova, R.; Vrancheva, R.; Ivanov, I. Antimicrobial activity of extract from aerial parts of potentilla (Potentilla reptans L.). Acad. J. Ind. Technol. 2017, 4, 37–43. [Google Scholar]
- Gentscheva, G.; Karadjova, I.; Radusheva, P.; Minkova, S.; Nikolova, K.; Sotirova, Y.; Yotkovska, I.; Andonova, V. Determination of the Elements Composition in Sempervivum Tectorum L. from Bulgaria. Horticulturae 2021, 7, 306. [Google Scholar] [CrossRef]
- Song, Y.; Wei, X.-Q.; Li, M.-Y.; Duan, X.-W.; Sun, Y.-M.; Yang, R.-L.; Su, X.; Huang, R.-M.; Wang, H. Nutritional composition and antioxidant properties of the Chinese wild Passiflora foetida fruits. Molecules 2018, 23, 459. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars. Organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Shahbani, N.S.; Ismail, H.A.; Ramaiya, S.D.; Saupi, N.; Fakhrulddin, I.M.; Awang, M.A. Determination of fruit maturation and ripening potential on postharvest quality of Passiflora Quadrangularis L. AIP Conf. Proc. 2021, 2347, 020076. [Google Scholar]
- Wei, L.; Hao, X.; Wu, J.; Guo, J.; Lin, X. Dynamic Changes of the Color and Quality of Purple Passiflora caerulea During the Color-changing Period and Their Correlation. Fujian Agric. Sci. Technol. 2022, 53, 53–59. [Google Scholar] [CrossRef]
- D’abadia, A.C.A.; Costa, A.; Faleiro, F.G.; Rinaldi, M.; Oliveira, L.D.L.D.; Malaquias, J.V. Determination of the maturation stage and characteristics of the fruits of two populations of Passiflora cincinnata Mast. Rev. Caatinga 2020, 33, 349–360. [Google Scholar] [CrossRef]
- Mendonça Freitas, M.S.; Monnerat, P.H.; Curcino Vieira, I.J. Mineral Deficiency in Passiflora alata Curtis: Vitexin Bioproduction. J. Plant Nutr. 2008, 31, 1844–1854. [Google Scholar] [CrossRef]
- Pinheiro Maciel, G.H.; Ferreira, I.E.d.P.; Baron, D. Phytoregulators and mineral nutrition interactions to the establishment of Passiflora alata seedlings. J. Plant Nutr. 2021, 44, 2825–2839. [Google Scholar] [CrossRef]
- Petenatti, M.E.; Petenatti, E.M.; Luis, A.; Del, V.; Téves, M.R.; Caffini, N.O.; Marchevsky, E.J.; Pellerano, R.G. Evaluation of macro and micromineralsin crude drugs and infusions of five herbswidely used as sedatives. Rev. Bras. Farmacogn. 2011, 21, 144–1149. [Google Scholar] [CrossRef]
- Pereira, Z.C.; Cruz, J.M.D.A.; Corrêa, R.F.; Sanches, E.A.; Campelo, P.H.; Bezerra, J.D.A. Passion fruit (Passiflora spp.) pulp: A review on bioactive properties, health benefits and technological potential. Food Res. Int. 2023, 166, 112626. [Google Scholar] [CrossRef] [PubMed]
- Fainsod, G.S. Composition and Potential Health Benefits of Passion Fruit Juice; American Chemical Society: Washington, DC, USA, 2001. [Google Scholar]
