Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,787)

Search Parameters:
Keywords = charge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1463 KB  
Review
Design and Application of Hetero-Multicomponent Metal Oxide Photocatalysts for Wastewater Treatment: Ti–Cu–Zn Catalysts and Future Research Directions
by Maria-Anthoniette Oghenetejiro Onoriode-Afunezie, Justinas Krutkevičius and Agnė Šulčiūtė
Molecules 2026, 31(2), 299; https://doi.org/10.3390/molecules31020299 (registering DOI) - 14 Jan 2026
Abstract
Hetero-multicomponent metal oxide catalysts are attracting increasing attention for wastewater remediation due to their tunable band structures, synergistic redox activity, and enhanced stability. This review thoroughly evaluates recent progress in the synthesis and application of such catalysts, highlighting Ti–Cu–Zn nanostructures as a representative [...] Read more.
Hetero-multicomponent metal oxide catalysts are attracting increasing attention for wastewater remediation due to their tunable band structures, synergistic redox activity, and enhanced stability. This review thoroughly evaluates recent progress in the synthesis and application of such catalysts, highlighting Ti–Cu–Zn nanostructures as a representative case study. We examine synthesis approaches—including hydrothermal, biosynthesis, precipitation, and spray-based methods, with additional insight into sol–gel and other less commonly applied techniques—with emphasis on their suitability for constructing layered and multicomponent heterostructures. Mechanistic aspects of photocatalysis, Fenton and Fenton-like processes, adsorption, and electrochemical routes are discussed, with particular focus on charge separation, reactive oxygen species (ROS) generation, and pollutant-specific degradation pathways. Comparative performance metrics against antibiotics, pesticides, dyes, and fertilizers are analyzed, alongside considerations of leaching, reusability, and scale-up potential. Importantly, while significant progress has been made for organic micropollutants, applications in heavy metal remediation remain scarce, highlighting an urgent research gap. By situating Ti–Cu–Zn systems within the broader class of multicomponent catalysts, this review not only synthesizes current advances but also identifies opportunities to expand their role in sustainable wastewater management, including field deployment, regulatory compliance, and integration into decentralized treatment systems. Full article
(This article belongs to the Special Issue Recent Advances in Chemical Treatments of Wastewater)
Show Figures

Figure 1

22 pages, 3779 KB  
Article
An Investigation into Electric School Bus Energy Consumption and Its V2G Opportunities
by Rupesh Dahal, Hailin Li, John J. Recktenwald, Bhaskaran Gopalakrishnan, Derek Johnson and Rong Luo
Sustainability 2026, 18(2), 838; https://doi.org/10.3390/su18020838 (registering DOI) - 14 Jan 2026
Abstract
This study presents the electrification plan of a school bus (SB) fleet and examines its potential in vehicle-to-grid (V2G) applications. The data collected includes the efficiency of a 120 kW EV charger, energy consumption of a 40-foot electric school bus (ESB), and a [...] Read more.
This study presents the electrification plan of a school bus (SB) fleet and examines its potential in vehicle-to-grid (V2G) applications. The data collected includes the efficiency of a 120 kW EV charger, energy consumption of a 40-foot electric school bus (ESB), and a diesel bus operating on the same route. The energy consumption data of the ESB and diesel school bus (DSB) were processed to derive the yearly average distance-specific energy consumption of 0.37 mile/kWh (0.60 km/kWh) grid electricity and 5.55 MPG (2.36 km/L), respectively. The energy consumption ratio of the ESB over the DSB is 14.92 kWh/gallon (3.94 kWh/L) diesel. Based on the CO2 intensity, 1.956 lb/kWh (0.887 kg/kWh) of electricity produced in WV and that of diesel fuel, the distance-specific CO2 emissions of the ESB were 5.38 lb/mile (1.52 kg/km), which are higher than the 4.08 lb/mile (1.15 kg/km) from the diesel bus operating on the same route. This study also presents the V2G potential of the proposed electrical school bus fleet. Based on the estimated grid-to-vehicle battery (G2VB) efficiency of 92% and vehicle battery-to-grid (VB2G) efficiency of 92%, the grid–vehicle battery–grid (G2VB2G) efficiency is 84.64%. The application of V2G technology is associated with a loss of electricity. Based on the 20% to 80% battery charge, and the estimated 92% VB2G efficiency, the proposed ESB fleet has the potential to provide 14, 929 kWh electricity, 55.2% of the ESB fleet battery capacity. The increased cost associated with the implementation of the proposed V2G is about USD 7.5 million, a 400% increase compared to the charger satisfying the operation of ESBs when V2G is not used. The V2G application also is expected to increase the charging cycles, which raises concerns about battery degradation and its replacement during SB service lifetime. Accordingly, more research work is needed to address the increased cost and grid capacity demand, and battery degradation associated with V2G applications. Full article
(This article belongs to the Special Issue Energy Economics and Sustainable Environment)
Show Figures

