Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = cerebellar culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5895 KiB  
Article
Brain Structural Correlates of EEG Network Hyperexcitability, Symptom Severity, Attention, and Memory in Borderline Personality Disorder
by Andrea Schlump, Bernd Feige, Swantje Matthies, Katharina von Zedtwitz, Isabelle Matteit, Thomas Lange, Kathrin Nickel, Katharina Domschke, Marco Reisert, Alexander Rau, Markus Heinrichs, Dominique Endres, Ludger Tebartz van Elst and Simon Maier
Brain Sci. 2025, 15(6), 592; https://doi.org/10.3390/brainsci15060592 - 31 May 2025
Viewed by 791
Abstract
Introduction: Previous neuroimaging studies have reported structural brain alterations and local network hyperexcitability in terms of increased slow-wave electroencephalography (EEG) activity in patients with borderline personality disorder (BPD). In particular, intermittent rhythmic delta and theta activity (IRDA/IRTA) has drawn attention in mental [...] Read more.
Introduction: Previous neuroimaging studies have reported structural brain alterations and local network hyperexcitability in terms of increased slow-wave electroencephalography (EEG) activity in patients with borderline personality disorder (BPD). In particular, intermittent rhythmic delta and theta activity (IRDA/IRTA) has drawn attention in mental health contexts due to its links with metabolic imbalances, neuronal stress, and emotional dysregulation—processes that are highly pertinent to BPD. These functional disturbances may be reflected in corresponding structural brain changes. The current study investigated cortical thickness and subcortical volumes in BPD and examined their associations with IRDA/IRTA events per minute, symptom severity, and neuropsychological measures. Methods: Seventy female BPD patients and 36 age-matched female healthy controls (HC) were included (for clinical EEG comparisons even 72 patients were available). IRDA/IRTA rates were assessed using an automatic independent component analyses (ICA) approach. T1-weighted MRI data were obtained using a MAGNETOM Prisma 3T system and analyzed with FreeSurfer (version 7.2) for subcortical structures and CAT12 for cortical thickness and global volume measurements. Psychometric assessments included questionnaires such as Borderline Symptom List (BSL-23) and Inventory of Personality Organization (IPO). Neuropsychological performance was evaluated with the Test for Attentional Performance (TAP), Culture Fair Intelligence Test (CFT-20-R), and Verbal Learning and Memory Test (VLMT). Results: Between-group comparisons exhibited no significant increase in IRDA/IRTA rates or structural abnormalities between the BPD and HC group. However, within the BPD group, cortical thickness of the right isthmus of the cingulate gyrus negatively correlated with the IRDA/IRTA difference (after minus before hyperventilation, HV; p < 0.001). Furthermore, BPD symptom severity (BSL-23) and IPO scores positively correlated with the thickness of the right rostral anterior cingulate cortex (p < 0.001), and IPO scores were associated with the thickness of the right temporal pole (p < 0.001). Intrinsic alertness (TAP) significantly correlated with relative cerebellar volume (p = 0.01). Discussion: While no group-level structural abnormalities were observed, correlations between EEG slowing, BPD symptom severity, and alertness with cortical thickness and/or subcortical volumes suggest a potential role of the anterior cingulate cortex, temporal pole, and cerebellum in emotion regulation and cognitive functioning in BPD. Future research employing multimodal EEG-MRI approaches may provide deeper insights into the neural mechanisms underlying BPD and guide personalized therapeutic strategies. Full article
(This article belongs to the Special Issue Application of MRI in Brain Diseases)
Show Figures