- Yuan, L.; Zhang, F.; Shen, M.; Jia, S.; Xie, J. Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods 2019, 8, 582. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Jing, J.Y.; Zhu, J.J.; Wang, W.S. Research progress on structures and bioactivities of the phenolic compounds in edible Passiflora Linn. Nat. Prod. Res. Dev. 2021, 33, 1251–1265. [Google Scholar] [CrossRef]
- Shanmugam, S.; Murugaiyan, I.; dos Santos Lima, B.; Serafini, M.R.; de Souza Araújo, A.A.; Narain, N.; Thangaraj, P. HPLC–DAD–MS identification of polyphenols from Passiflora leschenaultii and determination of their antioxidant, analgesic, anti-inflammatory and antipyretic properties. Arab. J. Chem. 2019, 12, 760–771. [Google Scholar] [CrossRef]
- Santos, J.T.C.; Petry, F.C.; Tobaruela, E.C.; Mercadante, A.Z.; Gloria, M.B.A.; Costa, A.M.; Lajolo, F.M.; Hassimotto, N.M.A. Brazilian native passion fruit (Passiflora tenuifila Killip) is a rich source of proanthocyanidins, carotenoids, and dietary fiber. Food Res. Int. 2021, 147, 110521. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Teng, J.W.; Wei, B.Y.; Huang, L.; Xia, N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem. 2021, 356, 129682. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, S.; Hou, G.; Zhao, F.; Meng, Q.; Tan, S. Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem. 2023, 428, 136825. [Google Scholar] [CrossRef]
- Contreras-Calderon, J.; Calderon-Jaimes, L.; Guerra-Hernandez, E.; Garcia-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Babbar, N.; Oberoi, H.S.; Uppal, D.S.; Patil, R.T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 2011, 44, 391–396. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. Sci. World J. 2014, 2014, 167309. [Google Scholar] [CrossRef]
- Hadas, E.; Ozarowski, M.; Derda, M.; Thiem, B.; Cholewinski, M.; Skrzypczak, L.; Piasecka, A. The use of extracts from Passiflora spp. in helping the treatment of acanthamoebiasis. Acta Pol. Pharm. 2017, 74, 921–928. [Google Scholar] [PubMed]
- Shanmugam, S.; Sandes, R.D.D.; Rajan, M.; Neta, M.T.S.L.; dos Santos Lima, B.; de Jesus, M.J.M.; Denadai, M.; Narain, N.; Thangaraj, P.; Serafini, M.R.; et al. Volatile profiling and UHPLC-QqQ-MS/MS polyphenol analysis of Passiflora leschenaultii DC. fruits and its anti-radical and anti-diabetic properties. Food Res. Int. 2020, 133, 109202. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Lucci, P.; Núñez, O.; Tundis, R.; Balzano, M.; Frega, N.G.; Conte, L.; Moret, S.; Filatova, D.; Moyano, E.; et al. Native Colombian fruits and their by-products: Phenolic profile, antioxidant activity and hypoglycaemic potential. Foods 2019, 8, 89. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.; Paradowska, K. Phytochemical profile and antioxidant activity of Lavandula angustifolia and Lavandula x intermedia cultivars extracted with different methods. Antioxidants 2022, 11, 711. [Google Scholar] [CrossRef]