Figure 1

20 pages, 14008 KB  
Article
The Antimicrobial Peptide CRAMP-34 Eradicates Escherichia coli Biofilms by Interfering with the kduD-Dependent Network
by Hongzao Yang, Jing Xiong, Sisi Su, Zhuo Yang, Wu Yang, Lianci Peng, Suhui Zhang, Jinjie Qiu, Yuzhang He and Hongwei Chen
Antibiotics 2026, 15(1), 83; https://doi.org/10.3390/antibiotics15010083 (registering DOI) - 14 Jan 2026
Abstract
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes [...] Read more.
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes via electrostatic interactions, leading to membrane disruption and rapid cell lysis. Methods: In vitro assays including MIC determination, biofilm eradication testing (crystal violet, colony counts, and CLSM), swimming motility, and EPS quantification were performed. CRISPR/Cas9 was used to construct and complement a kduD mutant. A transposon mutagenesis library was screened for biofilm-defective mutants. In an in vivo murine excisional wound infection model treated with the mouse cathelicidin-related antimicrobial peptide (CRAMP-34), wound closure and bacterial burden were monitored. Gene expression changes were analyzed via RT-qPCR. Results: CRAMP-34 effectively eradicated pre-formed biofilms of a clinically relevant, porcine-origin E. coli strain and promoted wound healing in the murine infection model. We conducted a genome-wide transposon mutagenesis screen, which identified kduD as a critical gene for robust biofilm formation. Functional characterization revealed that kduD deletion drastically impairs flagellar motility and alters exopolysaccharide production, leading to defective biofilm architecture without affecting growth. Notably, the anti-biofilm activity of CRAMP-34 phenocopied aspects of the kduD deletion, including motility inhibition and transcriptional repression of a common set of biofilm-related genes. Conclusions: This research highlights CRAMP-34 as a potent anti-biofilm agent and unveils kduD as a previously unrecognized regulator of E. coli biofilm development, which is also targeted by CRAMP-34. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

13 pages, 2745 KB  
Article
A Data-Driven Framework for Electric Vehicle Charging Infrastructure Planning: Demand Estimation, Economic Feasibility, and Spatial Equity
by Mahmoud Shaat, Farhad Oroumchian, Zina Abohaia and May El Barachi
World Electr. Veh. J. 2026, 17(1), 42; https://doi.org/10.3390/wevj17010042 (registering DOI) - 14 Jan 2026
Abstract
The accelerating global transition to electric mobility demands data-driven infrastructure planning that balances technical, economic, and spatial considerations. This study develops a scenario-based demand and economic modeling framework to estimate electric vehicle (EV) charging infrastructure needs across Abu Dhabi’s urban and rural regions [...] Read more.
The accelerating global transition to electric mobility demands data-driven infrastructure planning that balances technical, economic, and spatial considerations. This study develops a scenario-based demand and economic modeling framework to estimate electric vehicle (EV) charging infrastructure needs across Abu Dhabi’s urban and rural regions through 2050. Two adoption pathways, Progressive and Thriving, were constructed to capture contrasting policy and technological trajectories consistent with the UAE’s Net Zero 2050 targets. The model integrates regional travel behavior, energy consumption (0.23–0.26 kWh/km), and differentiated charging patterns to project EV penetration, charging demand, and economic feasibility. Results indicate that EV stocks may reach 750,000 (Progressive) and 1.1 million (Thriving) by 2050. The Thriving scenario, while demanding greater capital investment (≈108 million AED), yields higher utilization, improved spatial equity (Gini = 0.27), and stronger long-term returns compared to the Progressive case. Only 17.6% of communities currently meet infrastructure readiness thresholds, emphasizing the need for coordinated grid expansion and equitable deployment strategies. Findings provide a quantitative basis for balancing economic efficiency, spatial equity, and policy ambition in the design of sustainable EV charging networks for emerging low-carbon cities. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Graphical abstract