Figure 1

19 pages, 33190 KiB  
Article
Jun N-Terminal Kinase Inhibitor Suppresses CASK Deficiency-Induced Cerebellar Granular Cell Death in MICPCH Syndrome Model Mice
by Qi Guo, Emi Kouyama-Suzuki, Yoshinori Shirai and Katsuhiko Tabuchi
Cells 2025, 14(10), 750; https://doi.org/10.3390/cells14100750 - 20 May 2025
Viewed by 845
Abstract
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a severe neurodevelopmental disorder caused by a deficiency in the X-linked gene calcium/calmodulin-dependent serine protein kinase (CASK). A better understanding of the role of CASK in the pathophysiology of neurodevelopmental disorders may provide insights [...] Read more.
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a severe neurodevelopmental disorder caused by a deficiency in the X-linked gene calcium/calmodulin-dependent serine protein kinase (CASK). A better understanding of the role of CASK in the pathophysiology of neurodevelopmental disorders may provide insights into novel therapeutic and diagnostic strategies for MICPCH syndrome and other neurodegenerative diseases. To investigate this, we generated CASK knockout (KO) cerebellar granule (CG) cell culture from CASK floxed (CASKflox/flox) mice by infecting lentiviruses expressing codon-improved Cre recombinase (iCre). We performed RNA-sequencing (RNA-seq) on these cells and found that CASK-KO CG cells underwent apoptosis by activating intracellular Jun N-terminal kinase (JNK) signaling and upregulating reactive oxygen species (ROS)-related gene expression. We also performed mouse gait analysis and limb clasping behavior experiments on trans-heterozygous CASK-KO and Hprt-eGFP (CASK+/- HprteGFP/+) mice. The CASK+/- HprteGFP/+ mice exhibited cerebellar ataxic phenotypes as judged by the scores of these experiments compared to the CASK wild-type control (CASK+/+ HprteGFP/+) mice. Interestingly, the administration of the JNK inhibitor, JNK-IN-8, in CASK-KO CG cell cultures increased CG cell survival by reducing ROS generation. Moreover, injection of JNK-IN-8 into the cerebellum of CASK+/- HprteGFP/+ mice suppressed CG cell death and alleviated cerebellar ataxic phenotypes in vivo. In conclusion, JNK-IN-8 suppresses the cell death and activation of the ROS pathway in CASK-KO CG cells in both in vitro and in vivo models, suggesting its potential as a therapeutic strategy for cerebellar neurodegeneration in MICPCH syndrome. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

10 pages, 809 KiB  
Communication
SCA14-Associated PKCγ-G118D Mutant Exhibits a Detrimental Effect on Cerebellar Purkinje Cell Dendritic Growth
by Qin-Wei Wu, Kejian Wang and Josef P. Kapfhammer
Int. J. Mol. Sci. 2025, 26(8), 3688; https://doi.org/10.3390/ijms26083688 - 14 Apr 2025
Viewed by 548
Abstract
Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among [...] Read more.
Spinocerebellar ataxia (SCA), an autosomal dominant neurodegenerative condition, is marked by a gradual deterioration of cerebellar function. To date, more than 40 distinct SCA subtypes have been identified, with some attributed to CAG repeat expansions and others to point mutations or deletions. Among these, spinocerebellar ataxia type 14 (SCA14) stems from missense mutations or deletions within the PRKCG gene, encoding protein kinase C gamma (PKCγ), a pivotal signaling molecule abundant in Purkinje cells. Despite its significance, the precise mechanisms underlying how genetic alterations trigger Purkinje cell malfunction and degeneration remain elusive. Given the prominent role and high expression of PKCγ in Purkinje cells, SCA14 presents a unique opportunity to unravel the underlying pathogenesis. A straightforward hypothesis posits that alterations in the biological activity of PKCγ underlie the disease phenotype, and there are hints that mutated PKCγ proteins exhibit altered enzymatic function. Our prior research focused on the PKCγ-G118D mutation, commonly found in SCA14 patients, located in the regulatory domain of the protein. While cellular assays demonstrated enhanced enzymatic activity for PKCγ-G118D, transgenic mice carrying this mutation failed to exhibit suppressed dendritic development in cerebellar cultures, raising questions about its impact within living Purkinje cells. One hypothesis is that endogenous PKCγ might interfere with the expression or effect of PKCγ-G118D. To further investigate, we leveraged CRISPR-Cas9 technology to generate a PKCγ knockout mouse model and integrated it with an L7-based, Purkinje cell-specific transfection system to analyze the effects of G118D protein expression on the dendritic morphology of developing Purkinje cells. Our findings reveal that, utilizing this approach, PKCγ-G118D exerts a detrimental effect on Purkinje cell growth, confirming its negative influence, indicating that the potential of the G118D mutation to contribute to SCA14 pathogenesis. Full article
Show Figures