- Badalova, V.; Suleymanov, T.; Mammadov, R.; Atay, M. Determination of the antimicrobial activity of ethanolic extracts of some passiflora l. Species, first introduced in Azerbaijan. Бюллетень науки и практики 2022, 8, 92–101. [Google Scholar] [CrossRef]
- Bandara, K.R.V.; Padumadasa, C.; Peiris, D.C. Potent antibacterial, antioxidant and toxic activities of extracts from Passiflora suberosa L. leaves. Peer J. 2018, 6, e4804. [Google Scholar] [CrossRef]
- Prithviraj, H.S.; Hemanth Kumar, N.K.; Basavaraj, G.L.; Nataraj, K.; Shobha, J. Preliminary phytochemical analysis and antibacterial activity of leaf and leaf derived callus extracts of Passiflora caerulea: An important medicinal plant. World J. Adv. Res. Rev. 2023, 17, 203–209. [Google Scholar] [CrossRef]
- Jayashree, V.; Bacyalakshmi, S.; Devi, K.M.; Daniel, D.R. In vitro anti-inflammatory activity of 4-benzylpiperidine. Asian J. Pharm. Clin. Res. 2016, 9, 108–110. [Google Scholar] [CrossRef]
- Manolov, S.; Bojilov, D.; Ivanov, I.; Marc, G.; Bataklieva, N.; Oniga, S.; Oniga, O.; Nedialkov, P. Synthesis, Molecular Docking, Molecular Dynamics Studies, and In Vitro Biological Evaluation of New Biofunctional Ketoprofen Derivatives with Different N-Containing Heterocycles. Processes 2023, 11, 1837. [Google Scholar] [CrossRef]
Characteristics | Leaves | Pulp |
---|---|---|
Moisture, % | 8.64 ± 0.14 | 9.66 ± 0.10 |
Ash, % | 7.95 ± 0.05 | 6.25 ± 0.06 |
pH | 6.01 ± 0.02 | 5.22 ±0.03 |
Titratable acidity (TA), % | 0.42 ± 0.05 | 0.47 ± 0.02 |
Glucose, % | 1.51 ± 0.07 | 6.28 ± 0.05 |
Fructose, % | 1.44 ± 0.20 | 7.50 ± 0.06 |
Sucrose, % | 0.79 ± 0.19 | 0.37 ± 0.06 |
Fructose/glucose | 0.95 | 1.19 |
Sweetness index (SI) | 5.89 | 24.03 |
Total sweetness index (TSI) | 4.10 | 16.39 |
Total sugar/TA | 8.91 | 30.10 |
Chlorophyll a, µg g−1 | 412.3 ± 12.3 | n.d * |
Chlorophyll b, µg g−1 | 184.3 ± 18.9 | n.d * |
Total chlorophylls, µg g−1 | 596.6 ± 15.2 | n.d * |
Total carotenoids, µg g−1 | 7.9 ± 0.5 | tr. * |
Sodium, mg kg−1 | 1199 ± 56 | 225 ± 7 |
Potassium, mg kg−1 | 36,179 ± 515 | 23,946 ± 753 |
Iron, mg kg−1 | 81.0 ± 2.5 | 43.3 ± 3.0 |
Magnesium, mg kg−1 | 5064 ± 112 | 1890 ± 20 |
Manganese, mg kg−1 | 116 ± 3.0 | 5.15 ± 0.12 |
Copper, mg kg−1 | 7.29 ± 0.07 | 10.6 ± 0.6 |
Zinc, mg kg−1 | 88.8 ± 0.9 | 53.4 ± 2.1 |
Leaf | Pulp | |
---|---|---|
Content ± SD, mg g−1 | Content ± SD, mg g−1 | |
Phenolic acids | ||
Syringic acid | 3.31 ± 0.93 | 5.76 ±1.06 |
Vanillic acid | 2.79 ± 0.78 | 6.84 ± 1.01 |
Cinnamic acid | 0.55 ± 0.15 | 1.75 ± 0.26 |
p-Coumaric acid | 1.47 ± 0.41 | 4.33 ± 0.64 |
trans-Ferulic acid | 5.79 ± 1.64 | 9.86 ± 1.46 |
trans-Caffeic acid | 0.50 ± 0.17 | 15.94 ± 1.73 |
Amino acids | ||
Non-essential amino acid | ||
L-Alanine | 0.28 ± 0.09 | 1.31 ± 0.19 |
L-Glutamic acid | 0.31 ± 0.09 | 1.48 ± 0.22 |
Essential amino acid | ||
L-Valine | 0.35 ± 0.10 | 0.90 ± 0.13 |
L-Leucine | 0.40 ± 0.11 | 1.63 ± 0.23 |