21 pages, 10396 KB  
Article
Physicochemical Characteristics of Potato Starch Extrudates Enriched with Edible Oils
by Marzena Włodarczyk-Stasiak, Małgorzata Jurak and Agnieszka Ewa Wiącek
Molecules 2026, 31(2), 293; https://doi.org/10.3390/molecules31020293 - 14 Jan 2026
Abstract
Starch systems and their extrudates can be used as edible films, carriers, and encapsulants for bioactive substances in various industries, primarily the food, medicine, and pharmacy industries. Using appropriate modification methods, it is possible to alter their physicochemical properties to improve specific functional [...] Read more.
Starch systems and their extrudates can be used as edible films, carriers, and encapsulants for bioactive substances in various industries, primarily the food, medicine, and pharmacy industries. Using appropriate modification methods, it is possible to alter their physicochemical properties to improve specific functional parameters, thereby enhancing their application potential. The aim of this study was to characterize potato starch extrudates enriched with two types of edible oils (rapeseed or sunflower) at concentrations of 3%, 6%, and 9%. Chemical modification was carried out using K2CO3 as a catalyst. The structure of native and modified starch extrudates was examined using optical/confocal microscopy, FTIR, and LTNA (low-temperature nitrogen adsorption). Analogous starch dispersions were studied using static and dynamic light scattering, SLS/DLS, nephelometric methods, and electrophoretic mobility measurements to determine surface charge levels and stability. Additionally, viscosity curves were determined as a function of time and temperature. It was found that starch extrudates with 6% sunflower oil content showed optimal functional properties, characterized by greater stability, higher structural order, and better oil complexation. These findings directly translate into significant potential applications, including the development of functional products in the food industry. Full article
Show Figures

Graphical abstract

20 pages, 2244 KB  
Perspective
Calculation of the pH Values of Aqueous Systems Containing Carbonic Acid and Significance for Natural Waters, Following (Near-)Exact and Approximated Solutions: The Importance of the Boundary Conditions
by Arianna Rosso and Davide Vione
Molecules 2026, 31(2), 292; https://doi.org/10.3390/molecules31020292 - 14 Jan 2026
Abstract
Calculating the pH values of carbonic acid solutions is an important task in studies of chemical equilibria in freshwater systems, with applications to environmental chemistry, geology, and hydrology. These pH values are also highly relevant in the context of climate change, since increasing [...] Read more.
Calculating the pH values of carbonic acid solutions is an important task in studies of chemical equilibria in freshwater systems, with applications to environmental chemistry, geology, and hydrology. These pH values are also highly relevant in the context of climate change, since increasing atmospheric CO2 affects the concentration of dissolved carbon dioxide and carbonic acid, collectively denoted as [H2CO3*] = [H2CO3(aq)] + [CO2(aq)]. Solving equilibrium systems to obtain analytical functions is particularly useful when such functions are required, for example, in data fitting. We show here that, although exact or near-exact solutions typically result in third- to fourth-order equations that must be solved numerically, reasonable approximations can be derived that lead to analytical second-order equations. In this framework, the chosen approximations need to meet the boundary conditions of the systems, particularly for cT → 0 and for high cT values (where cT = [H2CO3*] + [HCO3] + [CO32−]). Finally, we provide exact solutions for a closed system containing both H2CO3* and alkalinity, which enables the description of virtually any aquatic environment without assuming equilibrium with atmospheric CO2. Implications for pH calculations in natural waters are also briefly discussed. Full article
Show Figures

