Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = char depth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1132 KiB  
Article
Evaluating the Cytotoxic, Genotoxic, and Toxic Potential of Pyrolytic Tire Char Using Human Lymphocytes and a Bacterial Biosensor
by Ioanna Efthimiou, Margarita Dormousoglou, Lambrini Giova, Dimitris Vlastos, Stefanos Dailianis, Maria Antonopoulou and Ioannis Konstantinou
Toxics 2025, 13(7), 582; https://doi.org/10.3390/toxics13070582 - 12 Jul 2025
Viewed by 301
Abstract
Waste tires (WTs) constitute a potentially significant source of pollution, and the large quantities that are disposed of require proper handling. Pyrolysis has emerged as an environmentally friendly and effective method for WT treatment. In the present study, the cyto-genotoxic and toxic effects [...] Read more.
Waste tires (WTs) constitute a potentially significant source of pollution, and the large quantities that are disposed of require proper handling. Pyrolysis has emerged as an environmentally friendly and effective method for WT treatment. In the present study, the cyto-genotoxic and toxic effects of untreated and acid-treated pyrolytic tire char (PTCUN and PTCAT, respectively) were investigated. The cytokinesis block micronucleus (CBMN) assay, using human lymphocytes, and the Aliivibrio fischeri bioluminescence assay were used for the assessment of cyto-genotoxicity and ecotoxicity, respectively. According to the results, both PTCUN and PTCAT exhibited genotoxicity at all concentrations tested (2.5, 5, and 10 μg mL−1), which was more pronounced in the case of PTCAT. Cytotoxicity induction was reported for PTCUN and PTCAT at all concentrations. Both demonstrated a relatively low potential for ecotoxicity induction against A. fischeri. Since the cyto-genotoxic and toxic effects of PTCAT seemed to be more pronounced, the toxic profile of tire char should be investigated in depth before selecting the appropriate applications, thereby avoiding detrimental effects in the environment and humans alike. Full article
Show Figures

Graphical abstract

34 pages, 8870 KiB  
Review
Advances in Graphene-Based Flame-Retardant for Polystyrene Applications: Synthesis, Mechanisms, and Future Perspectives
by Mutawakkil Isah, Farrukh Shehzad and Mamdouh A. Al-Harthi
Polymers 2025, 17(13), 1811; https://doi.org/10.3390/polym17131811 - 29 Jun 2025
Viewed by 633
Abstract
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. [...] Read more.
The growing demand for fire-safe, sustainable materials has driven extensive research into advanced flame retardants particularly polystyrene (PS), a widely utilized yet inherently flammable polymer. Graphene-derived materials are considered effective flame retardants owing to their higher thermal stability, char-formation, and gas barrier properties. However, despite these advantages, challenges such as agglomeration, high thermal conductivity, poor interfacial compatibility, and processing limitations hinder their full-scale adoption in building insulation and other applications. This review presents an in-depth analysis of recent progress in graphene-enhanced flame-retardant systems for polystyrene applications, focusing on synthesis methods, flame-retardant mechanisms, and material performance. It also discusses strategies to address these challenges, such as surface functionalization, hybrid flame-retardant formulations, optimized graphene loading, and improved dispersion techniques. Furthermore, future research directions are proposed to enhance the effectiveness and commercial viability of graphene-based flame-retardant polystyrene composites. Overcoming these challenges is essential for high-performance, eco-friendly, flame-retardant materials on a larger scale. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Advanced Evaluation of Fire Resistance in Spruce Wood (Picea abies spp.) Treated with Innovative Surface Coatings
by Redžo Hasanagić, Selma Mujanić, Eli Keržič, Leila Fathi, Mohsen Bahmani, Mohammad Dahmardeh Ghalehno, Boštjan Lesar and Miha Humar
Fire 2025, 8(4), 120; https://doi.org/10.3390/fire8040120 - 21 Mar 2025
Viewed by 698
Abstract
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame [...] Read more.
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame method (EN ISO 11925-2:2020), surface roughness analysis, hyperspectral imaging (HSI), and contact angle measurements. The results demonstrated significant improvements in fire resistance for samples treated with specific coatings, particularly the Burn Block spray and Caparol coating, which effectively prevented flame spread. The analysis revealed that the Burn Block spray reduced the average flame height to 6.57 cm, while the Caparol coating achieved a similar effect with an average flame height of 6.95 cm. In contrast, untreated samples exhibited a flame height of 9.34 cm, with boric acid-treated samples reaching up to 12.18 cm. Char depth measurements and the surface roughness analysis revealed a clear correlation between the type of treatment and the thermal stability of the wood. Hyperspectral imaging enabled a detailed visualisation of surface degradation, while contact angle measurements highlighted the impact of hydrophobicity on flammability. This research provides in-depth insights into the fire-retardant mechanisms of spruce wood and offers practical guidelines for developing safer and more sustainable wood materials for the construction industry. Full article
Show Figures

Figure 1

16 pages, 13832 KiB  
Article
Experimental Investigation of Fire—Technical Characteristics of Selected Flame Retardants for the Protection of Wooden Structures
by Patrik Mitrenga, Miroslava Vandlíčková and Milan Konárik
Coatings 2025, 15(2), 193; https://doi.org/10.3390/coatings15020193 - 6 Feb 2025
Cited by 3 | Viewed by 1052
Abstract
This study evaluates selected flame retardants on the basis of their influence on the change of fire-technical parameters of soft and hard woods (spruce and oak) during exposure to a flame heat source. The parameters evaluated were mass loss, mass loss rate and [...] Read more.
This study evaluates selected flame retardants on the basis of their influence on the change of fire-technical parameters of soft and hard woods (spruce and oak) during exposure to a flame heat source. The parameters evaluated were mass loss, mass loss rate and depth of the charred layer. The experiments were carried out on simple test equipment on which the samples were exposed to direct flame while their mass was monitored. The measured data and their statistical evaluation showed a significant dependence of the mass loss on the type of retardant used (inorganic salt-based flame retardant—IS and intumescent flame retardant—IFR) and on the type of wood species. In spite of the same reaction to fire class specified by the manufacturers for both types of retardants studied, significant differences were observed in the parameters monitored. The mass loss, mass loss rate and charred layer reached much lower values when using IFR retardant, whose efficiency was higher in the order of tens of percent compared to the use of IS retardant. The use of IFR flame retardant reduced the depth of the charred layer on oak samples by up to 84% compared to untreated samples, indicating its high effectiveness and potential to increase the fire resistance of wooden structures. These results show that IFRs are more effective in the parameters studied compared to ISs despite their equal class of reaction to fire, which may have wider implications for the construction industry and highlight the need for a thorough evaluation of flame retardants based on their performance under real-world conditions. Full article
Show Figures

Figure 1

11 pages, 23226 KiB  
Article
Charring Properties of Korean Larch Structural Glue-Laminated Timber Beams Based on Cross-Sectional Area Ratios
by Yunjeong Choi, Kwonhyuk Baik, Jaehong An and Byoungil Kim
Buildings 2025, 15(3), 305; https://doi.org/10.3390/buildings15030305 - 21 Jan 2025
Viewed by 682
Abstract
Carbon emissions accelerate global warming and climate change, prompting the global development of strategies for carbon reduction. Wood, with its excellent carbon storage capacity, is a sustainable and environmentally friendly material. One cubic meter of timber can absorb 1 t of carbon dioxide [...] Read more.
Carbon emissions accelerate global warming and climate change, prompting the global development of strategies for carbon reduction. Wood, with its excellent carbon storage capacity, is a sustainable and environmentally friendly material. One cubic meter of timber can absorb 1 t of carbon dioxide and store 250 kg of carbon. This study aimed to conduct fire resistance tests on structural glue-laminated timber beams made from Korean larch (Larix kaempferi) and analyze their char properties. The specimens were fabricated with different cross-sectional shapes and areas and underwent load-bearing fire resistance tests. The results were analyzed in terms of char depth, char rate, and changes in char thickness based on the aspect ratio of the beams. In the smaller specimens, the char properties were influenced more by the width than by the length of the beam. Additionally, at a constant cross-sectional area, charring was deeper when the width was shorter than the height. The specimens did not exhibit significant differences in displacement behavior, with all specimens displaying displacements below the maximum permissible value, indicating suitable fire resistance. The findings of this study provide a foundation for research and development of fire resistance design standards for wooden structures utilizing Korean timber. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 2722 KiB  
Article
The Effects of Fire Intensity on the Biochemical Properties of a Soil Under Scrub in the Pyrenean Subalpine Stage
by Andoni Alfaro-Leranoz, David Badía-Villas, Clara Martí-Dalmau, Marta Escuer-Arregui and Silvia Quintana-Esteras
Fire 2024, 7(12), 452; https://doi.org/10.3390/fire7120452 - 1 Dec 2024
Cited by 4 | Viewed by 973
Abstract
Fire causes changes in many soil attributes, depending on multiple factors which are difficult to control in the field, such as maximum temperature, heat residence time, charred material incorporation, etc. The objective of this study is to evaluate the effect of a gradient [...] Read more.
Fire causes changes in many soil attributes, depending on multiple factors which are difficult to control in the field, such as maximum temperature, heat residence time, charred material incorporation, etc. The objective of this study is to evaluate the effect of a gradient of fire intensities on soils at the cm scale. Undisturbed topsoil monoliths were sampled under scrubs in the subalpine stage in the Southern Pyrenees (NE Spain). They were burned, under controlled conditions in a combustion tunnel, to obtain four charring intensities (CIs), combining two temperatures (50 and 80 °C) and two residence times (12 and 24 min) reached at 1 cm depth from the soil. Unburned soil samples were used as a control. All soils were sampled, cm by cm, up to 3 cm deep. The following soil properties were measured: soil respiration (basal, bSR and normalized, nSR), β-D-glucosidase (GLU), microbial biomass carbon (MBC), glomalin-related soil proteins (GRSPs), soil organic carbon (SOC), labile carbon (DOC), recalcitrant organic carbon (ROC), total nitrogen (TN), soil pH, electrical conductivity (EC) and soil water repellency (SWR). Even at low intensities, GLU, SOC and total GRSP were significantly reduced and, conversely, SWR was enhanced. At the higher CIs, additional soil properties were significantly reduced (MBC and C/N) or increased (DOC, ROC, nSR, easily extractable GRSP). This study demonstrates that there is a differential degree of thermal sensitivity in the measured biochemical soil properties. Furthermore, these properties are more affected at 0–1 cm than at 1–2 and 2–3 cm soil thicknesses. Full article
(This article belongs to the Special Issue Post-fire Effects on Environment)
Show Figures

Figure 1

15 pages, 1881 KiB  
Article
Assessing the Climate Induced Livelihood Vulnerability of Coastal People Using Sustainable Livelihood Framework: A Study in South-Central Bangladesh
by Md. Mizanur Rahman, Mohammad Esa Ibn Belal, M. Anwar Hossen, Nazia Hassan Tabassum, Jannatul Mehzabin, Mst. Nazia Sultana Mumu, Md. Tafhimul Islam and Salma Begum
Soc. Sci. 2024, 13(12), 638; https://doi.org/10.3390/socsci13120638 - 27 Nov 2024
Viewed by 2322
Abstract
Climate change has become a major global concern, and it has severe consequences for all communities. Coastal areas of Bangladesh are vulnerable to climate change because of their geophysical condition and geographical position. Although climate change affects people’s sustainable livelihood strategies in coastal [...] Read more.
Climate change has become a major global concern, and it has severe consequences for all communities. Coastal areas of Bangladesh are vulnerable to climate change because of their geophysical condition and geographical position. Although climate change affects people’s sustainable livelihood strategies in coastal regions of Bangladesh, it has gained limited attention in academic discourse. This study, hence, aimed to investigate the impact of climate change on the sustainable livelihood strategies of coastal people. Utilizing an explanatory sequential mixed research approach, including stakeholders’ consultations, household surveys, in-depth interviews (IDIs), focus group discussions (FGDs), and key informant interviews (KIIs), the study was carried out in Char Kukrumukri union in Bhola District, one of the climate-vulnerable areas of the country. Our study findings revealed that climate change primarily affects natural and physical capital, which in turn impacts financial, human, social, and political capital, and in the end, creates different forms of vulnerabilities. The study also explored a significant association between increasing waterlogging areas and reducing arable lands (X2 = 38.02; p < 0.001), and the reduction in fresh water sources and damages in agricultural production (X2 = 80; p < 0.001). The study further highlighted that the government efforts, such as polderization, aimed at preventing salinity in coastal areas, have failed due to the lack of integration with the representation of local people. The lack of integration between the local community’s voices and government actions poses additional challenges to maintaining people’s sustainable livelihood strategies. Thus, the study suggests a successful integration of localized practices and government interventions to address the climate-induced livelihood challenges to coastal people. Full article
Show Figures

Figure 1

13 pages, 8500 KiB  
Article
A Study on the Charring Properties of Glued Laminated Korean Larch Timber Columns
by Yunjeong Choi, Kwonhyuk Baik, Suho Kim and Jaehong An
Sustainability 2024, 16(20), 9130; https://doi.org/10.3390/su16209130 - 21 Oct 2024
Cited by 1 | Viewed by 1285
Abstract
As the carbon storage capacity of timber is recognized, there is growing interest in timber and wooden structures as a solution to various environmental problems. The use of Korean timber with substantial carbon storage capacity is required to reduce Korean carbon emissions and [...] Read more.
As the carbon storage capacity of timber is recognized, there is growing interest in timber and wooden structures as a solution to various environmental problems. The use of Korean timber with substantial carbon storage capacity is required to reduce Korean carbon emissions and circulate timber resources. In this study, fire tests were conducted to investigate the charring properties of glued laminated timber columns made of Korean larch. The fire tests were conducted under both load-bearing and non-load-bearing conditions. The fire test results showed that the charring depth was affected by the corners of the section and that the load ratio had an insignificant influence on the charring depth when the load ratio was 0.9 or less. This study provides data that can be used to compare the charring properties of laminated wood produced using South Korean larch with the charring properties of foreign standards. This research provides reference data for developing fire-resistant design standards for timber structures made from South Korean timber. Full article
Show Figures

Figure 1

18 pages, 5066 KiB  
Article
Charring of and Chemical Changes in Historical Wood under Thermal Loading
by Katarína Dúbravská, Viera Kučerová, Jaroslava Štefková and Ol’ga Mišíková
Forests 2024, 15(7), 1189; https://doi.org/10.3390/f15071189 - 9 Jul 2024
Cited by 1 | Viewed by 1456
Abstract
Research in historical timber assessment is hindered by the limited availability of samples, yet understanding the fire resistance of historic wood is crucial for preservation efforts. There is an opinion that historic wood behaves similarly to contemporary wood in terms of fire resistance. [...] Read more.
Research in historical timber assessment is hindered by the limited availability of samples, yet understanding the fire resistance of historic wood is crucial for preservation efforts. There is an opinion that historic wood behaves similarly to contemporary wood in terms of fire resistance. The aim of this paper is to observe the rate of charring of historical pine wood during the experiment, the color changes in the sample that occurred due to thermal loading, and the changes in the chemical composition of pine wood. Test samples made from historic pine wood were loaded with a 50 kW∙m−2 radiation panel for 60 min. The charring process was faster at the beginning of the charred layer formation. The charring rate at the beginning of the test at a depth of 10 mm from the exposed side reached values from 1.28 mm∙min−1 to 3.16 mm∙min−1. At a depth of 30 mm from the exposed side, the individual charring rates approached a value of 1 mm∙min−1 (0.99 mm∙min−1 to 1.08 mm∙min−1). Observations during medium-scale testing revealed distinct layers forming on the exposed side: a charred layer, charring base, pyrolysis layer, and intact wood. The chemical composition of the wood changed under the influence of the thermal load. The relative contents of extractives and holocellulose decreased with the increasing temperature while the lignin content increased. The highest value of combustion heat was measured in the charred layer of the sample. Correlation analysis demonstrated a negative relationship between the combustion heat and holocellulose, while a positive correlation was found with the lignin content. Chemical changes were also monitored using the FTIR method. These findings provide valuable insights into the behavior of historic pine wood under thermal loading, which is essential for understanding and preserving historical structures. Full article
Show Figures

Figure 1

15 pages, 4196 KiB  
Article
Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber
by David Hans Ebner, Marius-Catalin Barbu, Ondřej Prokop and Petr Čermák
Forests 2024, 15(7), 1109; https://doi.org/10.3390/f15071109 - 27 Jun 2024
Viewed by 1941
Abstract
The aim of this work was to investigate the fire resistance of silver fir (Abies alba L.) and European ash (Fraxinus excelsior) boards charred using the traditional yakisugi method and to compare the results with the fire resistance of non-charred [...] Read more.
The aim of this work was to investigate the fire resistance of silver fir (Abies alba L.) and European ash (Fraxinus excelsior) boards charred using the traditional yakisugi method and to compare the results with the fire resistance of non-charred boards as a reference and exploit its potential as a material with fire protection properties. After the boards were surface-charred on one side, specimens with different char thicknesses, resulting from their different position in the chimney, were selected from each wood species and subjected to analysis. Specimens with dimensions of 250 × 90 mm underwent a small flame test, those of 220 × 170 mm received indirect flame exposure by constant heat flux radiation from an infra-red emitter and those of 600 × 600 mm were subjected to a fire resistance test according to EN 1363-1:2020. The results of the small flame tests showed statistically significant fire resistance enhancement of specimens with 6 and 3 mm char-layer thickness in fir and ash wood, respectively, and a 110% and 75% improvement when compared to reference specimens. The constant heat flux radiation tests did not reveal any significant differences between the reference and charred specimens. The up-scaled fire resistance test, in which an assembled panel was exposed to flame, also indicated significant improvement. The reference burn-through time of fir and ash specimens was improved significantly with increasing char layer thickness, resulting in 10%–26% of fire resistance improvement for fir and 5%–12% for ash wood specimens. These results, based on the tests performed, suggest that the one-sided surface-charring of wood can enhance its fire resistance; however, this was mostly achieved in boards with the thickest char layer in both wood species studied and not all fire resistance indicators were considered. Further in-depth studies are required to better understand the complex behaviour of charred wood in response to fire. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

14 pages, 4572 KiB  
Article
Analysis of Structural Heterogeneity in Low-Rank Coal and Its Pyrolyzed Char Using Multi-Point Scanning Micro-Raman Spectroscopy
by Yaqi Gao, Chong Zou, Yuan She, Zhengyan Huang and Siqi Li
Molecules 2024, 29(10), 2361; https://doi.org/10.3390/molecules29102361 - 17 May 2024
Cited by 1 | Viewed by 1304
Abstract
Understanding the changes in carbon structure during the mid–low-temperature pyrolysis of low-rank coal is important for efficient utilization. Raman spectroscopy is commonly used to analyze the structural order of carbonaceous materials, but traditional methods may overlook the heterogeneity of coal/char. This research explores [...] Read more.
Understanding the changes in carbon structure during the mid–low-temperature pyrolysis of low-rank coal is important for efficient utilization. Raman spectroscopy is commonly used to analyze the structural order of carbonaceous materials, but traditional methods may overlook the heterogeneity of coal/char. This research explores the heterogeneity of char structure derived from low-rank coal at 700 °C through multi-point micro-Raman analysis. The analysis of parameters such as area (A), intensity (I), full width at half maximum (FWHM/W), and peak position (P) reveals that the carbon structure becomes less ordered as coal transforms into char due to the deposition of small molecules on the surface. The study emphasizes the benefits of multi-point detection for gaining in-depth insights into the structural evolution of carbonaceous materials. The increased standard deviation of Raman parameters indicates diverse structural characteristics resulting from pyrolysis at this temperature, which traditional methods may not capture effectively. The mapping method used in this research visually illustrates the distribution of carbon structures in the region. Full article
(This article belongs to the Special Issue Raman Spectroscopy Analysis of Surfaces)
Show Figures

Graphical abstract

21 pages, 2867 KiB  
Article
Computational Insights into Cyclodextrin Inclusion Complexes with the Organophosphorus Flame Retardant DOPO
by Le Ma, Yongguang Zhang, Puyu Zhang and Haiyang Zhang
Molecules 2024, 29(10), 2244; https://doi.org/10.3390/molecules29102244 - 10 May 2024
Cited by 2 | Viewed by 1533
Abstract
Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, [...] Read more.
Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, we report a systematic study on the inclusion complexes of natural CDs (α-, β-, and γ-CD) with a representative OPFR of DOPO using computational methods of molecular docking, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations. The binding modes and energetics of [host:guest] inclusion complexes were analyzed in details. α-CD was not able to form a complete inclusion complex with DOPO, and the center of mass distance [host:guest] distance amounted to 4–5 Å. β-CD and γ-CD allowed for a deep insertion of DOPO into their hydrophobic cavities, and DOPO was able to frequently change its orientation within the γ-CD cavity. The energy decomposition analysis based on the dispersion-corrected density functional theory (sobEDAw) indicated that electrostatic, orbital, and dispersion contributions favored [host:guest] complexation, while the exchange–repulsion term showed the opposite. This work provides an in-depth understanding of using CD inclusion complexes in OPFRs formulations. Full article
Show Figures

Figure 1

15 pages, 5038 KiB  
Article
Evaluating Fire Performance: An Experimental Comparison of Dovetail Massive Wooden Board Elements and Cross-Laminated Timber
by Hüseyin Emre Ilgın, Markku Karjalainen, Mika Alanen and Mikko Malaska
Fire 2023, 6(9), 352; https://doi.org/10.3390/fire6090352 - 9 Sep 2023
Cited by 9 | Viewed by 2208
Abstract
The use of adhesives and metal connectors is vital in engineered wood product (EWP) composition. However, the utilization of adhesives poses sustainability and recyclability challenges due to the emission of toxic gases. Similarly, metal fasteners negatively impact the disposal, reusability, and recyclability of [...] Read more.
The use of adhesives and metal connectors is vital in engineered wood product (EWP) composition. However, the utilization of adhesives poses sustainability and recyclability challenges due to the emission of toxic gases. Similarly, metal fasteners negatively impact the disposal, reusability, and recyclability of EWPs. An alternative solution that exclusively employs pure wood, known as dovetail massive wooden board elements (DMWBEs), eliminates the need for adhesives and metal fasteners. This paper presents an experimental comparative assessment of the fire/charring performance of DMWBEs and cross-laminated timber (CLT). Model-scale test specimens measuring 200 mm in thickness, 950 mm in width, and 950 mm in length were vertically tested according to EN 1363-1. The charring behavior of DMWBEs closely resembled that of solid timber, with only a slight increase in the charring rate. Charring primarily occurred in the third lamella layer out of five, with no observable flames or hot gases on the unexposed side. The dovetail detail effectively prevented char fall-off with the tested lamella thickness. CLT specimens exhibited a notable rise in the charring rate due to the fall-off of the first lamellae layer. Full article
Show Figures

Figure 1

19 pages, 3835 KiB  
Article
Semi-Analytical Modeling of Pyrolysis Front and Ignition Temperatures of Thermally Reactive Single Solid Particles
by Yousef Haseli
Processes 2023, 11(8), 2448; https://doi.org/10.3390/pr11082448 - 14 Aug 2023
Viewed by 1527
Abstract
A semi-analytical approach is developed for predicting pyrolysis front temperature in a charring solid undergoing thermal decomposition. The pre-reaction heating stage is described using an analytical formulation and invoking the concept of thermal penetration depth. The solution for the solid conversion stage accounts [...] Read more.
A semi-analytical approach is developed for predicting pyrolysis front temperature in a charring solid undergoing thermal decomposition. The pre-reaction heating stage is described using an analytical formulation and invoking the concept of thermal penetration depth. The solution for the solid conversion stage accounts for decomposition enthalpy, the convective flow of volatiles, and a reaction front characterized by a uniform temperature that progresses toward the inner layers. This method incorporates empirical relations into the analytical model. Two scenarios are considered. First, the solution of the pyrolysis model combined with the data of conversion time versus external heat flux leads to an algebraic expression that reveals the existence of a maximum pyrolysis-front temperature. Explicit relations are derived for both the extremum pyrolysis temperature and optimum applied heat flux. In the second case, an expression is derived for the ignition temperature of a solid fuel (e.g., wood) by incorporating ignition delay time measurements into the heating stage model. The newly derived expression allows the ignition temperature to be described as a function of the Biot number and external heat flux. The relation obtained for the ignition temperature explains the experimental trends reported in some previous studies where two local extremums were observed for the ignition temperature in the absence of volatile reactions. Full article
(This article belongs to the Special Issue Thermochemical Conversion of Solid Fuels and Wastes)
Show Figures

Figure 1

18 pages, 33822 KiB  
Article
Assessing the Use of Burn Ratios and Red-Edge Spectral Indices for Detecting Fire Effects in the Greater Yellowstone Ecosystem
by David M. Szpakowski, Jennifer L. R. Jensen, T. Edwin Chow and David R. Butler
Forests 2023, 14(7), 1508; https://doi.org/10.3390/f14071508 - 24 Jul 2023
Cited by 2 | Viewed by 1730
Abstract
Burn severity is commonly assessed using Burn Ratios and field measurements to provide land managers with estimates of the degree of burning in an area. However, less commonly studied is the ability of spectral indices and Burn Ratios to estimate field-measured fire effects. [...] Read more.
Burn severity is commonly assessed using Burn Ratios and field measurements to provide land managers with estimates of the degree of burning in an area. However, less commonly studied is the ability of spectral indices and Burn Ratios to estimate field-measured fire effects. Past research has shown low correlations between fire effects and Landsat-derived Burn Ratios, but with the launch of the Sentinel-2 constellation, more spectral bands with finer spatial resolutions have become available. This paper explores the use of several red-edge-based indices and Burn Ratios alongside more ‘traditional’ spectral indices for predicting fire effects, measured from the Maple and Berry fires in Wyoming, USA. The fire effects include ash depth, char depth, post-fire dead lodgepole pine (Pinus contorta; PICO) density/stumps, mean basal diameter, cone density on dead post-fire trees, coarse wood percent cover/volume/mass, percent cover of ghost logs and initial regeneration of post-fire PICO/aspen density. All-possible-models regression was used to determine the best models for estimating each fire effect. Models with satisfactory R2 values were constructed for post-fire dead PICO stumps (0.663), coarse wood percent cover (0.691), coarse wood volume (0.833), coarse wood mass (0.838), ash depth (0.636) and percent cover of ghost logs (0.717). Red-edge-based indices were included in all of the satisfactory models, which shows that the red-edge bands may be useful for measuring fire effects. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest)
Show Figures

Figure 1

Back to TopTop