L-Isoleucine | 0.32 ± 0.09 | 3.80 ± 0.56 |
L-Methionine | 0.23 ± 0.06 | nd |
L-Histidine | nd | 7.81 ± 1.24 |
L-Tryptophan | 8.30 ± 1.46 | 3.25 ± 0.50 |
L-Threonine | 0.46 ± 0.13 | 3.11 ± 0.46 |
Conditional non-essential amino acid | ||
Norvaline | nd | 17.91 ± 3.29 |
Proline | nd | 7.78 ± 1.15 |
L-Serine | 0.62 ± 0.17 | nd |
L-Homoserine | nd | 2.54 ± 0.37 |
L-Asparaginine | nd | 3.92 ± 0.58 |
Organic acids | ||
Malic acid | 0.6 ± 0.17 | 2.17 ± 0.32 |
Succinic acid | 0.39 ± 0.11 | 0.94 ± 0.14 |
Citric acid | 1.68 ± 0.47 | 3.48 ± 0.52 |
Ascorbic acid | 3.09 ± 0.86 | 4.34 ± 0.64 |
Leaf | Pulp | |
---|---|---|
Content ± SD, mg g−1 | Content ± SD, mg g−1 | |
Fatty acids | ||
Miristic acid (C14:0) | 2.21 ± 0.47 | 0.7 ± 0.15 |
Palmitoleic acid (C16:1) | 0.4 ± 0.99 | 0.33 ± 0.07 |
Palmitic acid (C16:0) | 17.09 ± 3.43 | 13.01 ± 2.75 |
Margaric acid (C17:0) | 0.25 ± 0.05 | 0.18 ± 0.04 |
Linoleic acid (C18:2) | 4.28 ± 0.92 | 5.98 ± 1.27 |
Stearic acid (C18:0) | 3.73 ± 0.80 | 1.99 ± 0.42 |
Arachidic acid (C20:0) | 1.87 ± 0.40 | 1.09 ± 0.23 |
Behenic acid (C22:0) | 0.55 ± 0.12 | 0.82 ± 0.17 |
Sterols | ||
Lanosterol | 10.23 ± 2.20 | 0.23 ± 0.06 |
Cycloartenol | 1.50 ± 0.32 | 0.23 ± 0.05 |
Campesterol | 0.40 ± 0.08 | 0.85 ± 0.18 |
β-Sitosterol | 8.60 ± 1.88 | 10.42 ± 2.36 |
Stigmasterol | 0.94 ± 0.20 | 0.20 ± 0.04 |
Sample | TPC, mg GAE g−1 | TFC, μg Qeb g−1 | Antioxidant Activities, mM TE g−1 | |||
---|---|---|---|---|---|---|
DPPH | ABTS | FRAP | CuPRAC | |||
P. caerulea leaves (СН3ОН) | 8.82 ± 0.03 c | 23.89 ± 2.85 b | 73.28 ± 2.12 c | 52.55 ± 0.58 c | 29.46 ± 2.00 b | 80.49 ± 7.36 b |
P. caerulea leaves (50% С2Н5ОН) | 13.00 ± 0.03 b | 26.08 ± 2.45 b | 97.89 ± 5.45 b | 105.46 ± 3.60 a | 44.67 ± 2.50 a | 164.37 ± 8.28 a |
P. caerulea leaves (70% С2Н5ОН) | 13.68 ± 0.10 a | 31.60 ± 0.25 a | 111.59 ± 2.77 a | 92.03 ± 0.29 b | 46.26 ± 1.75 a | 170.22 ± 7.36 a |
P. caerulea pulp (СН3ОН) | 3.23 ± 0.08 f | 0.31 ± 0.01 c | 21.51 ± 0.27 e | 18.93 ± 0.60 f | 7.56 ± 0.03 d | 50.36 ± 0.10 d |
P. caerulea pulp (50% С2Н5ОН) | 4.25 ± 0.05 d | 0.38 ± 0.01 c | 29.74 ± 0.57 d | 27.76 ± 0.80 d | 14.34 ± 0.06 c | 83.35 ± 0.09 b |
P. caerulea pulp (70% С2Н5ОН) | 3.72 ± 0.02 e | 0.31 ± 0.01 c | 29.27 ± 0.27 d | 23.97 ± 0.57 e | 12.62 ± 0.04 c | 63.58 ± 0.06 c |
Test Microorganism | Inhibition Zones, mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaf Extracts (10 mg mL−1) | Pulp Extracts (10 mg mL−1) | Controls * (10 mg mL−1) | ||||||||
СН3ОН | 50% С2Н5ОН | 70% С2Н5ОН | СН3ОН | 50% С2Н5ОН | 70% С2Н5ОН | A | P | N | F | |
Bacillus subtilis ATCC 6633 | 10.0 ± 0.00 | 10.5 ± 0.71 | 10.0 ± 0.00 | 8.0 ± 0.00 | 8.0 ± 0.00 | 8.0 ± 0.00 | 16.0 ± 0.00 | - | n.a. | n.a. |
Bacillus cereus NCTC 11145 | 10.0 ± 0.00 | 10.0 ± 0.00 | 9.0 ± 0.00 | 8.0 ± 0.00 | 8.0 ± 0.00 | 8.0 ± 0.00 | 20.0 ± 0.00 | - | n.a. | n.a. |