Figure 1

15 pages, 1754 KiB  
Systematic Review
Diversity and Distribution of Fungal Infections in Rwanda: High Risk and Gaps in Knowledge, Policy, and Interventions
by Claude Mambo Muvunyi, Jean Claude Semuto Ngabonziza, Masaisa Florence, Isabelle Mukagatare, Marc Twagirumukiza, Ayman Ahmed and Emmanuel Edwar Siddig
J. Fungi 2024, 10(9), 658; https://doi.org/10.3390/jof10090658 - 18 Sep 2024
Cited by 4 | Viewed by 2077
Abstract
Fungal infections (FIs) are spreading globally, raising a significant public health concern. However, its documentation remains sparse in Africa, particularly in Rwanda. This report provides a comprehensive review of FIs in Rwanda based on a systematic review of reports published between 1972 and [...] Read more.
Fungal infections (FIs) are spreading globally, raising a significant public health concern. However, its documentation remains sparse in Africa, particularly in Rwanda. This report provides a comprehensive review of FIs in Rwanda based on a systematic review of reports published between 1972 and 2022. The findings reveal a rich diversity of fungal pathogens, including Blastomyces, Candida, Cryptococcus, Histoplasma, Microsporum, Pneumocystis, Rhinosporidium, and Trichophyton caused human infections. Candida infections predominantly affect the vagina mucosa, while Histoplasma duboisi was linked to disseminated infections. Other pathogens, such as Blastomyces dermatitidis and Rhinosporidium seeberi, were associated with cerebellar and nasal mucosa infections, respectively. The widespread observation of soilborne fungi affecting bean crops highlights the pathogens’ threat to agricultural productivity, food security, and socioeconomic stability, as well as potential health impacts on humans, animals, and the environment. Of particular importance is that there is no information about FIs among animals in the country. Moreover, the analysis underscores significant limitations in the detection, reporting, and healthcare services related to FIs in the country, indicating gaps in diagnostic capacity and surveillance systems. This is underscored by the predominant use of traditional diagnostic techniques, including culture, cytology, and histopathology in the absence of integrating more sensitive and specific molecular tools in investigating FIs. Developing the diagnostic capacities and national surveillance systems are urgently needed to improve the health of crops, animals, and humans, as well as food security and socioeconomic stability in Rwanda. Also, it is important to indicate severe gaps in the evidence to inform policymaking, guide strategic planning, and improve healthcare and public health services, underscoring the urgent need to build national capacity in fungal diagnosis, surveillance, and research. Raising awareness among the public, scientific community, healthcare providers, and policymakers remains crucial. Furthermore, this report reveals the threats of FIs on public health and food insecurity in Rwanda. A multisectoral one health strategy is essential in research and intervention to determine and reduce the health and safety impacts of fungal pathogens on humans, animals, and the environment. Full article
(This article belongs to the Special Issue Novel, Emerging and Neglected Fungal Pathogens for Humans)
Show Figures

Figure 1

8 pages, 527 KiB  
Case Report
Mutations in Genes Encoding Subunits of the RNA Exosome as a Potential Novel Cause of Thrombotic Microangiopathy
by Kioa L. Wijnsma, Anne M. Schijvens, Romy N. Bouwmeester, Lonneke A. M. Aarts, Lambertus (Bert) P. van den Heuvel, Charlotte A. Haaxma and Nicole C. A. J. van de Kar
Int. J. Mol. Sci. 2024, 25(14), 7604; https://doi.org/10.3390/ijms25147604 - 11 Jul 2024
Cited by 3 | Viewed by 1881
Abstract
Thrombotic microangiopathy (TMA) in association with RNA exosome encoding mutations has only recently been recognized. Here, we present an infant (female) with an EXOSC5 mutation (c.230_232del p.Glu77del) associated with the clinical phenotype known as CABAC syndrome (cerebellar ataxia, brain abnormalities, and cardiac conduction [...] Read more.
Thrombotic microangiopathy (TMA) in association with RNA exosome encoding mutations has only recently been recognized. Here, we present an infant (female) with an EXOSC5 mutation (c.230_232del p.Glu77del) associated with the clinical phenotype known as CABAC syndrome (cerebellar ataxia, brain abnormalities, and cardiac conduction defects), including pontocerebellar hypoplasia, who developed renal TMA. At the age of four months, she presented with signs of septic illness, after which she developed TMA. A stool culture showed rotavirus as a potential trigger. The patient received eculizumab once, alongside supportive treatment, while awaiting diagnostic analysis of TMA, including genetic complement analysis, all of which were negative. Eculizumab was withdrawn and the patient’s TMA recovered quickly. A review of the literature identified an additional four patients (age < 1 year) who developed TMA after a viral trigger in the presence of mutations in EXOSC3. The recurrence of TMA in one of these patients with an EXOSC3 mutation while on eculizumab treatment underscores the apparent lack of responsiveness to C5 inhibition. In conclusion, mutations in genes influencing the RNA exosome, like EXOSC3 and EXOSC5, characterized by neurodevelopment and neurodegenerative disorders could potentially lead to TMA in the absence of complement dysregulation. Hence, these patients were likely non-responsive to eculizumab. Full article
Show Figures

Figure 1

20 pages, 2911 KiB  
Article
Modification of Gas6 Protein in the Brain by a Functional Endogenous Tissue Vitamin K Cycle
by Nadide Aydin, Bouchra Ouliass, Guylaine Ferland and Sassan Hafizi
Cells 2024, 13(10), 873; https://doi.org/10.3390/cells13100873 - 18 May 2024
Cited by 3 | Viewed by 2507
Abstract
The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of [...] Read more.
The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of this mechanism in the brain is not known. We report here the endogenous expression of multiple components of the vitamin K cycle within the mouse brain at various ages as well as in distinct brain glial cells. The brain expression of all genes was increased in the postnatal ages, mirroring their profiles in the liver. In microglia, the proinflammatory agent lipopolysaccharide caused the downregulation of all key vitamin K cycle genes. A secreted Gas6 protein was detected in the medium of both mouse cerebellar slices and brain glial cell cultures. Furthermore, the endogenous Gas6 γ-carboxylation level was abolished through incubation with the vitamin K antagonist warfarin and could be restored through co-incubation with vitamin K1. Finally, the γ-carboxylation level of the Gas6 protein within the brains of warfarin-treated rats was found to be significantly reduced ex vivo compared to the control brains. In conclusion, we demonstrated for the first time the existence of a functional vitamin K cycle within rodent brains, which regulates the functional modification of endogenous brain Gas6. These results indicate that vitamin K is an important nutrient for the brain. Furthermore, the measurement of vitamin K-dependent Gas6 functionality could be an indicator of homeostatic or disease mechanisms in the brain, such as in neurological disorders where Gas6/TAM signalling is impaired. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 2345 KiB  
Article
Structure and Neuroprotector Properties of a Complex Compound of Lithium with Comenic Acid
by Stanislav Kozin, Alexandr Kravtsov, Lev Ivashchenko, Victor Dotsenko, Stepan Dzhimak, Nicolai Aksenov, Arthur Vashurin, Vasily Ivlev, Mikhail Baryshev, Alexandr Bespalov, Lilia Fedulova, Anna Dorohova and Anastasia Anashkina
Int. J. Mol. Sci. 2024, 25(1), 286; https://doi.org/10.3390/ijms25010286 - 24 Dec 2023
Cited by 3 | Viewed by 2038
Abstract
The structure, antioxidant and neuroprotective properties of lithium comenate (lithium 5-hydroxy-4-oxo-4H-pyran-2-carboxylate) were studied. Lithium comenate was obtained by reacting comenic acid (H2Com) with lithium hydroxide in an aqueous solution. The structure of lithium comenate was confirmed via thermal analysis, mass spectrometry, [...] Read more.
The structure, antioxidant and neuroprotective properties of lithium comenate (lithium 5-hydroxy-4-oxo-4H-pyran-2-carboxylate) were studied. Lithium comenate was obtained by reacting comenic acid (H2Com) with lithium hydroxide in an aqueous solution. The structure of lithium comenate was confirmed via thermal analysis, mass spectrometry, IR, NMR and UV spectroscopy. The crystal structure was studied in detail via X-ray diffraction. The compound crystallized in a non-centrosymmetric space group of symmetry of the orthorhombic system Pna21 in the form of a hydrate, with three water molecules entering the first coordination sphere of the cation Li+ and one molecule forming a second environment through non-valent contacts. The gross formula of the complex compound was established [Li(HCom)(H2O)3]·H2O. It has been established that lithium comenate has a pronounced neuroprotective activity under the excitotoxic effect of glutamate, increasing the survival rate of cultured rat cerebellar neurons more than two-fold. It has also been found that the pre-stress use of lithium comenate at doses of 1 and 2 mg/kg has an antioxidant effect, which is manifested in a decrease in oxidative damage to the brain tissues of mice subjected to immobilization stress. Based on the data available in the literature, we believe that the high neuroprotective and antioxidant efficacy of lithium comenate is a consequence of the mutual potentiation of the pharmacological effects of lithium and comenic acid. Full article
(This article belongs to the Special Issue Best Materials of the VII Congress of Russian Biophysicists)
Show Figures

Figure 1

14 pages, 2183 KiB  
Review
GABAA-ρ Receptors in the CNS: Their Functional, Pharmacological, and Structural Properties in Neurons and Astroglia
by Abraham Rosas-Arellano, Argel Estrada-Mondragón, Ataúlfo Martínez-Torres and Daniel Reyes-Haro
Neuroglia 2023, 4(4), 239-252; https://doi.org/10.3390/neuroglia4040017 - 8 Oct 2023
Cited by 2 | Viewed by 3948
Abstract
Gamma-aminobutyric acid (GABA) is known as the main inhibitory transmitter in the central nervous system (CNS), where it hyperpolarizes mature neurons through activation of GABAA receptors, pentameric complexes assembled by combination of subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π and ρ1–3). [...] Read more.
Gamma-aminobutyric acid (GABA) is known as the main inhibitory transmitter in the central nervous system (CNS), where it hyperpolarizes mature neurons through activation of GABAA receptors, pentameric complexes assembled by combination of subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π and ρ1–3). GABAA-ρ subunits were originally described in the retina where they generate non-desensitizing Cl- currents that are insensitive to bicuculline and baclofen. However, now is known that they are widely expressed throughout the brain including glial cells. For example, whole-cell patch-clamp recordings demonstrated the functional expression of GABAA-ρ receptors in primary cultures of cerebellar astrocytes, as well as in cerebellar ependymal cells and striatal astrocytes. In these cells GABA-currents were partially blocked by TPMPA and insensitive to barbiturates. These receptors are proposed to be involved in extrasynaptic communication and dysfunction of the signaling is accompanied by reduced expression of GABAA-ρ receptors in Huntington’s disease and autism spectrum disorders (ASD). Thus, the aim of this review is to present an overview about GABAA-ρ receptors including their structure and function, as well as their importance in the excitatory/inhibitory (E/I) balance in neurodevelopment and in disease. Full article
Show Figures

Figure 1

23 pages, 2976 KiB  
Review
Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System
by Sumit S. Rathod, Yogeeta O. Agrawal, Kartik T. Nakhate, M. F. Nagoor Meeran, Shreesh Ojha and Sameer N. Goyal
Biomedicines 2023, 11(10), 2642; https://doi.org/10.3390/biomedicines11102642 - 26 Sep 2023
Cited by 12 | Viewed by 4176
Abstract
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including [...] Read more.
Neuroinflammation is a complex biological process that typically originates as a protective response in the brain. This inflammatory process is triggered by the release of pro-inflammatory substances like cytokines, prostaglandins, and reactive oxygen and nitrogen species from stimulated endothelial and glial cells, including those with pro-inflammatory functions, in the outer regions. While neuronal inflammation is common in various central nervous system disorders, the specific inflammatory pathways linked with different immune-mediated cell types and the various factors influencing the blood-brain barrier significantly contribute to disease-specific characteristics. The endocannabinoid system consists of cannabinoid receptors, endogenous cannabinoids, and enzymes responsible for synthesizing and metabolizing endocannabinoids. The primary cannabinoid receptor is CB1, predominantly found in specific brain regions such as the brainstem, cerebellum, hippocampus, and cortex. The presence of CB2 receptors in certain brain components, like cultured cerebellar granular cells, Purkinje fibers, and microglia, as well as in the areas like the cerebral cortex, hippocampus, and cerebellum is also evidenced by immunoblotting assays, radioligand binding, and autoradiography studies. Both CB1 and CB2 cannabinoid receptors exhibit noteworthy physiological responses and possess diverse neuromodulatory capabilities. This review primarily aims to outline the distribution of CB1 and CB2 receptors across different brain regions and explore their potential roles in regulating neuroinflammatory processes. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids 2.0)
Show Figures

Graphical abstract

14 pages, 2155 KiB  
Article
Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth
by Monica Tschang, Suneel Kumar, Wise Young, Melitta Schachner and Thomas Theis
Int. J. Mol. Sci. 2023, 24(18), 14271; https://doi.org/10.3390/ijms241814271 - 19 Sep 2023
Viewed by 1630
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to [...] Read more.
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

11 pages, 1604 KiB  
Article
Effects of Perfluorooctane Sulfonate on Cerebellar Cells via Inhibition of Type 2 Iodothyronine Deiodinase Activity
by Yuki Fujiwara, Yuhei Miyasaka, Ayane Ninomiya, Wataru Miyazaki, Toshiharu Iwasaki, Winda Ariyani, Izuki Amano and Noriyuki Koibuchi
Int. J. Mol. Sci. 2023, 24(16), 12765; https://doi.org/10.3390/ijms241612765 - 14 Aug 2023
Cited by 3 | Viewed by 2020
Abstract
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been [...] Read more.
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10−7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRβ1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

15 pages, 11707 KiB  
Article
Radotinib Decreases Prion Propagation and Prolongs Survival Times in Models of Prion Disease
by Yeong-Gon Choi, Byungki Jang, Jeong-Ho Park, Min-Woo Choi, Gong Yeal Lee, Dae Jin Cho, Hong Youp Kim, Hae Kyoung Lim, Won Jae Lee, Eun-Kyoung Choi and Yong-Sun Kim
Int. J. Mol. Sci. 2023, 24(15), 12241; https://doi.org/10.3390/ijms241512241 - 31 Jul 2023
Cited by 1 | Viewed by 1757
Abstract
The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research [...] Read more.
The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research focuses on identifying medicines that can delay the progression of these diseases. According to the concept of drug repositioning, we investigated the efficacy of the c-Abl tyrosine kinase inhibitor radotinib, which is a drug that is approved for the treatment of chronic myeloid leukemia, in the treatment of disease progression in prion models, including prion-infected cell models, Tga20 and hamster cerebellar slice culture models, and 263K scrapie-infected hamster models. Radotinib inhibited PrPSc deposition in neuronal ZW13-2 cells that were infected with the 22L or 139A scrapie strains and in cerebellar slice cultures that were infected with the 22L or 263K scrapie strains. Interestingly, hamsters that were intraperitoneally injected with the 263K scrapie strain and intragastrically treated with radotinib (100 mg/kg) exhibited prolonged survival times (159 ± 28.6 days) compared to nontreated hamsters (135 ± 9.9 days) as well as reduced PrPSc deposition and ameliorated pathology. However, intraperitoneal injection of radotinib exerted a smaller effect on the survival rate of the hamsters. Additionally, we found that different concentrations of radotinib (60, 100, and 200 mg/kg) had similar effects on survival time, but this effect was not observed after treatment with a low dose (30 mg/kg) of radotinib. Interestingly, when radotinib was administered 4 or 8 weeks after prion inoculation, the treated hamsters survived longer than the vehicle-treated hamsters. Additionally, a pharmacokinetic assay revealed that radotinib effectively crossed the blood–brain barrier. Based on our findings, we suggest that radotinib is a new candidate anti-prion drug that could possibly be used to treat prion diseases and promote the remission of symptoms. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

8 pages, 3718 KiB  
Case Report
Suppurative Meningoencephalitis by Pseudomonas aeruginosa from Direct Extension of Chronic Otitis in a Gir Cow
by Antonio Carlos Lopes Câmara, Davi Emanuel Ribeiro de Sousa, Isabel Luana de Mâcedo, Karoline Lacerda Soares, José Renato Junqueira Borges, Carlos Frederico Martins, Adriano Queiroz de Mesquita, Valéria Dutra and Márcio Botelho de Castro
Vet. Sci. 2023, 10(6), 398; https://doi.org/10.3390/vetsci10060398 - 16 Jun 2023
Viewed by 2455
Abstract
This paper aims to report clinical, laboratory and pathological features in a case of suppurative meningoencephalitis by P. aeruginosa from the direct extension of chronic otitis in a Gir cow. The cow was recumbent during physical examination, and neurological examination revealed depression, absence [...] Read more.
This paper aims to report clinical, laboratory and pathological features in a case of suppurative meningoencephalitis by P. aeruginosa from the direct extension of chronic otitis in a Gir cow. The cow was recumbent during physical examination, and neurological examination revealed depression, absence of left eyelid and auricular motor reflex, and hypotonic tongue. Hematology revealed hemoconcentration, leukocytosis by neutrophilia, and hyperfibrinogenemia. Cerebrospinal fluid was slightly turbid, and presented polymorphonuclear pleocytosis, and hyperproteinorrachia. Grossly, the skull floor showed a purulent green–yellow exudate that drained from the left inner ear to the cisterna magna. There was diffuse congestion of the telencephalon, and meninges showed severe hyperemia, moderate thickening, and opacity with the deposition of fibrinosuppurative material ventrally, extending to the cerebellum and brainstem. The left cerebellar hemisphere showed an approximately 1.5 cm in diameter liquefaction area surrounded by a hemorrhagic halo. Histologically, cerebellar, mesencephalic, thalamic, and brain base meninges were intensely thickened and showed severe suppurative inflammation and fibrin deposition. Small multifocal suppurative areas were observed in the cerebellum and brainstem, characterized by a necrotic core, a number of neutrophils, and Gram-negative intralesional bacillary myriads. Pure cultures of P. aeruginosa were obtained and identified in the suppurative CNS lesions, meninges, and inner ear samples. This report highlights an uncommon clinical evolution of secondary P. aeruginosa suppurative meningoencephalitis, probably triggered by recurrent parasitic otitis in an adult Gir cow. Veterinarians, practitioners, and farmers must be aware of the risk of CNS infections after unresolved media and inner otitis, especially in cattle breeds more prone to developing parasitic otitis, such as the Gir and Indubrasil breeds. Full article
Show Figures

Figure 1

19 pages, 5815 KiB  
Article
Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α
by Winda Ariyani, Izuki Amano and Noriyuki Koibuchi
Int. J. Mol. Sci. 2023, 24(10), 9011; https://doi.org/10.3390/ijms24109011 - 19 May 2023
Cited by 5 | Viewed by 2597
Abstract
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action [...] Read more.
The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERβ or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERβ or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte–neuron communication, which may lead to isoflavone-induced neuritogenesis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 2220 KiB  
Article
Blockade of L-Type Ca2+ Channel Activity Alleviates Oligodendrocyte Pathology following Brain Injury in Male Rats
by Mohamed A. Al-Griw, Rabia Alghazeer, Haithm W. Ratemi, Mohamed E. Ben-Othman, Refaat Tabagah, Ghalia Shamlan, Mahmmoud M. Habibullah, Afnan M. Alnajeebi, Nouf A. Babteen, Areej A. Eskandrani, Ammar AL-Farga and Wafa S. Alansari
Curr. Issues Mol. Biol. 2023, 45(5), 3953-3964; https://doi.org/10.3390/cimb45050252 - 2 May 2023
Viewed by 2177
Abstract
A growing body of studies suggests that Ca2+ signaling controls a variety of biological processes in brain elements. Activation of L-type voltage-operated Ca2+ channels (VOCCs) plays a role in the development of oligodendrocyte (OL) lineage loss, and indicates that the blocking [...] Read more.
A growing body of studies suggests that Ca2+ signaling controls a variety of biological processes in brain elements. Activation of L-type voltage-operated Ca2+ channels (VOCCs) plays a role in the development of oligodendrocyte (OL) lineage loss, and indicates that the blocking of these channels may be an effective way to inhibit OL lineage cell loss. For this study, 10.5-day-old male Sprague–Dawley rats were used to generate cerebellar tissue slices. The slice tissues were cultured and randomly allocated to one of four groups (six each) and treated as follows: Group I, (sham control); Group II, 0.1% dimethyl sulfoxide (DMSO) only (vehicle control); Group III, injury (INJ); Group IV, (INJ and treatment with NIF). The injury was simulated by exposing the slice tissues to 20 min of oxygen–glucose deprivation (OGD). At 3 days post-treatment, the survival, apoptosis, and proliferation of the OL lineages were measured and compared. Results: In the INJ group, there was a decrease in mature myelin basic protein+ OLs (MBP+ OLs) and their precursors, NG2+ OPCs (Nerve-glia antigen 2+ oligodendrocyte precursor cell), compared with controls. A significant elevation was observed in the NG2+ OPCs and apoptotic MBP+ OLs as confirmed by a TUNEL assay. However, the cell proliferation rate was decreased in NG2+ OPCs. NIF increased OL survival as measured by apoptosis rate in both OL lineages and preserved the rate of proliferation in the NG2+ OPCs. Conclusions: Activation of L-type VOCCs may contribute to OL pathology in association with reduced mitosis of OPCs following brain injury as a strategy to treat demyelinating diseases. Full article
Show Figures

Figure 1

Back to TopTop