Figure 1

24 pages, 6799 KB  
Review
Review on Gas Production Patterns, Flammability, and Detection Methods of Hydrogen-Containing Flammable Gases During Thermal Runaway Process in Lithium-Ion Batteries
by Chenglong Wei, Yuwu Cai, Jingjing Xu, Xinyi Zhao, Qiang Liao, Yuming Chen, Yong Cao and Bin Li
Energies 2026, 19(2), 398; https://doi.org/10.3390/en19020398 - 14 Jan 2026
Abstract
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such [...] Read more.
As the core technology of the new energy revolution, lithium-ion batteries have broad development prospects and significant strategic importance. With continuous improvements in energy density, enhanced safety, and breakthroughs in fast-charging technology, lithium-ion batteries will play a more substantial role in fields such as new energy vehicles and energy storage. Nevertheless, the development of the lithium-ion battery industry still faces safety issues related to thermal runaway risks. The intense exothermic reactions during thermal runaway can release flammable gases, potentially leading to uncontrolled combustion or explosions, thereby posing major safety threats. This paper reviews the analysis of gas composition and patterns during lithium-ion battery thermal runaway under different conditions, as well as research on gas explosion characteristics. It introduces advanced methods for gas detection and suppression during thermal runaway and summarizes studies on the chemical kinetic mechanisms and predictive models of gas generation during thermal runaway. These studies provide a scientific basis for improving the reliability of renewable energy storage systems and formulating and refining battery safety standards. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Energy Production)
Show Figures

Figure 1

25 pages, 4730 KB  
Article
Process Capability Assessment and Surface Quality Monitoring in Cathodic Electrodeposition of S235JRC+N Electric-Charging Station
by Martin Piroh, Damián Peti, Patrik Fejko, Miroslav Gombár and Michal Hatala
Materials 2026, 19(2), 330; https://doi.org/10.3390/ma19020330 - 14 Jan 2026
Abstract
This study presents a statistically robust quality-engineering evaluation of an industrial cathodic electrodeposition (CED) process applied to large electric-charging station components. In contrast to predominantly laboratory-scale studies, the analysis is based on 1250 thickness measurements, enabling reliable assessment of process uniformity, positional effects, [...] Read more.
This study presents a statistically robust quality-engineering evaluation of an industrial cathodic electrodeposition (CED) process applied to large electric-charging station components. In contrast to predominantly laboratory-scale studies, the analysis is based on 1250 thickness measurements, enabling reliable assessment of process uniformity, positional effects, and long-term stability under real production conditions. The mean coating thickness was specified at 21.84 µm with a standard deviation of 3.14 µm, fully within the specified tolerance window of 15–30 µm. One-way ANOVA revealed statistically significant but technologically small inter-station differences (F(49, 1200) = 3.49, p < 0.001), with an effect size of η2 ≈ 12.5%, indicating that most variability originates from inherent within-station common causes. Shewhart X¯–R–S control charts confirmed process stability, with all subgroup means and dispersions well inside the control limits and no evidence of special-cause variation. Distribution tests (χ2, Kolmogorov–Smirnov, Shapiro–Wilk, Anderson–Darling) detected deviations from perfect normality, primarily in the tails, attributable to the superposition of slightly heterogeneous station-specific distributions rather than fundamental non-Gaussian behaviour. Capability and performance indices were evaluated using Statistica and PalstatCAQ according to ISO 22514; the results (Cp = 0.878, Cpk = 0.808, Pp = 0.797, Ppk = 0.726) classify the process as conditionally capable, with improvement potential mainly linked to reducing positional effects and centering the mean closer to the target thickness. To complement the statistical findings, an AIAG–VDA FMEA was conducted across the entire value stream. The highest-risk failure modes—surface contamination, incorrect bath chemistry, and improper hanging—corresponded to the same mechanisms identified by SPC and ANOVA as contributors to thickness variability. Proposed corrective actions reduced RPN values by 50–62.5%, demonstrating strong potential for capability improvement. A predictive machine-learning model was implemented to estimate layer thickness and successfully reproduced the global trend while filtering process-related noise, offering a practical tool for future predictive quality control. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