Staphylococcus aureus ATCC 25923 | - | - | - | - | - | - | 35.0 ± 0.00 | 30.0 ± 0.0 | n.a. | n.a. |
Listeria monocytogenes NBIMCC 8632 | - | - | - | - | - | - | 40.0 ± 0.00 | 12.0 ± 0.0 | n.a. | n.a. |
Enterococcus faecalis ATCC 29212 | 9.0 ± 0.00 | 10.0 ± 0.00 | 9.0 ± 0.00 | - | - | - | 38.0 ± 0.00 | - | n.a. | n.a. |
Salmonella enteritidis ATCC 13076 | 10.0 ± 0.00 | 9.5 ± 0.71 | 11.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 8.0 ± 0.00 | 40.0 ± 0.00 | - | n.a. | n.a. |
Klebsiella pneumoniae ATCC 13883 | - | - | - | - | - | - | 25.0 ± 0.00 | - | n.a. | n.a. |
Escherichia coli ATCC 25922 | 10.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 16.0 ± 0.00 | - | n.a. | n.a. |
Proteus vulgaris ATCC 6380 | - | - | - | - | - | - | 30.0 ± 0.00 | - | n.a. | n.a. |
Pseudomonas aeruginosa ATCC 9027 | 10.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | 8.0 ± 0.00 | 16.0 ± 0.00 | - | n.a. | n.a. |
Candida albicans NBIMCC 74 | - | - | - | - | - | - | n.a. | n.a. | 22.0 ± 0.00 | - |
Saccharomyces cerevisiae ATCC 9763 | - | - | - | - | - | - | n.a. | n.a. | 31.0 ± 0.0 | - |
Aspergillus niger ATCC 1015 | - | - | - | - | - | - | n.a. | n.a. | 32.0 ± 0.0 | 25.0 ± 0.0 |
Aspergillus flavus | - | - | - | - | - | - | n.a. | n.a. | 26.0 ± 0.0 | 20.0 ± 0.0 |
Penicillium chrysogenum | - - | - | - | 11.0 ± 0.00 | 11.0 ± 0.00 | 10.0 ± 0.00 | n.a. | n.a. | 26.0 ± 0.0 | 13.0 ± 0.0 |
Fusarium moniliforme ATCC 38932 | - - | - | - | 9.0 ± 0.00 | 9.0 ± 0.00 | 9.0 ± 0.00 | n.a. | n.a. | 25.0 ± 0.0 | - |
DPPH | ABTS | FRAP | CUPRAC | |
---|---|---|---|---|
TPC | 0.977 | 0.934 | 0.938 | 0.928 |
TFC | 0.94 | 0.83 | 0.85 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, A.; Nikolova, K.; Petkova, N.; Ivanov, I.; Dincheva, I.; Tumbarski, Y.; Yanakieva, V.; Todorova, M.; Gentscheva, G.; Gavrilova, A.; et al. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. Plants 2024, 13, 1731. https://doi.org/10.3390/plants13131731
Gerasimova A, Nikolova K, Petkova N, Ivanov I, Dincheva I, Tumbarski Y, Yanakieva V, Todorova M, Gentscheva G, Gavrilova A, et al. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. Plants. 2024; 13(13):1731. https://doi.org/10.3390/plants13131731
Chicago/Turabian StyleGerasimova, Anelia, Krastena Nikolova, Nadezhda Petkova, Ivan Ivanov, Ivayla Dincheva, Yulian Tumbarski, Velichka Yanakieva, Mina Todorova, Galia Gentscheva, Anna Gavrilova, and et al. 2024. "Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities" Plants 13, no. 13: 1731. https://doi.org/10.3390/plants13131731
APA StyleGerasimova, A., Nikolova, K., Petkova, N., Ivanov, I., Dincheva, I., Tumbarski, Y., Yanakieva, V., Todorova, M., Gentscheva, G., Gavrilova, A., Yotkovska, I., Nikolova, S., Slavov, P., & Harbaliev, N. (2024). Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. Plants, 13(13), 1731. https://doi.org/10.3390/plants13131731