The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide
Abstract
:1. Introduction
2. Methods
(C11 + C12) × C33 − 2 × (C13) × 2 > 0,
(C11 − C12) × C44 − 2 × (C14) × 2 > 0,
C44 > 0
3. Results
3.1. Structural and Elastic Properties
3.2. Stress-Strain Relationship
3.2.1. Hydrostatic Compression
3.2.2. Uniaxial Compressions
3.3. Anisotropic Deformation Mechanism
3.3.1. c Axis Compression
3.3.2. a Axis Compression
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thévenot, F. Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 1990, 6, 205–225. [Google Scholar] [CrossRef]
- Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Chen, M.; McCauley, J.W.; Hemker, K.J. Shock-induced localized amorphization in boron carbide. Science 2003, 299, 1563–1566. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, S.; Liu, L.; Wang, Z.; Zhang, J.; Liu, Q. Mechanism for amorphization of boron carbide under complex stress conditions. Mater. Res. Express 2018, 5, 55204. [Google Scholar] [CrossRef] [Green Version]
- Vogler, T.J.; Reinhart, W.D.; Chhabildas, L.C. Dynamic behavior of boron carbide. J. Appl. Phys. 2004, 95, 4173–4183. [Google Scholar] [CrossRef]
- Yan, X.Q.; Tang, Z.; Zhang, L.; Guo, J.J.; Jin, C.Q.; Zhang, Y.; Goto, T.; McCauley, J.W.; Chen, M.W. Depressurization amorphization of single-crystal boron carbide. Phys. Rev. Lett. 2009, 102, 075505. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.K.; Hoard, J.L. The Crystal Structure of Boron Carbide. J. Am. Chem. Soc. 1943, 65, 2115–2119. [Google Scholar] [CrossRef]
- Lazzari, R.; Vast, N.; Besson, J.M.; Baroni, S.; Corso, A.D. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. Phys. Rev. Lett. 1999, 83, 3230–3233. [Google Scholar] [CrossRef]
- Morosin, B.; Kwei, G.H.; Lawson, A.C.; Aselage, T.L.; Emin, D. Neutron powder diffraction refinement of boron carbides nature of intericosahedral chains. J. Alloys Compd. 1995, 226, 121–125. [Google Scholar] [CrossRef]
- Madhav Reddy, K.; Guo, J.J.; Shinoda, Y.; Fujita, T.; Hirata, A.; Singh, J.P.; McCauley, J.W.; Chen, M.W. Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat. Commun. 2012, 3, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Ektarawong, A.; Simak, S.I.; Alling, B. Carbon-rich icosahedral boron carbides beyond B4 C and their thermodynamic stabilities at high temperature and pressure from first principles. Phys. Rev. B 2016, 94, 054104. [Google Scholar] [CrossRef]
- Jay, A.; Vast, N.; Sjakste, J.; Duparc, O.H. Carbon-rich icosahedral boron carbide designed from first principles. Appl. Phys. Lett. 2014, 105, 031914. [Google Scholar] [CrossRef]
- Kwei, G.H.; Morosin, B. Structures of the boron-rich boron carbides from neutron powder diffraction: Implications for the nature of the inter-icosahedral chains. J. Phys. Chem. 1996, 100, 8031–8039. [Google Scholar] [CrossRef]
- Saal, J.E.; Shang, S.; Liu, Z.K. The structural evolution of boron carbide via ab initio calculations. Appl. Phys. Lett. 2007, 91, 231915. [Google Scholar] [CrossRef]
- Taylor, D.E.; McCauley, J.W.; Wright, T.W. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading. J. Phys. Condens. Matter 2012, 24. [Google Scholar] [CrossRef] [PubMed]
- Gosset, D.; Colin, M. Boron carbides of various compositions: An improved method for X-rays characterisation. J. Nucl. Mater. 1991, 183, 161–173. [Google Scholar] [CrossRef]
- Jiménez, I.; Sutherland, D.; van Buuren, T.; Carlisle, J.; Terminello, L.; Himpsel, F. Photoemission and x-ray-absorption study of boron carbide and its surface thermal stability. Phys. Rev. B 1998, 57, 13167–13174. [Google Scholar] [CrossRef]
- Vast, N.; Lazzari, R.; Besson, J.; Baroni, S.; Dal Corso, A. Atomic structure and vibrational properties of icosahedral α-boron and B4C boron carbide. Comput. Mater. Sci. 2000, 17, 127–132. [Google Scholar] [CrossRef]
- Konovalikhin, S.V.; Ponomarev, V.I. Carbon in boron carbide: The crystal structure of B11.4C3.6. Russ. J. Inorg. Chem. 2009, 54, 197–203. [Google Scholar] [CrossRef]
- Aselage, T.L.; Tissot, R.G. lattice Constants of Boron Carbides. J. Am. Ceram. Soc. 1992, 75, 2207–2212. [Google Scholar] [CrossRef]
- Cheng, C.; Reddy, K.M.; Hirata, A.; Fujita, T.; Chen, M. Structure and mechanical properties of boron-rich boron carbides. J. Eur. Ceram. Soc. 2017, 37, 4514–4523. [Google Scholar] [CrossRef]
- An, Q.; Goddard, W.; Cheng, T. Atomistic explanation of shear-induced amorphous band formation in boron carbide. Phys. Rev. Lett. 2014, 113, 1–5. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Goddard, W.A. Nanotwins soften boron-rich boron carbide (B13C2). Appl. Phys. Lett. 2017, 110, 111902. [Google Scholar] [CrossRef]
- Yang, X.; Goddard, W.A.; An, Q. Structure and Properties of Boron-Very-Rich Boron Carbides: B12 Icosahedra Linked through Bent CBB Chains. J. Phys. Chem. C 2018, 122, 2448–2453. [Google Scholar] [CrossRef]
- Li, J.; Xu, S.; Zhang, J.; Liu, L.; Liu, Q.; She, W.; Fu, Z. Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide. Chin. Phys. B 2017, 26, 047101. [Google Scholar] [CrossRef]
- Clellan, K.J.M.C.; Chu, F.; Roper, J.M.; Shindo, I. Room temperature single crystal elastic constants of boron carbide. J. Mater. Sci. 2001, 36, 3403–3407. [Google Scholar] [CrossRef]
- Korotaev, P.; Pokatashkin, P.; Yanilkin, A. The role of non-hydrostatic stresses in phase transitions in boron carbide. Comput. Mater. Sci. 2016, 121, 106–112. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Bian, F.; Meng, X. First-principles investigation on the electronic and mechanical properties of Cs-doped CH3NH3PbI3. Materials 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Jia, Q.; Wang, Y.; Zhang, W.; Xu, J. The Electronic Structure and Optical Properties of Anatase TiO2 with Rare Earth Metal Dopants from First-Principles Calculations. Materials 2018, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chai, C.; Song, Y.; Fan, Q.; Yang, Y. Structural, Mechanical, Anisotropic, and Thermal Properties of AlAs in oC12 and hP6 Phases under Pressure. Materials 2018, 11, 740. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- R. Hill The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1951, 65, 349–354. [CrossRef]
- Sun, L.; Gao, Y.; Xiao, B.; Li, Y.; Wang, G. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloys Compd. 2013, 579, 457–467. [Google Scholar] [CrossRef]
- Aryal, S.; Rulis, P.; Ching, W.Y. Mechanism for amorphization of boron carbide B4C under uniaxial compression. Phys. Rev. B 2011, 84, 184112. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of Chemical-Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Zhang, Y.; Mashimo, T.; Uemura, Y.; Uchino, M.; Kodama, M.; Shibata, K.; Fukuoka, K.; Kikuchi, M.; Kobayashi, T.; Sekine, T. Shock compression behaviors of boron carbide (B4C). J. Appl. Phys. 2006, 100, 12–17. [Google Scholar] [CrossRef]
- Shirai, K.; Masago, A.; Katayama-Yoshida, H. High-pressure properties of icosahedron-based solid borons. Phys. Status Solidi Basic Res. 2004, 241, 3161–3167. [Google Scholar] [CrossRef]
Formula | Configuration | % C | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) |
---|---|---|---|---|---|---|---|---|
B6.5C | B12–CBC | 13.33 | 5.60 | 5.60 | 11.96 | 90.00 | 90.00 | 120.00 |
B4C 1 | B11CP–CBC | 20.00 | 5.53 | 5.53 | 11.91 | 92.03 | 87.97 | 119.89 |
B2.5C | B10–CC | 28.57 | 5.42 | 5.40 | 11.01 | 90.00 | 88.88 | 119.83 |
Formula | Configuration | % C | C11 | C12 | C13 | C14 | C33 | C44 |
---|---|---|---|---|---|---|---|---|
B5.6C 1 | Experiment | 15.2 | 542.8 | 130.6 | 63.5 | / | 534.5 | 164.8 |
B6.5C | B12–CBC | 13.33 | 526.7 | 142.5 | 83.1 | 10.5 | 465.3 | 99.2 |
B4C | B11CP–CBC | 20.00 | 580.4 | 135.1 | 73.2 | 15.8 | 547.6 | 170.5 |
B2.5C | B10–CC | 28.57 | 658.1. | 99.6 | 94.2 | −20.1 | 642.9 | 301.1 |
B2.5C 2 | B10–CC | 28.57 | 620 | 90 | 75 | −23 | 605 | 290 |
Formula | Configuration | % C | B | G | E | v | BH/GH | HV | AU | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BV | BR | BH | GV | GR | GH | ||||||||
B5.6C 1 | Experiment | 15.2 | / | / | 237 | / | / | 195 | 460 | 0.18 | 1.22 | 29.4 | / |
B6.5C | B12–CBC | 13.33 | 237.3 | 238.1 | 237.7 | 158.8 | 141.2 | 150.0 | 371.6 | 0.24 | 1.58 | 22.7 | 0.62 |
B4C | B11CP–CBC | 20.00 | 255.0 | 252.9 | 253.9 | 207.7 | 198.2 | 202.9 | 480.7 | 0.18 | 1.25 | 30.6 | 0.25 |
B2.5C | B10–CC | 28.57 | 279.1 | 277.8 | 278.4 | 285.9 | 285.7 | 285.8 | 638.8 | 0.12 | 0.97 | 43.2 | 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, L.; Xu, S.; Zhang, J.; Wu, Y. The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide. Materials 2018, 11, 1861. https://doi.org/10.3390/ma11101861
Li J, Liu L, Xu S, Zhang J, Wu Y. The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide. Materials. 2018; 11(10):1861. https://doi.org/10.3390/ma11101861
Chicago/Turabian StyleLi, Jun, Lisheng Liu, Shuang Xu, Jinyong Zhang, and Yuanli Wu. 2018. "The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide" Materials 11, no. 10: 1861. https://doi.org/10.3390/ma11101861
APA StyleLi, J., Liu, L., Xu, S., Zhang, J., & Wu, Y. (2018). The Effects of Carbon Content on the Anisotropic Deformation Mechanism of Boron Carbide. Materials, 11(10), 1861. https://doi.org/10.3390/ma11101861