20 pages, 359 KB  
Article
Curatorial Strategies to Resist Gender Asymmetries in Portugal: Two Women-Only Landmark Exhibitions
by Rita Cêpa
Arts 2026, 15(1), 17; https://doi.org/10.3390/arts15010017 - 14 Jan 2026
Abstract
This article adopts a comparative approach to two women-only landmark exhibitions in Portugal—Portuguese Women Artists (1977) and All I Want. Portuguese Women Artists from 1900 to 2020 (2021–2022)—to explore how curatorial strategies can function as tools of resistance to gender asymmetries in [...] Read more.
This article adopts a comparative approach to two women-only landmark exhibitions in Portugal—Portuguese Women Artists (1977) and All I Want. Portuguese Women Artists from 1900 to 2020 (2021–2022)—to explore how curatorial strategies can function as tools of resistance to gender asymmetries in the art field. Spanning 45 years, these initiatives reflect distinct historical, institutional, and cultural contexts: the former emerged in a post-revolutionary country as a bold, politically charged intervention, foregrounding female creativity within an established institution and promoting international visibility, while the latter offered a thematically structured survey that, albeit belatedly, engaged with more complex and globally informed debates. Both exhibitions converge in celebrating Portuguese women’s creative production, exposing persistent structural challenges and adopting critical yet defensive curatorial frameworks that reveal an ambivalent feminist gesture and certain limitations. By analysing these case studies, this research further emphasises the ongoing need for initiatives that foster discussion, awareness, visibility, and equity. Full article
12 pages, 3283 KB  
Article
Amidine-Linked Closo-Dodecaborate–Silica Hybrids: Synthesis and Characterization
by Alexey V. Nelyubin, Nikolay K. Neumolotov, Vsevolod A. Skribitsky, Maria A. Teplonogova, Nikita A. Selivanov, Alexander Yu. Bykov, Victor P. Tarasov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Inorganics 2026, 14(1), 27; https://doi.org/10.3390/inorganics14010027 - 14 Jan 2026
Abstract
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were [...] Read more.
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were synthesized and systematically characterized. Two immobilization strategies were compared: direct nucleophilic addition of surface aminopropyl groups to the nitrilium derivative (Bu4N)[B12H11NCCH3] and sol–gel condensation of a pre-formed boron-containing APTES-derived silane. Covalent attachment via amidine bond formation was confirmed by solution and MAS 11B NMR spectroscopy, IR spectroscopy, elemental analysis/ICP-OES, and SEM. The direct grafting route afforded a boron loading of 4.5 wt% (≈20% of the theoretical capacity), with the efficiency limited by electrostatic repulsion between anionic amidine fragments on the negatively charged silica surface, whereas the APTES route gave lower absolute loading (0.085 mmol/g) due to the low specific surface area of the coarse silica support. Despite the moderate degree of functionalization, the resulting boron cluster–modified silica gels are attractive candidates for specialized chromatographic applications, where the unique hydrophobic and dihydrogen-bonding properties of closo-dodecaborates may enable selective retention of challenging analytes and motivate further optimization of surface morphology and immobilization conditions. Full article
Show Figures

