Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = characterization of biomedical devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4345 KiB  
Article
Single-Thermocouple Suspended Microfluidic Thermal Sensor with Improved Heat Retention for the Development of Multifunctional Biomedical Detection
by Lin Qin, Xiasheng Wang, Chenxi Wu, Yuan Ju, Hao Zhang, Xin Cheng, Yuanlin Xia, Cao Xia, Yubo Huang and Zhuqing Wang
Sensors 2025, 25(15), 4532; https://doi.org/10.3390/s25154532 - 22 Jul 2025
Viewed by 230
Abstract
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study [...] Read more.
Thermal sensors are widely used in medical, industrial and other fields, where the requirements for high sensitivity and portability continues to increase. Here we propose a suspended bridge structure fabricated using MEMS, which effectively shrinks the size and reduces heat loss. This study reviews current sensor-related theories of heat conduction, convective heat transfer and thermal radiation. Heat loss models for suspended and non-suspended bridge structures are established, and finite element analysis is conducted to evaluate their thermal performance. The thermal performance of the suspended bridge structure is further validated through infrared temperature measurements on the manufactured sensor device. Theoretical calculations demonstrate that the proposed suspension bridge structure reduces heat loss by 88.64% compared with traditional designs. Benefiting from this improved heat retention, which was also confirmed by infrared thermography, the thermal sensor fabricated based on the suspension bridge structure achieves an ultra-high sensitivity of 0.38 V/W and a fast response time of less than 200 ms, indicating a high accuracy in thermal characterization. The correlation coefficient obtained for the sensor output voltage and input power of the sensor is approximately 1.0. Based on this design, multiple microfluidic channels with suspended bridge structures can be integrated to realize multi-component detection, which is important for the development of multifunctional biomedical detection. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

19 pages, 11146 KiB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 371
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 446
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

27 pages, 3233 KiB  
Review
Advances in the Fabrication and Magnetic Properties of Heusler Alloy Glass-Coated Microwires with High Curie Temperature
by Mohamed Salaheldeen, Valentina Zhukova, Juan Maria Blanco, Julian Gonzalez and Arcady Zhukov
Metals 2025, 15(7), 718; https://doi.org/10.3390/met15070718 - 27 Jun 2025
Viewed by 484
Abstract
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making [...] Read more.
This review article provides an in-depth analysis of recent advancements in the fabrication, structural characterization, and magnetic properties of Heusler alloy glass-coated microwires, focusing on Co2FeSi alloys. These microwires exhibit unique thermal stability, high Curie temperatures, and tunable magnetic properties, making them suitable for a wide range of applications in spintronics, magnetic sensing, and biomedical engineering. The review emphasizes the influence of geometric parameters, annealing conditions, and compositional variations on the microstructure and magnetic behavior of these materials. Detailed discussions on the Taylor–Ulitovsky fabrication technique, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) provide insights into the structural properties of the microwires. The magnetic properties, including room-temperature behavior, temperature dependence, and the effects of annealing, are thoroughly examined. The potential applications of these microwires in advanced spintronic devices, magnetic sensors, and biomedical technologies are explored. The review concludes with future research directions, highlighting the potential for further advancements in the field of Heusler alloy microwires. Full article
(This article belongs to the Special Issue Metallic Magnetic Materials: Manufacture, Properties and Applications)
Show Figures

Figure 1

17 pages, 23962 KiB  
Article
AI-Powered Mobile App for Nuclear Cataract Detection
by Alicja Anna Ignatowicz, Tomasz Marciniak and Elżbieta Marciniak
Sensors 2025, 25(13), 3954; https://doi.org/10.3390/s25133954 - 25 Jun 2025
Viewed by 527
Abstract
Cataract remains the leading cause of blindness worldwide, and the number of individuals affected by this condition is expected to rise significantly due to global population ageing. Early diagnosis is crucial, as delayed treatment may result in irreversible vision loss. This study explores [...] Read more.
Cataract remains the leading cause of blindness worldwide, and the number of individuals affected by this condition is expected to rise significantly due to global population ageing. Early diagnosis is crucial, as delayed treatment may result in irreversible vision loss. This study explores and presents a mobile application for Android devices designed for the detection of cataracts using deep learning models. The proposed solution utilizes a multi-stage classification approach to analyze ocular images acquired with a slit lamp, sourced from the Nuclear Cataract Database for Biomedical and Machine Learning Applications. The process involves identifying pathological features and assessing the severity of the detected condition, enabling comprehensive characterization of the NC (nuclear cataract) of cataract progression based on the LOCS III scale classification. The evaluation included a range of convolutional neural network architectures, from larger models like VGG16 and ResNet50, to lighter alternatives such as VGG11, ResNet18, MobileNetV2, and EfficientNet-B0. All models demonstrated comparable performance, with classification accuracies exceeding 91–94.5%. The trained models were optimized for mobile deployment, enabling real-time analysis of eye images captured with the device camera or selected from local storage. The presented mobile application, trained and validated on authentic clinician-labeled pictures, represents a significant advancement over existing mobile tools. The preliminary evaluations demonstrated a high accuracy in cataract detection and severity grading. These results confirm the approach is feasible and will serve as the foundation for ongoing development and extensions. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Biomedical Optics and Imaging)
Show Figures

Figure 1

2 pages, 122 KiB  
Editorial
Advances in Wearable Technologies for the In-Field Assessment of Biomechanical Risk
by Micaela Porta and Massimiliano Pau
Bioengineering 2025, 12(6), 632; https://doi.org/10.3390/bioengineering12060632 - 10 Jun 2025
Viewed by 310
Abstract
The exceptional improvements that have characterized the technology of wearable devices for biomedical applications in recent decades have made it possible for researchers and practitioners to provide advanced solutions for the assessment of biomechanical and physiological variables in the present day, exploiting miniaturized, [...] Read more.
The exceptional improvements that have characterized the technology of wearable devices for biomedical applications in recent decades have made it possible for researchers and practitioners to provide advanced solutions for the assessment of biomechanical and physiological variables in the present day, exploiting miniaturized, lightweight, and low-power-consumption devices at affordable costs [...] Full article
33 pages, 1860 KiB  
Review
Biomimetic Design and Assessment via Microenvironmental Testing: From Food Packaging Biomaterials to Implantable Medical Devices
by Diana V. Portan, Athanasia Koliadima, John Kapolos and Leonard Azamfirei
Biomimetics 2025, 10(6), 370; https://doi.org/10.3390/biomimetics10060370 - 5 Jun 2025
Cited by 1 | Viewed by 730
Abstract
Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging [...] Read more.
Biomaterials and biomedical devices interact with the human body at different levels. At one end of the spectrum, medical devices in contact with tissue pose risks depending on whether they are deployed on the skin or implanted. On the other hand, food packaging and associated material technologies must also be biocompatible to prevent the transfer of harmful molecules and contamination of food, which could impact human health. These seemingly unlinked domains converge into a shared need for the elaboration of new laboratory evaluation protocols that consider recent advances in biomaterials and biodevices, coupled with increasing legal restrictions on the use of animal models. Here, we aim to select and prescribe physiologically relevant microenvironment conditions for biocompatibility testing of novel biomaterials and biodevices. Our discussion spans (1) the development of testing protocols according to material classes, (2) current legislation and standards, and (3) the preparation of biomimetic setups that replicate the microenvironment, with a focus on the multidisciplinary dimension of such studies. Testing spans several characterization domains, beginning with chemical properties, followed by mechanical integrity and, finally, biological response. Biomimetic testing conditions typically include temperature fluctuations, humidity, mechanical stress and loading, exposure to body fluids, and interaction with multifaceted biological systems. Full article
Show Figures

Figure 1

21 pages, 2662 KiB  
Article
Study of Printable and Biocompatible Alginate–Carbon Hydrogels for Sensor Applications: Mechanical, Electrical, and Cytotoxicity Evaluation
by Laura Mendoza-Cerezo, Jesús M. Rodríguez-Rego, A. Macias-García, Francisco de Asís Iñesta-Vaquera and Alfonso C. Marcos-Romero
Gels 2025, 11(6), 389; https://doi.org/10.3390/gels11060389 - 26 May 2025
Viewed by 662
Abstract
The development of printable, conductive, and biocompatible hydrogels has emerged as a promising strategy for the next generation of flexible and soft sensor platforms. In this study, we present a systematic investigation of alginate-based hydrogels incorporating different carbonaceous materials, natural graphite, carbon black [...] Read more.
The development of printable, conductive, and biocompatible hydrogels has emerged as a promising strategy for the next generation of flexible and soft sensor platforms. In this study, we present a systematic investigation of alginate-based hydrogels incorporating different carbonaceous materials, natural graphite, carbon black (Vulcan V3), and activated carbon (PCO1000C), to evaluate their suitability for sensor applications. Hydrogels were formulated with varying concentrations of sodium alginate and a fixed loading of carbon additives. Each composite was characterized in terms of electrical conductivity under compression, rheological behavior, and mechanical strength. Printability was assessed using a custom-designed extrusion platform that allowed for the precise determination of the minimum force and optimal conditions required to extrude each formulation through a standard 20G nozzle. Among all tested systems, the alginate–graphite hydrogel demonstrated superior extrudability, shear-thinning behavior, and shape fidelity, making it well-suited for 3D printing or direct ink writing. A simple conductivity-testing device was developed to verify the electrical response of each hydrogel in the hydrated state. The effects of different drying methods on the final conductivity were also analyzed, showing that oven drying at 50 °C yielded the highest restoration of conductive pathways. Mechanical tests on printed structures confirmed their ability to maintain shape and resist compressive forces. Finally, the biocompatibility of the printed alginate–graphite hydrogel was validated using a standard cytotoxicity assay. The results demonstrated high cell viability, confirming the material’s potential for use in biomedical sensing environments. This work offers a robust framework for the development of sustainable, printable, and biocompatible conductive hydrogels. The combined performance in printability, mechanical integrity, electrical conductivity, and cytocompatibility highlights their promise for flexible biosensors and wearable sensor technologies. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

19 pages, 3708 KiB  
Article
Multiple Ring Electrode-Based PMUT with Tunable Deflections
by Jan Helmerich, Manfred Wich, Annika Hofmann, Thomas Schaechtle and Stefan Johann Rupitsch
Micromachines 2025, 16(6), 623; https://doi.org/10.3390/mi16060623 - 25 May 2025
Cited by 1 | Viewed by 2437
Abstract
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and [...] Read more.
Ultrasonic applications such as non-destructive testing, biomedical imaging or range measurements are currently based on piezoelectric bulk transducers. Yet, these kinds of transducers with their mm to cm dimensions are rather impractical in fields in which both frequencies in the kHz region and small-feature sizes are required. This fact mainly relates to the inverse relationship between the resonance frequency constant and the transducers’ dimension, yielding a higher frequency and attenuation with a decreasing size. Piezoelectric micromachined ultrasonic transducers (PMUTs), in comparison, incorporate a small-scale µm design while preserving the operating frequency in the desired kHz range. This contribution presents the detailed manufacturing of such a PMUT with a multiple ring electrode‑based structure to additionally adjust the sound pressure fields. The PMUT will be characterized by its deflection in air along with the characterization of the piezoelectric material lead zirconate titanate (PZT) itself. The measurements showed a maximum polarization of 21.8 µC/cm2 at 50 kV/cm, the PMUT’s displacement of 30.50 nm/V in air when all electrodes are driven, and an adjustable deflection via different electrode excitations without the need for additional hardware. The ring design also offered the possibility to emit two distinct frequencies simultaneously. These results demonstrate the potential of the designs for small-feature-size applications as they are in high demand for implantable devices, miniaturized ultrasonic-based communication or drug delivery. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

25 pages, 5168 KiB  
Article
Pyrolyzed Biomass Filler for PLA-Based Food Packaging
by Andreea-Cătălina Joe, Maria Tănase, Catalina Călin, Elena-Emilia Sîrbu, Ionuț Banu, Dorin Bomboș and Stanca Cuc
Polymers 2025, 17(10), 1327; https://doi.org/10.3390/polym17101327 - 13 May 2025
Cited by 2 | Viewed by 645
Abstract
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in [...] Read more.
Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in this study, biochar (BC) produced through pyrolysis of bio-mass waste was incorporated (1 wt.%, 2wt.%, and 3 wt.%—PLA 1, PLA 2, and PLA 3) to enhance thermal and mechanical properties of PLA composites. The impact of pyrolysis temperature on the kinetic parameters, physicochemical characteristics, and structural properties of banana and orange peels for use as biochar added to PLA was investigated. The biomass waste such as banana and orange peels were characterized by proximal analysis and thermogravimetric analysis (TGA); meanwhile, the PLA composites were characterized by tensile straight, TGA, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicated that the presence of biochar improved hygroscopic characteristics and Tg temperature from 62.98 °C for 1 wt.% to 80.29 °C for 3 wt.%. Additionally, it was found that the tensile strength of the composites increased by almost 30% for PLA 3 compared with PLA 1. The Young’s modulus also increased from 194.334 MPa for PLA1 to 388.314 MPa for PLA3. However, the elongation decreased from 14.179 (PLA 1) to 7.240 mm (PLA3), and the maximum thermal degradation temperature shifted to lower temperatures ranging from 366 °C for PLA-1 to 345 °C for PLA-3 samples, respectively. From surface analysis, it was observed that the surface of these samples was relatively smooth, but small microcluster BC aggregates were visible, especially for the PLA 3 composite. In conclusion, the incorporation of biochar into PLA is a promising method for enhancing material performance while maintaining environmental sustainability by recycling biomass waste. Full article
Show Figures

Figure 1

13 pages, 17065 KiB  
Article
Eco-Friendly Magnetically Active Textiles: Influence of Magnetic Fields, Pumpkin Seed Oil, and Propolis Microparticles on Complex Dielectric Permittivity Components
by Ioan Bica, Eugen Mircea Anitas, Gabriela Eugenia Iacobescu and Larisa Marina Elisabeth Chirigiu
J. Compos. Sci. 2025, 9(5), 237; https://doi.org/10.3390/jcs9050237 - 9 May 2025
Viewed by 581
Abstract
This study presents the fabrication and characterization of magnetically active textiles using cotton fibers impregnated with suspensions of pumpkin seed oil, carbonyl iron microparticles, and propolis microparticles. The textiles were utilized to manufacture planar capacitors, enabling an investigation of the effects of static [...] Read more.
This study presents the fabrication and characterization of magnetically active textiles using cotton fibers impregnated with suspensions of pumpkin seed oil, carbonyl iron microparticles, and propolis microparticles. The textiles were utilized to manufacture planar capacitors, enabling an investigation of the effects of static magnetic fields and the introduced microparticles on the components of complex dielectric permittivity. The results reveal that the dielectric properties of the fabricated textiles are highly sensitive to the applied magnetic field intensity, the frequency of the alternating electric field, and the composition of the impregnating suspension. The experimental findings suggest that the dielectric loss and permittivity can be finely tuned by adjusting the magnetic flux density and the proportion of propolis microparticles. The multifunctional nature of these magnetically responsive textiles, combined with the bioactive properties of the incorporated natural components, opens promising pathways for applications in smart textiles, biomedical devices, and sensor technologies. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

12 pages, 1151 KiB  
Article
Photocurable Crosslinker from Bio-Based Non-Isocyanate Poly(hydroxyurethane) for Biocompatible Hydrogels
by Kathleen Hennig, Gabriele Vacun, Sibylle Thude and Wolfdietrich Meyer
Polymers 2025, 17(9), 1285; https://doi.org/10.3390/polym17091285 - 7 May 2025
Cited by 1 | Viewed by 569
Abstract
This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route [...] Read more.
This study explores the synthesis of photocurable non-isocyanate polyhydroxyethylurethanes (BPHUs) derived from renewable sources, designed for biomedical applications and the development towards advanced light curing processes. The following two pathways were developed: an aliphatic route using 1,4-butanediol-derived cyclic carbonates and an aromatic route with resorcinol-based carbonates. Ring-opening polymerization with dodecanediamine produced BPHU intermediates, which were methacrylated to form photoreactive derivatives (aliphatic MAs and aromatic MAs). Comprehensive characterization, including NMR, GPC, and FTIR, confirmed the successful synthesis. The UV curing of these methacrylated compounds yielded hydrogels with swelling properties. Aliphatic BPHUs achieved a gel content of 91.3% and a swelling of 1057%, demonstrating the flexibility and UV stability suitable for adaptable biomedical applications. Conversely, aromatic BPHUs displayed a gel content of 78.1% and a swelling of 3304%, indicating higher rigidity, which is advantageous for load-bearing uses. Cytotoxicity assessments adhering to the DIN EN ISO 10993-5 standard demonstrated non-cytotoxicity, with an >80% cell viability for both variants. This research underscores the potential of green chemistry in crafting biocompatible, versatile BPHUs, paving the way for eco-friendly materials in implantable medical devices. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 6277 KiB  
Article
Characterization of a Single-Capture Bright-Field and Off-Axis Digital Holographic Microscope for Biological Applications
by Jian Kim, Álvaro Barroso, Steffi Ketelhut, Jürgen Schnekenburger, Björn Kemper and José Ángel Picazo-Bueno
Sensors 2025, 25(9), 2675; https://doi.org/10.3390/s25092675 - 23 Apr 2025
Viewed by 606
Abstract
We present a single-capture multimodal bright-field (BF) and quantitative phase imaging (QPI) approach that enables the analysis of large, connected, or extended samples, such as confluent cell layers or tissue sections. The proposed imaging concept integrates a fiber-optic Mach–Zehnder interferometer-based off-axis digital holographic [...] Read more.
We present a single-capture multimodal bright-field (BF) and quantitative phase imaging (QPI) approach that enables the analysis of large, connected, or extended samples, such as confluent cell layers or tissue sections. The proposed imaging concept integrates a fiber-optic Mach–Zehnder interferometer-based off-axis digital holographic microscopy (DHM) with an inverted commercial optical BF microscope. Utilizing 8-bit grayscale dynamic range multiplexing, we simultaneously capture both BF images and digital holograms, which are then demultiplexed numerically via Fourier filtering, phase aberration compensation, and weighted image subtraction procedures. Compared to previous BF-DHM systems, our system avoids synchronization challenges caused by multiple image recording devices, improves acquisition speed, and enhances versatility for fast imaging of large, connected, and rapidly moving samples. Initially, we perform a systematic characterization of the system’s multimodal imaging performance by optimizing numerical as well as coherent and incoherent illumination parameters. Subsequently, the application capabilities are evaluated by multimodal imaging of living cells. The results highlight the potential of single-capture BF-DHM for fast biomedical imaging. Full article
(This article belongs to the Special Issue Digital Holography Imaging Techniques and Applications Using Sensors)
Show Figures

Figure 1

15 pages, 5562 KiB  
Review
Avalanche Multiplication in Two-Dimensional Layered Materials: Principles and Applications
by Zhangxinyu Zhou, Mengyang Kang, Yueyue Fang, Piotr Martyniuk and Hailu Wang
Nanomaterials 2025, 15(9), 636; https://doi.org/10.3390/nano15090636 - 22 Apr 2025
Viewed by 691
Abstract
The avalanche multiplication effect, capable of significantly amplifying weak optical or electrical signals, plays a pivotal role in enhancing the performance of electronic and optoelectronic devices. This effect has been widely employed in devices such as avalanche photodiodes, impact ionization avalanche transit time [...] Read more.
The avalanche multiplication effect, capable of significantly amplifying weak optical or electrical signals, plays a pivotal role in enhancing the performance of electronic and optoelectronic devices. This effect has been widely employed in devices such as avalanche photodiodes, impact ionization avalanche transit time diode, and impact ionization field-effect transistors, enabling diverse applications in biomedical imaging, 3D LIDAR, high-frequency microwave circuits, and optical fiber communications. However, the evolving demands in these fields require avalanche devices with superior performance, including lower power consumption, reduced avalanche threshold energy, higher efficiency, and improved sensitivity. Over the years, significant efforts have been directed towards exploring novel device architectures and multiplication mechanisms. The emergence of two-dimensional (2D) materials, characterized by their exceptional light-matter interaction, tunable bandgaps, and ease of forming junctions, has opened up new avenues for developing high-performance avalanche devices. This review provides an overview of carrier multiplication mechanisms and key performance metrics for avalanche devices. We discuss several device structures leveraging the avalanche multiplication effect, along with their electrical and optoelectronic properties. Furthermore, we highlight representative applications of avalanche devices in logic circuits, optoelectronic components, and neuromorphic computing systems. By synthesizing the principles and applications of the avalanche multiplication effect, this review aims to offer insightful perspectives on future research directions for 2D material-based avalanche devices. Full article
Show Figures

Figure 1

11 pages, 3893 KiB  
Article
Wavefront Characterization of an Optical Parametric Oscillator as a Function of Wavelength
by Juan M. Bueno
Photonics 2025, 12(4), 347; https://doi.org/10.3390/photonics12040347 - 8 Apr 2025
Viewed by 430
Abstract
The wavefront aberrations (WAs) of a laser beam produced by an optical parametric oscillator (OPO) have been measured using a Hartmann–Shack sensor. The OPO tuning operation requires changes in the device that might affect the shape of the wavefront beam as the illumination [...] Read more.
The wavefront aberrations (WAs) of a laser beam produced by an optical parametric oscillator (OPO) have been measured using a Hartmann–Shack sensor. The OPO tuning operation requires changes in the device that might affect the shape of the wavefront beam as the illumination wavelength is being modified. Different output wavelengths in the range 550–850 nm were systematically analyzed in terms of WAs. The WA laser beam was fairly stable with time (changes of about 1%), independently of the wavelength. Moreover, WAs were non-negligible and nearly constant between 600 and 800 nm, but they noticeably increased for 550 (~90%) and 850 nm (~50%), mainly due to a higher astigmatism influence. The contributions of other higher-order terms such as coma and spherical aberration also present particular spectral dependences. To our knowledge, this is the first report of a spectral OPO laser beam characterization in terms of optical aberrations. It addresses a gap in OPO laser characterization of WAs and offers actionable insights for multi-wavelength applications. These results might be useful in applications ranging from micromachining procedures to biomedical imaging, where an optimized focal spot is required to increase the efficiency of certain physical phenomena or to enhance the quality of the acquired images. Full article
Show Figures

Figure 1

Back to TopTop