Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = ceramics/ZnO-CuO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7391 KiB  
Review
Preparation Methods and Photocatalytic Performance of Kaolin-Based Ceramic Composites with Selected Metal Oxides (ZnO, CuO, MgO): A Comparative Review
by Dikra Bouras, Lotfi Khezami, Regis Barille, Neçar Merah, Billel Salhi, Gamal A. El-Hiti, Ahlem Guesmi and Mamoun Fellah
Inorganics 2025, 13(5), 162; https://doi.org/10.3390/inorganics13050162 - 13 May 2025
Cited by 2 | Viewed by 1144
Abstract
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics [...] Read more.
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics (DD3 and DD3 with 38% ZrO2) from Guelma, Algeria, were used as substrates. This review highlights the effects of different preparation methods on the structural, morphological, and compositional properties of the resulting photocatalysts. Additionally, the potential of these materials for the photocatalytic degradation of organic dyes, specifically Orange II, was evaluated. Results indicated that ceramic/ZnO/CuO and ceramic/MgO powders prepared via traditional mixing and co-precipitation techniques exhibited significantly faster degradation rates under visible light than Cu layers deposited on ceramic substrates using solution gradient processes. This enhancement was attributed to the increased effective surface area and the size of the spherical nanoparticles obtained through these methods, which facilitated accelerated pollutant absorption. This study highlights the ease and cost-effectiveness of preparing robust layers on ceramic substrates, which are advantageous for photocatalytic applications due to their straightforward removal after filtration. Notably, DD3Z/MgO powders demonstrated superior catalytic activity, achieving complete degradation of the organic dye in just 10 min, whereas DD3Z/ZnO-CuO powders achieved 93.6% degradation after 15 min. Additionally, experiments using kaolin-based ceramics as substrates instead of powders yielded a maximum dye decomposition rate of 77.76% over 6 h using ZnO thin layers prepared via the autoclave method. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 380
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

25 pages, 14457 KiB  
Article
New Mcconnellite Ceramic Pigment as a Selective Solar Absorber: Effects of Microwave Firing and Rare Earth Doping
by Guillermo Monrós, José Antonio Badenes, Carolina Delgado, Guillem Monrós-Andreu and Mario Llusar
Materials 2025, 18(7), 1520; https://doi.org/10.3390/ma18071520 - 28 Mar 2025
Cited by 1 | Viewed by 385
Abstract
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured [...] Read more.
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured glazes as selective solar absorbers (SSA) for integral ceramic solar collectors has been reported. The addition of quartz or anatase as colour modifiers was investigated to prevent the bluing of the pigment in Zn-containing glazes, a phenomenon associated with the exsolution of copper. Furthermore, doping with lanthanide oxides was explored to address two key challenges: controlling the formation of pinhole defects in porcelain glazes, which are linked to the destabilization of Cu+, and adjusting the IR cut-off wavelength to improve its performance as SSA. Full article
Show Figures

Graphical abstract

20 pages, 5035 KiB  
Article
Study of Application of an Active Ultrasound by Use of Zn-Al-Mg-Ti-Based Solder on Selected Substrates
by Roman Koleňák, Tomáš Meluš, Jaromír Drapala, Peter Gogola and Matej Pašák
Materials 2025, 18(5), 1094; https://doi.org/10.3390/ma18051094 - 28 Feb 2025
Viewed by 534
Abstract
This study investigates the potential application of Zn5Al1.5Mg1.5Ti active solder in ultrasonic soldering of Al2O3 ceramics and Cu substrates. The research explores the microstructural characteristics, phase composition, and mechanical properties of the solder and the resulting joints. Particular attention is [...] Read more.
This study investigates the potential application of Zn5Al1.5Mg1.5Ti active solder in ultrasonic soldering of Al2O3 ceramics and Cu substrates. The research explores the microstructural characteristics, phase composition, and mechanical properties of the solder and the resulting joints. Particular attention is given to the formation mechanisms of the solder–substrate bond and the role of ultrasound activation in enhancing wettability and bond strength. The study aimed to provide a deeper understanding of active soldering processes and their suitability for high-temperature applications. The findings contribute to advancing lead-free soldering technologies for electronic and structural applications. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Figure 1

13 pages, 13370 KiB  
Article
Low-Temperature Sintering and Microwave Dielectric Properties of CuxZn1−xTi0.2Zr0.8Nb2O8 Ceramics with the Aid of LiF
by Xing-Hua Ma, Qi Qu, Haitao Wu, Zhenlu Zhang and Xingyi Ma
Materials 2024, 17(24), 6251; https://doi.org/10.3390/ma17246251 - 20 Dec 2024
Cited by 1 | Viewed by 950
Abstract
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) [...] Read more.
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) and high quality factor (Q × f). Although ZnTi0.2Zr0.8Nb2O8 ceramic exhibits impressive microwave dielectric properties, including an εr of 29.75, a Q × f of 107,303 GHz, and a τf of −24.41 ppm/°C, its sintering temperature of 1150 °C remains a significant barrier for integration into low-temperature co-fired ceramic (LTCC) technologies. To overcome this limitation, a strategy involving the partial substitution of Zn2+ with Cu2+ and the addition of LiF as a sintering aid was devised for ZnTi0.2Zr0.8Nb2O8. The dual impact of Cu2+ partial substitution and LiF as a sintering enhancer facilitated the successful sintering of Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramics at a reduced temperature of 950 °C using the conventional solid-state reaction method. These ceramics exhibited excellent microwave dielectric properties. Notably, Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramic with 40 mol% LiF addition demonstrated optimal microwave dielectric properties without any reaction with a silver electrode at a sintering temperature of 950 °C, yielding εr = 32, Q × f = 45,543 GHz, and τf = −43.5 ppm/°C. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 15274 KiB  
Article
Microstructure, Mechanical and Tribological Properties of Cu40Zn-Ti3AlC2 Composites by Powder Metallurgy
by Fangdian Peng, Shidong Zhou, Tao Yang, Liwei Wu, Jianbo Wu, Puyou Ying, Ping Zhang, Changhong Lin, Yabo Fu, Zhibiao Tu, Tianle Wang, Xin Zhang, Nikolai Myshkin and Vladimir Levchenko
Lubricants 2024, 12(9), 306; https://doi.org/10.3390/lubricants12090306 - 31 Aug 2024
Viewed by 1444
Abstract
The exploration of unleaded free-cutting Cu40Zn brass with excellent mechanical and tribological properties has always drawn the attention of researchers. Due to its attractive properties combining metals and ceramics, Ti3AlC2 was added to Cu40Zn brass using high-energy milling and hot-pressing [...] Read more.
The exploration of unleaded free-cutting Cu40Zn brass with excellent mechanical and tribological properties has always drawn the attention of researchers. Due to its attractive properties combining metals and ceramics, Ti3AlC2 was added to Cu40Zn brass using high-energy milling and hot-pressing sintering. The effects of Ti3AlC2 on the microstructure, mechanical and tribological properties of Cu40Zn-Ti3AlC2 composites were studied. The results showed that Ti3AlC2 could suppress the formation of ZnO by adsorbing oxygen impurity and promote the formation of the β phase by releasing the β-forming element Al to the substrate. The hardness and wear resistance of Cu40Zn-Ti3AlC2 composites increased with increasing Ti3AlC2 content from 0 to 5 wt.%. The proper Ti3AlC2 additive was beneficial to both the strength and plasticity of the composites. The underlying mechanisms were discussed. Full article
Show Figures

Figure 1

13 pages, 5477 KiB  
Article
Chemical Stability of High-Entropy Spinel in a High-Pressure Pure Hydrogen Atmosphere
by Kamil Domaradzki, Anna Adamczyk, Michał Pyzalski, Tomasz Brylewski, Marek Nowak and Mieczysław Jurczyk
Materials 2024, 17(13), 3309; https://doi.org/10.3390/ma17133309 - 4 Jul 2024
Cited by 1 | Viewed by 1056
Abstract
This paper focuses on high-entropy spinels, which represent a rapidly growing group of materials with physicochemical properties that make them suitable for hydrogen energy applications. The influence of high-pressure pure hydrogen on the chemical stability of three high-entropy oxide (HEO) sinter samples with [...] Read more.
This paper focuses on high-entropy spinels, which represent a rapidly growing group of materials with physicochemical properties that make them suitable for hydrogen energy applications. The influence of high-pressure pure hydrogen on the chemical stability of three high-entropy oxide (HEO) sinter samples with a spinel structure was investigated. Multicomponent HEO samples were obtained via mechanochemical synthesis (MS) combined with high-temperature thermal treatment. Performing the free sintering procedure on powders after MS at 1000 °C for 3 h in air enabled achieving single-phase (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 and (Cu0.2Fe0.2Mg0.2Ni0.2Ti0.2)3O4 powders with a spinel structure, and in the case of (Cu0.2Fe0.2Mg0.2Ti0.2Zn0.2)3O4, a spinel phase in the amount of 95 wt.% was achieved. A decrease in spinel phase crystallite size and an increase in lattice strains were established in the synthesized spinel powders. The hydrogenation of the synthesized samples in a high-pressure hydrogen atmosphere was investigated using Sievert’s technique. The results of XRD, SEM, and EDS investigations clearly showed that pure hydrogen at temperatures of up to 250 °C and a pressure of up to 40 bar did not significantly impact the structure and microstructure of the (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 ceramic, which demonstrates its potential for application in hydrogen technologies. Full article
(This article belongs to the Special Issue Recent Advances in Entropy-Engineered Functional Materials)
Show Figures

Figure 1

12 pages, 3362 KiB  
Article
Zero-Temperature Coefficient of Resonant Frequency in [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-Ca0.6(La0.9Y0.1)0.2667TiO3 Ultra-Low-Loss Composite Dielectrics
by Yuan-Bin Chen and Jie Peng
Ceramics 2024, 7(2), 466-477; https://doi.org/10.3390/ceramics7020030 - 26 Mar 2024
Cited by 1 | Viewed by 1874
Abstract
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6 [...] Read more.
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 shows a permittivity (εr) of approximately 20, a high quality factor (Q × f) ranging between 250,000 and 560,000 GHz, and a temperature coefficient of resonant frequency (τf) of approximately −65 ppm/°C. To enhance the temperature stability, Ca0.6(La0.9Y0.1)0.2667TiO3 featuring a τf value of +374 ppm/°C was incorporated into the [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 composition. τf demonstrated an increase with rising Ca0.6(La0.9Y0.1)0.2667TiO3 content, reaching zero at x = 0.95. A ceramic composition of 0.95[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-0.05Ca0.6(La0.9Y0.1)0.2667TiO3, incorporating 3wt.% BaCu(B2O5) as sintering aids, exhibited outstanding microwave dielectric properties: εr~22.5, Q × f~195,000 (at 9 GHz), and τf~0.1ppm/°C, with a sintering temperature at 950 °C. This material is proposed as a prospective candidate for 6G band components and GPS antennas. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

16 pages, 6012 KiB  
Article
Study of Electrical and Dielectric Behaviors of Copper-Doped Zinc Oxide Ceramic Prepared by Spark Plasma Sintering for Electronic Device Applications
by Majdi Benamara, Kais Iben Nassar, Pedro Rivero-Antúnez, Manel Essid, Silvia Soreto Teixeira, Shanyu Zhao, Albert Serrà and Luis Esquivias
Nanomaterials 2024, 14(5), 402; https://doi.org/10.3390/nano14050402 - 22 Feb 2024
Cited by 14 | Viewed by 2508
Abstract
In this study, Cu-doped ZnO aerogel nanoparticles with a 4% copper concentration (Cu4ZO) were synthesized using a sol–gel method, followed by supercritical drying and heat treatment. The subsequent fabrication of Cu4ZO ceramics through Spark Plasma Sintering (SPS) was characterized by X-ray diffraction (XRD), [...] Read more.
In this study, Cu-doped ZnO aerogel nanoparticles with a 4% copper concentration (Cu4ZO) were synthesized using a sol–gel method, followed by supercritical drying and heat treatment. The subsequent fabrication of Cu4ZO ceramics through Spark Plasma Sintering (SPS) was characterized by X-ray diffraction (XRD), field-emission gun scanning electron microscopy (FE-SEM) equipped with EDS, and impedance spectroscopy (IS) across a frequency range of 100 Hz to 1 MHz and temperatures from 270 K to 370 K. The SPS–Cu4ZO sample exhibited a hexagonal wurtzite structure with an average crystallite size of approximately 229 ± 10 nm, showcasing a compact structure with discernible pores. The EDS spectrum indicates the presence of the base elements zinc and oxygen with copper like the dopant element. Remarkably, the material displayed distinct electrical properties, featuring high activation energy values of about 0.269 ± 0.021 eV. Complex impedance spectroscopy revealed the impact of temperature on electrical relaxation phenomena, with the Nyquist plot indicating semicircular arc patterns associated with grain boundaries. As temperature increased, a noticeable reduction in the radius of these arcs occurred, coupled with a shift in their center points toward the axis center, suggesting a non-Debye-type relaxation mechanism. Dielectric analyses revealed a temperature-driven evolution of losses, emphasizing the material’s conductivity impact. Non-Debye-type behavior, linked to ion diffusion, sheds light on charge storage dynamics. These insights advance potential applications in electronic devices and energy storage. Full article
(This article belongs to the Special Issue Nanomaterials in Aerogel Composites)
Show Figures

Figure 1

12 pages, 4705 KiB  
Proceeding Paper
The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites
by Bhavith K, Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H and Kiran Kumar B
Eng. Proc. 2023, 59(1), 200; https://doi.org/10.3390/engproc2023059200 - 18 Jan 2024
Cited by 12 | Viewed by 2850
Abstract
It is a common practice in the plastics industry to compound polymers with fillers to reduce the manufacturing cost and/or attain desired properties. By combining different fillers with various polymer matrices, polymer composites can be tailored to achieve property combinations which cannot easily [...] Read more.
It is a common practice in the plastics industry to compound polymers with fillers to reduce the manufacturing cost and/or attain desired properties. By combining different fillers with various polymer matrices, polymer composites can be tailored to achieve property combinations which cannot easily be obtained from either the polymer matrices or the reinforcements alone. In the past decades, different metallic (Cu, Al, Steel, etc.) and ceramic fillers (SiC, Al2O3, CuO, TiC, TiO2, TiN, ZrO2, ZnO, ZnF2, SiO2, etc.) have been used as reinforcements in composite preparation because of their effectiveness in reinforcing polymers. In light of the above, this research is aimed at the fabrication and study of the basic mechanical properties of epoxy-resin composites filled with different weight percentages of metal filler. It includes the study of the mechanical properties of cast-iron-filler-reinforced epoxy-based polymer matrix composites. Epoxy composites containing cast iron in different weight percentages are prepared using casting technique. Data on neat epoxy are also included for comparison. All the tests were conducted at room temperature and according to ASTM standards. Density, hardness (Rockwell), tensile, flexural and impact tests were conducted, and the data were analyzed with the help of statistical charts to draw useful inferences. It was observed that the inclusion of cast iron filler affected most of the mechanical properties of neat epoxy. The density, hardness, impact strength, tensile and flexural properties of the developed composites exhibited a varying trend with respect to cast iron content. The increase in cast iron content showed significant improvement in tensile properties, hardness, impact strength and the density of the composites. The flexural strength was found to decrease at a higher cast iron content. This research also highlights the possible reasons for variation in the mechanical properties of developed polymer composites. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

8 pages, 4031 KiB  
Proceeding Paper
Investigation of Transition Metal Ions Cu2+ and Mg2+ Doped Zinc Aluminate (ZnAl2O4) and Their Structural, Spectral, Optical, and Dielectric Study for High-Frequency Applications
by Yasmin Jamil, Gracie P. Jeyakumar and Geetha Deivasigamani
Mater. Proc. 2023, 14(1), 2; https://doi.org/10.3390/IOCN2023-14478 - 5 May 2023
Cited by 2 | Viewed by 1467
Abstract
Zinc Aluminate is an excellent dielectric material suitable for a variety of technological applications due to its high-quality factor, low dielectric loss, and appreciable conductivity. Here in this study, the preparation of Zn1−xMxAl2O4 (M = Cu [...] Read more.
Zinc Aluminate is an excellent dielectric material suitable for a variety of technological applications due to its high-quality factor, low dielectric loss, and appreciable conductivity. Here in this study, the preparation of Zn1−xMxAl2O4 (M = Cu2+, Mg2+: x = 0, 0.10) powders were carried out using the citrate-based combustion route. The structural, spectral, optical, stoichiometry composition, and dielectric performance of the synthesized nanoparticles were evaluated to explore the substitution effect of Cu2+ and Mg2+ ions. It was confirmed from XRD results that all the samples exhibited a monophase spinel structure. The estimated average crystallite size is calculated to be 23 nm. The functional group identification of the samples was monitored by FTIR spectroscopy. Scanning electron microscope (SEM) coupled with energy-dispersive X-ray spectroscopy analysis (EDAX) was utilized to confirm the composition of the samples. UV–Visible absorption spectroscopy demonstrated decrement in the band gap due to doping. Impedance spectroscopy displayed improved dielectric properties for the doped samples. The Cole–Cole plots enlightened the relaxation processes and provided information about the complex electrical behavior of the material. It was established that non-Debye relaxation was found to be prominent in the investigated aluminates. From the electrical parameters obtained, it displays the semiconducting nature of the zinc aluminate particles, and it can be utilized for high-frequency applications such as ceramic capacitors, resonators, and filters in high-frequency electronics. Overall, Zinc Aluminate is a versatile material with potential application in various fields of science and electronics. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Nanomaterials)
Show Figures

Figure 1

18 pages, 4298 KiB  
Article
Applicability of Extreme Vertices Design in the Compositional Optimization of 3D-Printed Lightweight High-Entropy-Alloy/B4C/ZrO2/Titanium Trihybrid Aero-Composite
by Abayomi Adewale Akinwande, Dimitry Moskovskikh, Elena Romanovskaia, Oluwatosin Abiodun Balogun, J. Pradeep Kumar and Valentin Romanovski
Math. Comput. Appl. 2023, 28(2), 54; https://doi.org/10.3390/mca28020054 - 3 Apr 2023
Cited by 8 | Viewed by 3810
Abstract
Recent studies have shown the benefits of utilizing ceramic particles as reinforcement in metal alloys; nevertheless, certain drawbacks, including loss of ductility, embrittlement, and decreases in toughness, have been noted. For the objective of obtaining balanced performance, experts have suggested the addition of [...] Read more.
Recent studies have shown the benefits of utilizing ceramic particles as reinforcement in metal alloys; nevertheless, certain drawbacks, including loss of ductility, embrittlement, and decreases in toughness, have been noted. For the objective of obtaining balanced performance, experts have suggested the addition of metal particles as supplement to the ceramic reinforcement. Consequently, high-performance metal hybrid composites have been developed. However, achieving the optimal mix for the reinforcement combination with regards to the optimal performance of developed composite remains a challenge. This research aimed to determine the optimal mixture of Al50Cu10Sn5Mg20Zn10Ti5 lightweight high-entropy alloy (LHEA), B4C, and ZrO2 for the fabrication of trihybrid titanium composites via direct laser deposition. A mixture design was involved in the experimental design, and experimental data were modeled and optimized to achieve the optimal performance of the trihybrid composite. The ANOVA, response surface plots, and ternary maps analyses of the experimental results revealed that various combinations of reinforcement particles displayed a variety of response trends. Moreover, the analysis showed that these reinforcements significantly contributed to the magnitudes and trends of the responses. The generated models were competent for predicting response, and the best formulation consisted of 8.4% LHEA, 1.2% B4C, and 2.4% ZrO2. Full article
Show Figures

Figure 1

21 pages, 7053 KiB  
Article
Electrical Discharge Machining of Alumina Using Cu-Ag and Cu Mono- and Multi-Layer Coatings and ZnO Powder-Mixed Water Medium
by Anna A. Okunkova, Marina A. Volosova, Khaled Hamdy and Khasan I. Gkhashim
Technologies 2023, 11(1), 6; https://doi.org/10.3390/technologies11010006 - 27 Dec 2022
Cited by 5 | Viewed by 2927
Abstract
The paper aims to extend the current knowledge on electrical discharge machining of insulating materials, such as cutting ceramics used to produce cutting inserts to machine nickel-based alloys in the aviation and aerospace industries. Aluminum-based ceramics such as Al2O3, [...] Read more.
The paper aims to extend the current knowledge on electrical discharge machining of insulating materials, such as cutting ceramics used to produce cutting inserts to machine nickel-based alloys in the aviation and aerospace industries. Aluminum-based ceramics such as Al2O3, AlN, and SiAlON are in the most demand in the industry but present a scientific and technical problem in obtaining sophisticated shapes. One of the existing solutions is electrical discharge machining using assisting techniques. Using assisting Cu-Ag and Cu mono- and multi-layer coatings of 40–120 µm and ZnO powder-mixed deionized water-based medium was proposed for the first time. The developed coatings were subjected to tempering and testing. It was noticed that Ag-adhesive reduced the performance when tempering had a slight effect. The unveiled relationship between the material removal rate, powder concentration, and pulse frequency showed that performance was significantly improved by adding assisting powder up to 0.0032–0.0053 mm3/s for a concentration of 14 g/L and pulse frequency of 2–7 kHz. Further increase in concentration leads to the opposite trend. The most remarkable results corresponded to the pulse duration of 1 µs. The obtained data enlarged the knowledge of texturing insulating cutting ceramics using various powder-mixed deionized water-based mediums. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

13 pages, 10296 KiB  
Article
Hot Deformation Behavior and Processing Maps of ZnSnO3/Cu Composites
by Wei-Jian Li, Zi-Yao Chen, Xiao-Peng Tang, Wen-Zhu Shao and Liang Zhen
Materials 2022, 15(20), 7402; https://doi.org/10.3390/ma15207402 - 21 Oct 2022
Cited by 2 | Viewed by 1702
Abstract
In this work, we designed ternary ZnSnO3 particle-reinforced Cu matrix composites and evaluated the hot deformation behavior of ZnSnO3/Cu composites. The hot deformation characteristics of typical dynamic recrystallization were probed by the resulting true stress–strain curves of ZnSnO3/Cu [...] Read more.
In this work, we designed ternary ZnSnO3 particle-reinforced Cu matrix composites and evaluated the hot deformation behavior of ZnSnO3/Cu composites. The hot deformation characteristics of typical dynamic recrystallization were probed by the resulting true stress–strain curves of ZnSnO3/Cu composites. The influences of deformation conditions, including temperatures (650–850 °C) and strain rates (0.01–5 s−1), on the flow stress of the designed composites were investigated. This revealed that the peak stress increased with the increasing of strain rate and decreasing of temperature. Additionally, the activation energy was calculated to be 237.05 kJ/mol and followed by yielding a constitutive equation for low-stress ZnSnO3/Cu composites. The processing maps established by dynamic materials model theory indicated that the designed composites possessed excellent hot workability, and then the processing parameters (790–850 °C and 0.01–0.04 s−1) of the ZnSnO3/Cu composites were determined for practical industrial production. Our work discloses the deformation behavior of ZnSnO3/Cu matrix composites and extends the rational process design for ternary ceramic/metal materials with excellent hot workability. Full article
(This article belongs to the Special Issue Manufacturing and Mechanical Properties of Metal Matrix Composites)
Show Figures

Figure 1

12 pages, 4367 KiB  
Article
Development of PZN-PMN-PZT Piezoelectric Ceramics with High d33 and Qm Values
by So-Won Kim and Hee-Chul Lee
Materials 2022, 15(20), 7070; https://doi.org/10.3390/ma15207070 - 11 Oct 2022
Cited by 16 | Viewed by 4409
Abstract
To achieve good long-term temperature stability in devices used in energy-conversion applications, this study is aimed at developing combined ceramics, referred to as PZN-PMN-PZT, comprising Pb(Zn1/3Nb2/3)O3 (PZN) and Pb(Mn1/3Nb2/3)O3 (PMN), which are typical [...] