Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = chain-forming diatoms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2955 KiB  
Article
Modeling Properties of Diatoms with Fibonacci Growth Using Lindenmayer Systems
by Thomas Harbich
Phycology 2025, 5(2), 20; https://doi.org/10.3390/phycology5020020 - 20 May 2025
Viewed by 714
Abstract
In most cases, the sizes of the daughter cells of diatoms follow the MacDonald–Pfitzer rule, whereby in many species all diatoms divide once in each generation. In contrast, there are division schemes in which the smaller or larger daughter cell is delayed in [...] Read more.
In most cases, the sizes of the daughter cells of diatoms follow the MacDonald–Pfitzer rule, whereby in many species all diatoms divide once in each generation. In contrast, there are division schemes in which the smaller or larger daughter cell is delayed in its division by one generation and therefore leads to Fibonacci growth. Several properties of diatoms, especially in chain-like colonies, that exhibit such delayed division can be modeled by Lindenmayer systems. These include, above all, the size and orientation of the diatoms. Certain sequences of properties, such as the differences in size indices of neighboring diatoms, are aperiodic and represent self-similar fractal structures. For the division schemes studied, explicit solutions can be found for the number of diatoms of a certain size in each generation. For the experimental differentiation of the division schemes in a diatom chain, in addition to the observation of the division processes over several generations, methods are available that only require the analysis of the structure of a sufficiently large sample. This includes the investigation of the differences in the sizes of neighboring diatoms, the orientations of the diatoms and the frequencies of size indices in a culture. These methods provide a toolbox for investigating diatom properties, applicable to the division models described. Additionally, a mathematical framework is presented that has the potential to be transferable to other properties and other division schemes. Full article
Show Figures

Figure 1

18 pages, 3782 KiB  
Article
Active Displacement of a Unique Diatom–Ciliate Symbiotic Association
by Yonara Garcia, Felipe M. Neves, Flavio R. Rusch, Leandro T. De La Cruz, Marina E. Wosniack, J. Rudi Strickler, Marcos G. E. da Luz and Rubens M. Lopes
Fluids 2024, 9(12), 283; https://doi.org/10.3390/fluids9120283 - 29 Nov 2024
Cited by 1 | Viewed by 1255
Abstract
Adaptive movement in response to individual interactions represents a fundamental evolutionary solution found by both unicellular organisms and metazoans to avoid predators, search for resources or conspecifics for mating, and engage in other collaborative endeavors. Displacement processes are known to affect interspecific relationships, [...] Read more.
Adaptive movement in response to individual interactions represents a fundamental evolutionary solution found by both unicellular organisms and metazoans to avoid predators, search for resources or conspecifics for mating, and engage in other collaborative endeavors. Displacement processes are known to affect interspecific relationships, especially when linked to foraging strategies. Various displacement phenomena occur in marine plankton, ranging from the large-scale diel vertical migration of zooplankton to microscale interactions around microalgal cells. Among these symbiotic interactions, collaboration between the centric diatom Chaetoceros coarctatus and the peritrich ciliate Vorticella oceanica is widely known and has been recorded in several studies. Here, using 2D and 3D tracking records, we describe the movement patterns of the non-motile, chain-forming diatoms (C. coarctatus) carried by epibiotic ciliates (V. oceanica). The reported data on the Chaetoceros–Vorticella association illustrated the consortium’s ability to generate distinct motility patterns. We established that the currents generated by the attached ciliates, along with the variability in the contraction and relaxation of ciliate stalks in response to food concentration, resulted in three types of trajectories for the consortium. The characteristics of these distinct paths were determined using robust statistical methods, indicating that the different displacement behaviors allowed the consortium to adequately explore distributed resources and remain within the food-rich layers provided in the experimental containers. A simple mechanical–stochastic model was successfully applied to simulate the observed displacement patterns, further supporting the proposed mechanisms of collective response to the environment. Full article
(This article belongs to the Special Issue Biological Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

27 pages, 5532 KiB  
Article
Sea Ice as a Factor of Primary Production in the European Arctic: Phytoplankton Size Classes and Carbon Fluxes
by Elena Kudryavtseva, Marina Kravchishina, Larisa Pautova, Igor Rusanov, Dmitry Glukhovets, Alexander Shchuka, Ivan Zamyatin, Nadezhda Torgunova, Anna Chultsova, Nadezhda Politova and Alexander Savvichev
J. Mar. Sci. Eng. 2023, 11(11), 2131; https://doi.org/10.3390/jmse11112131 - 8 Nov 2023
Cited by 5 | Viewed by 1712
Abstract
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and [...] Read more.
The seasonally ice-covered marine region of the European Arctic has experienced warming and sea ice loss in the last two decades. During expeditions in August 2020 and 2021, new data on size-fractioned primary production (PP), chlorophyll a concentration, phytoplankton biomass and composition and carbon fixation rates in the dark were obtained in the marginal ice zone (MIZ) of the Barents Sea, Nansen Basin and Greenland Sea to better understand the response of Arctic ecosystems to ongoing climate changes. Four different situations were observed in the study region: (i) a bloom of the large-cell diatom Podosira glacialis, whose biomass was trapped in a strong halocline at the edge of a dense ice cover; (ii) a bloom of the chain-like colonies of Thalassiosira diatoms on the shelf in mixed waters in fields of shallow ice that could be supported by “fresh” elements in the polynya condition, as well as by terrestrial run-off and drifting ices; at the late stage, this bloom was accompanied by intensive growth of Phaeocystis pouchetti; (iii) dominance of small-cell phytoplankton under weakened stratification and the significant influence of the Atlantic water, depleted of microelements and silicates; (iv) dominance of dinoflagellates of eutrophic water in the contact zone between the water masses of Arctic origin and Atlantic origin in clear water under conditions of increased light intensity. The >10 µm phytoplankton cell size group increased its relative contribution to PP as a response to stratification, light and nutrient load associated with sea ice conditions. Small phytoplankton with sizes < 2 µm formed the basis of total PP in the MIZ regardless of the state of the sea ice. Full article
(This article belongs to the Special Issue Phytoplankton Dynamics and Biogeochemistry of Marine Ecosystems)
Show Figures

Figure 1

13 pages, 2312 KiB  
Article
Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging
by Cuiyun Yang, Guojuan Song, Jiyoung Son, Logan Howard and Xiao-Ying Yu
Microorganisms 2023, 11(7), 1841; https://doi.org/10.3390/microorganisms11071841 - 20 Jul 2023
Cited by 10 | Viewed by 3021
Abstract
Diatoms contribute to carbon fixation in the oceans by photosynthesis and always form biofouling organized by extracellular polymeric substances (EPS) in the marine environment. Bacteria-produced quorum-sensing signal molecules N-acyl homoserine lactones (AHLs) were found to play an important role in the development of [...] Read more.
Diatoms contribute to carbon fixation in the oceans by photosynthesis and always form biofouling organized by extracellular polymeric substances (EPS) in the marine environment. Bacteria-produced quorum-sensing signal molecules N-acyl homoserine lactones (AHLs) were found to play an important role in the development of Cylindrotheca sp. in previous studies, but the EPS composition change was unclear. This study used the technology of alcian blue staining and scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to directly observe the biofilm formation process. The results showed that AHLs promote the growth rates of diatoms and the EPS secretion of biofilm components. AHLs facilitated the diatom-biofilm formation by a forming process dependent on the length of carbon chains. AHLs increased the biofilm thickness and the fluorescence intensity and then altered the three-dimensional (3D) structures of the diatom-biofilm. In addition, the enhanced EPS content in the diatom-biofilm testified that AHLs aided biofilm formation. This study provides a collection of new experimental evidence of the interaction between bacteria and microalgae in fouling biofilms. Full article
(This article belongs to the Special Issue Host–Biofilm Interactions 2.0)
Show Figures

Graphical abstract

19 pages, 4202 KiB  
Article
Study on Biogenic Spindle-Shaped Iron-Oxide Nanoparticles by Pseudostaurosira trainorii in Field of Laser Desorption/Ionization Applications
by Piya Roychoudhury, Aleksandra Golubeva, Przemysław Dąbek, Oleksandra Pryshchepa, Gulyaim Sagandykova, Paweł Pomastowski, Michał Gloc, Renata Dobrucka, Krzysztof Kurzydłowski, Bogusław Buszewski and Andrzej Witkowski
Int. J. Mol. Sci. 2022, 23(19), 11713; https://doi.org/10.3390/ijms231911713 - 3 Oct 2022
Cited by 12 | Viewed by 2935
Abstract
Nanostructures-assisted laser desorption/ionization mass spectrometry (NALDI-MS) is gaining attention for the analysis of a wide range of molecules. In this present investigation, Pseudostaurosira trainorii mediated biosynthesized iron-oxide nanoparticles (IONPs) have been utilized as nanostructures assisting ionization and desorption for laser desorption/ionization mass spectrometry [...] Read more.
Nanostructures-assisted laser desorption/ionization mass spectrometry (NALDI-MS) is gaining attention for the analysis of a wide range of molecules. In this present investigation, Pseudostaurosira trainorii mediated biosynthesized iron-oxide nanoparticles (IONPs) have been utilized as nanostructures assisting ionization and desorption for laser desorption/ionization mass spectrometry (LDI-MS). The chain forming diatom, P. trainorii showed efficiency in the production of IONPs against 0.01 M Fe+3 (pH 2) aqueous solution at the intracellular and extracellular level. The whole biomass and external media turned dark orange in color after 3 days of reaction with Fe3+ solution. Scanning electron microscopic (SEM) images illustrated that the surface of Fe3+ exposed frustules of P. trainorii were entirely covered by synthesized nanostructures contrasting with the natural surface ornamentation of control cells. The IONPs loaded frustules also exhibited catalytic properties by decolorizing yellow colored nitrophenol after 3 h of reaction. Transmission electron microscopic (TEM) images confirmed that the produced particles are spindle-shaped with ~50–70 nm length and ~10–30 nm width. The biogenic IONPs were utilized as an inorganic matrix in LDI-MS and showed high sensitivity towards small molecules as glucose, alanine and triacylglycerols at nano- and picomolar level per spot, respectively. The presented biocompatible technique offers new perspectives in nanobiotechnology for the production of spindle-shaped IONPs that can be applied in future for the preparation of NALDI plates. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

21 pages, 41953 KiB  
Article
Phytoplankton Community in the Western South China Sea in Winter and Summer
by Changling Ding, Jun Sun, Dhiraj Dhondiram Narale and Haijiao Liu
Water 2021, 13(9), 1209; https://doi.org/10.3390/w13091209 - 27 Apr 2021
Cited by 11 | Viewed by 4645
Abstract
Phytoplankton are known as important harbingers of climate change in aquatic ecosystems. Here, the influence of the oceanographic settings on the phytoplankton community structure in the western South China Sea (SCS) was investigated during two seasons, i.e., the winter (December 2006) and summer [...] Read more.
Phytoplankton are known as important harbingers of climate change in aquatic ecosystems. Here, the influence of the oceanographic settings on the phytoplankton community structure in the western South China Sea (SCS) was investigated during two seasons, i.e., the winter (December 2006) and summer (August–September, 2007). The phytoplankton community was mainly composed of diatoms (192 taxa), dinoflagellates (109 taxa), and cyanobacteria (4 taxa). The chain-forming diatoms and cyanobacteria Trichodesmium were the dominants throughout the study period. The phytoplankton community structure displayed distinct variation between two seasons, shifting from a diatom-dominated regime in winter to a cyanobacteria-dominated system in summer. The increased abundance of overall phytoplankton and cyanobacteria in the water column during the summer signifies the impact of nutrient advection due to upwelling and enriched eddy activity. That the symbiotic cyanobacteria–diatom (Rhizosolenia–Richelia) association was abundant during the winter signifies the influence of cool temperature. On the contrary, Trichodesmium dominance during the summer implies its tolerance to increased temperature. Overall, the two seasonal variations within the local phytoplankton community in the western SCS could simulate their community shift over the forthcoming climatic conditions. Full article
(This article belongs to the Special Issue Marine Nitrogen Fixation and Phytoplankton Ecology)
Show Figures

Figure 1

15 pages, 4163 KiB  
Article
The Effects of Ocean Acidification and Warming on Growth of a Natural Community of Coastal Phytoplankton
by Bonggil Hyun, Ja-Myung Kim, Pung-Guk Jang, Min-Chul Jang, Keun-Hyung Choi, Kitack Lee, Eun Jin Yang, Jae Hoon Noh and Kyoungsoon Shin
J. Mar. Sci. Eng. 2020, 8(10), 821; https://doi.org/10.3390/jmse8100821 - 20 Oct 2020
Cited by 15 | Viewed by 5580
Abstract
An in situ mesocosm experiment was performed to investigate the combined effects of ocean acidification and warming on the coastal phytoplankton standing stock and species composition of a eutrophic coastal area in the temperate-subtropical region. Experimental treatments of natural seawater included three CO [...] Read more.
An in situ mesocosm experiment was performed to investigate the combined effects of ocean acidification and warming on the coastal phytoplankton standing stock and species composition of a eutrophic coastal area in the temperate-subtropical region. Experimental treatments of natural seawater included three CO2 and two temperature conditions (present control: ~400 μatm CO2 and ambient temperature, acidification conditions: ~900 μatm CO2 and ambient temperature, and greenhouse conditions: ~900 μatm CO2 and ambient temperature +3 °C). We found that increased CO2 concentration benefited the growth of small autotrophic phytoplankton groups: picophytoplankton (PP), autotrophic nanoflagellates (ANF), and small chain-forming diatoms (DT). However, in the greenhouse conditions, ANF and DT abundances were lower compared with those in the acidification conditions. The proliferation of small autotrophic phytoplankton in future oceanic conditions (acidification and greenhouse) also increased the abundance of heterotrophic dinoflagellates (HDF). These responses suggest that a combination of acidification and warming will not only increase the small autotrophic phytoplankton standing stock but, also, lead to a shift in the diatom and dinoflagellate species composition, with potential biogeochemical element cycling feedback and an increased frequency and intensity of harmful algal blooms. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

13 pages, 1766 KiB  
Article
Diatoms Dominate and Alter Marine Food-Webs When CO2 Rises
by Ben P. Harvey, Sylvain Agostini, Koetsu Kon, Shigeki Wada and Jason M. Hall-Spencer
Diversity 2019, 11(12), 242; https://doi.org/10.3390/d11120242 - 16 Dec 2019
Cited by 37 | Viewed by 8827
Abstract
Diatoms are so important in ocean food-webs that any human induced changes in their abundance could have major effects on the ecology of our seas. The large chain-forming diatom Biddulphia biddulphiana greatly increases in abundance as pCO2 increases along natural seawater [...] Read more.
Diatoms are so important in ocean food-webs that any human induced changes in their abundance could have major effects on the ecology of our seas. The large chain-forming diatom Biddulphia biddulphiana greatly increases in abundance as pCO2 increases along natural seawater CO2 gradients in the north Pacific Ocean. In areas with reference levels of pCO2, it was hard to find, but as seawater carbon dioxide levels rose, it replaced seaweeds and became the main habitat-forming species on the seabed. This diatom algal turf supported a marine invertebrate community that was much less diverse and completely differed from the benthic communities found at present-day levels of pCO2. Seawater CO2 enrichment stimulated the growth and photosynthetic efficiency of benthic diatoms, but reduced the abundance of calcified grazers such as gastropods and sea urchins. These observations suggest that ocean acidification will shift photic zone community composition so that coastal food-web structure and ecosystem function are homogenised, simplified, and more strongly affected by seasonal algal blooms. Full article
(This article belongs to the Special Issue The Effects of Ocean Acidification on Marine Phytoplankton)
Show Figures

Graphical abstract

16 pages, 6757 KiB  
Article
The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide
by Jun Li, Lisheng Liu, Shuang Xu, Jinyong Zhang and Yuanli Wu
Materials 2018, 11(10), 1861; https://doi.org/10.3390/ma11101861 - 29 Sep 2018
Cited by 7 | Viewed by 3308
Abstract
The effects of carbon content on the mechanical properties and deformation mechanisms of boron carbides were investigated by first-principles calculations, based on the density functional theory. The B12–CBC (13.33 at % C) and B10 C 2 P –CC (28.75 at [...] Read more.
The effects of carbon content on the mechanical properties and deformation mechanisms of boron carbides were investigated by first-principles calculations, based on the density functional theory. The B12–CBC (13.33 at % C) and B10 C 2 P –CC (28.75 at % C) were studied and then compared with the deformation of regular B11CP–CBC (20.0 at % C). The results show the B10 C 2 P –CC, which has the lowest carbon content, has the highest strength and hardness as well as the lowest toughness. With the increase of carbon content, the rhombohedral symmetry will be broken and the three-atoms chains will be replaced by diatomic carbon chains. These changes may have an influence on their anisotropic deformation mechanisms. For the B12–CBC, the destruction of icosahedra without bending three-atom chains causes structural failure for compression along the c axis; while for compression along the a axis, new B–B bonds are formed, causing an unrecoverable deformation; then it is gradually destroyed until full destruction. For the B10 C 2 P –CC, the anisotropic deformation mechanism is not obvious. For both loading directions, the breakage of B–CP bonds causes the stress to drop, suggesting that the structure is beginning to be destroyed. Finally, the icosahedra are fully destroyed, resulting in structural failure. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

16 pages, 1774 KiB  
Article
Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions
by Bruna Fernanda Sobrinho, Luana Mocelin De Camargo, Leonardo Sandrini-Neto, Cristian Rafael Kleemann, Eunice da Costa Machado and Luiz Laureno Mafra
Mar. Drugs 2017, 15(10), 331; https://doi.org/10.3390/md15100331 - 24 Oct 2017
Cited by 20 | Viewed by 5694
Abstract
In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA [...] Read more.
In order to assess the effects of Fe-enrichment on the growth and domoic acid (DA) production of the toxigenic diatom Pseudo-nitzschia multiseries, static cultures that received the addition of different iron (Fe) concentrations were maintained for 30 days. Intra- and extracellular DA concentrations were evaluated over time, and growth and chain-formation were compared to those of non-toxic diatoms, Bacillaria sp. Growth rates of P. multiseries (μ = 0.45–0.73 d−1) were similar among cultures containing different Fe concentrations. Likewise, the similar incidence and length of P. multiseries stepped cell chains (usually 2–4; up to 8-cell long) among the treatments reinforces that the cultures were not growth-inhibited under any condition tested, suggesting an efficient Fe acquisition mechanism. Moreover, DA concentrations were significantly higher under the highest Fe concentration, indicating that Fe is required for toxin synthesis. Bacillaria sp. reached comparable growth rates under the same Fe concentrations, except when the dissolved cell contents from a P. multiseries culture was added. The 50–70% reduction in cell density and 70–90% decrease in total chlorophyll-a content of Bacillaria sp. at early stationary growth phase indicates, for the first time, an allelopathic effect of undetermined compounds released by Pseudo-nitzschia to another diatom species. Full article
(This article belongs to the Special Issue Harmful Marine Phytoplankton)
Show Figures

Figure 1

17 pages, 614 KiB  
Article
Design and Synthesis of Pro-Apoptotic Compounds Inspired by Diatom Oxylipins
by Giovanna Romano, Emiliano Manzo, Gian Luigi Russo, Giuliana D'Ippolito, Adele Cutignano, Maria Russo and Angelo Fontana
Mar. Drugs 2013, 11(11), 4527-4543; https://doi.org/10.3390/md11114527 - 13 Nov 2013
Cited by 8 | Viewed by 6635
Abstract
Oxylipins are a large and diverse family of fatty acid derivatives exhibiting different levels of oxidation of the carbon chain. They are involved in many biological functions in mammals, plants and diatoms. In this last group of organisms, they are suggested to play [...] Read more.
Oxylipins are a large and diverse family of fatty acid derivatives exhibiting different levels of oxidation of the carbon chain. They are involved in many biological functions in mammals, plants and diatoms. In this last group of organisms, they are suggested to play a role in the reproductive failure of copepod predators, showing clear pro-apoptotic effects on newborn nauplii. In this work, these compounds were tested for the ability to induce mitotic arrest in sea urchin embryos. We show for the first time that oxylipins have an increased efficacy in their corresponding methylated form. Natural oxylipins were also used as an inspiration for the rational design and synthesis of stable chemical analogs with apoptotic activity against tumor cell lines. This approach led to the synthesis of the linear C15-ketol (22) that was shown to induce apoptosis in human leukemia U-937 cells. These results are proof of the concept of the use of eco-physiological considerations as a platform to guide the search for novel drug candidates. Full article
Show Figures

Figure 1

17 pages, 255 KiB  
Review
Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different
by Manfred Klisch and Donat P. Häder
Mar. Drugs 2008, 6(2), 147-163; https://doi.org/10.3390/md6020147 - 22 May 2008
Cited by 68 | Viewed by 13818
Abstract
Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally [...] Read more.
Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. Full article
(This article belongs to the Special Issue Marine Toxins)
Show Figures

Back to TopTop