Figure 1

18 pages, 2707 KB  
Article
Design of a Dual Path Mixed Coupling Wireless Power Transfer Coupler for Improving Transmit Arrays in UAV Charging
by GwanTae Kim and SangWook Park
Appl. Sci. 2026, 16(2), 827; https://doi.org/10.3390/app16020827 - 13 Jan 2026
Abstract
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at [...] Read more.
This paper proposes a dual path mixed coupling wireless power transfer (DPMPT) coupler as a four-port structure for near-field wireless power transfer in drone and unmanned aerial vehicles. The DPMPT coupler integrates orthogonal double-D coils and 8-plates to realize mixed inductive–capacitive coupling at 6.78 MHz without additional lumped matching networks. A four-port equivalent model is developed by classifying the mutual networks into three coupling types and representing them with a transmission-matrix formulation fitted to three-dimensional full-wave simulations. The model is used to identify the main coupling paths and to evaluate the effect of rotation and lateral/diagonal misalignment on power-transfer characteristics. Simulation results at a transfer distance of 70 mm show a maximum transmission coefficient of about 0.82 at 6.78 MHz and high robustness against rotation. When switch-based port selection is applied on the transmit side, blind spots associated with pose variations that cause an abrupt drop in transmission characteristics are significantly reduced, demonstrating that the DPMPT coupler with switch control provides an effective structural basis for enhancing alignment tolerance in mixed coupling wireless power transfer systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
20 pages, 1586 KB  
Article
Preferential Solvation of Zwitterionic Benzo-[f]-Quinolinium Ylids in Binary Solvent Mixtures: Spectral Study and Quantum Chemical Calculations
by Mihaela Iuliana Avadanei, Ovidiu Gabriel Avadanei and Dana Ortansa Dorohoi
Molecules 2026, 31(2), 290; https://doi.org/10.3390/molecules31020290 - 13 Jan 2026
Abstract
Three derivatives of benzo-[f]-quinolinium ylids, which all underwent an intermolecular charge transfer process, were used as solvatochromic indicators to study the specific solvent–solute interactions in binary mixtures of protic–aprotic solvents with different molar ratios. The microenvironment around the solute molecules was observed via [...] Read more.
Three derivatives of benzo-[f]-quinolinium ylids, which all underwent an intermolecular charge transfer process, were used as solvatochromic indicators to study the specific solvent–solute interactions in binary mixtures of protic–aprotic solvents with different molar ratios. The microenvironment around the solute molecules was observed via electronic absorption spectroscopy and was analyzed by employing solvation models and quantum chemical calculations. The spectral analysis suggested that the solute was preferentially solvated by the polar protic solvent, indicating a lack of synergy between the two solvents. The solvation microsphere was progressively occupied by the protic solvent, on the basis of specific solute–solvent interactions. By modeling the 1:2 (solute-coordinating solvent) complexes with explicit solvents, the binding energy for complex formation was estimated. Full article
(This article belongs to the Section Analytical Chemistry)
18 pages, 15405 KB  
Article
Electric Vehicle Route Optimization: An End-to-End Learning Approach with Multi-Objective Planning
by Rodrigo Gutiérrez-Moreno, Ángel Llamazares, Pedro Revenga, Manuel Ocaña and Miguel Antunes-García
World Electr. Veh. J. 2026, 17(1), 41; https://doi.org/10.3390/wevj17010041 - 13 Jan 2026
Abstract
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. [...] Read more.
Traditional routing algorithms optimizing for distance or travel time are inadequate for electric vehicles (EVs), which require energy-aware planning considering battery constraints and charging infrastructure. This work presents an energy-optimal routing system for EVs that integrates personalized consumption modeling with real-time environmental data. The system employs a Long Short-Term Memory (LSTM) neural network to predict State-of-Charge (SoC) consumption from real-world driving data, learning directly from spatiotemporal features including velocity, temperature, road inclination, and traveled distance. Unlike physics-based models requiring difficult-to-obtain parameters, this approach captures nonlinear dependencies and temporal patterns in energy consumption. The routing framework integrates static map data, dynamic traffic conditions, weather information, and charging station locations into a weighted graph representation. Edge costs reflect predicted SoC drops, while node penalties account for traffic congestion and charging opportunities. An enhanced A* algorithm finds optimal routes minimizing energy consumption. Experimental validation on a Nissan Leaf shows that the proposed end-to-end SoC estimator significantly outperforms traditional approaches. The model achieves an RMSE of 36.83 and an R2 of 0.9374, corresponding to a 59.91% reduction in error compared to physics-based formulas. Real-world testing on various routes further confirms its accuracy, with a Mean Absolute Error in the total route SoC estimation of 2%, improving upon the 3.5% observed for commercial solutions. Full article
(This article belongs to the Section Propulsion Systems and Components)
23 pages, 1822 KB  
Article
Design and Implementation of Battery Charger Using Buck Converter in Constant Current and Voltage Modes for Educational Experiment Kits
by Pokkrong Vongkoon, Chaowanan Jamroen and Alongkorn Pirayawaraporn
Symmetry 2026, 18(1), 147; https://doi.org/10.3390/sym18010147 - 13 Jan 2026
Abstract
This study presents a modular battery charging system based on a DC–DC buck converter with proportional–integral (PI) control, developed to support hands-on learning in power electronics education. In response to the need for flexible experimental platforms, the system is designed to bridge theoretical [...] Read more.
This study presents a modular battery charging system based on a DC–DC buck converter with proportional–integral (PI) control, developed to support hands-on learning in power electronics education. In response to the need for flexible experimental platforms, the system is designed to bridge theoretical concepts of power conversion and control with practical implementation. The proposed setup employs cascaded current and voltage control loops to achieve constant current (CC) and constant voltage (CV) charging modes, while its modular hardware architecture allows modification of key parameters such as inductance, capacitance, and circuit topology. The control algorithms are implemented on a microcontroller, and real-time data acquisition is integrated using the ThingSpeak platform for monitoring system behaviour. Experimental results show that the current control loop recovers to its reference value within approximately 6 ms under abrupt load variations, whereas the voltage control loop settles within approximately 15 ms, demonstrating stable closed-loop performance. In addition, the system successfully charges a 12 V lead-acid battery following a standard CC–CV charging profile. Overall, the proposed experiment kit provides an effective educational platform and a practical basis for further exploration of battery charging strategies and power converter control. Full article
Show Figures

Figure 1

28 pages, 8096 KB  
Article
Numerical Investigation of Perforation in Microcrack Propagation and Damage Analysis at the Cement Sheath
by Yu Yao, Yan Xi, Jian He, Jianhua Zhao, Xianming Sun and Ming Liu
Appl. Sci. 2026, 16(2), 805; https://doi.org/10.3390/app16020805 - 13 Jan 2026
Abstract
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and [...] Read more.
Wellbore integrity maintenance constitutes a fundamental safety and technological challenge throughout the entire lifecycle of oil and gas wells (including production, injection, and CO2 sequestration operations). As a critical completion phase, perforation generates a high-temperature, high-pressure shaped charge jet that impacts and compromises wellbore structural integrity. This process may induce failure in both the cement sheath body and its interfacial zones, potentially creating fluid migration pathways along the cement-casing interface through perforation tunnels. Current research remains insufficient in quantitatively evaluating cement sheath damage resulting from perforation operations. Addressing this gap, this study incorporates dynamic jet effects during perforation and establishes a numerical model simulating high-velocity jet penetration through casing–cement target–formation composites using a rock dynamics-based constitutive model. The investigation analyzes failure mechanisms within the cement sheath matrix and its boundaries during perforation penetration, while examining the influence of mechanical parameters (compressive strength and shear modulus) of both cement sheath and formation on damage characteristics. Results demonstrate that post-perforation cement sheath aperture exhibits convergent–divergent profiles along the tunnel axis, containing exclusively radial fractures. Primary fractures predominantly initiate at the inner cement wall, whereas microcracks mainly develop at the outer boundary. Enhanced cement compressive strength significantly suppresses fracture initiation at both boundaries: when increasing from 55 MPa to 75 MPa, the undamaged area ratio rises by 16.6% at the inner wall versus 11.2% at the outer interface. Meanwhile, increasing the formation shear modulus from 10 GPa to 15 GPa reduces cement target failure radius by 0.4 cm. Cement systems featuring high compressive strength and low shear modulus demonstrate superior performance in mitigating perforation-induced debonding. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop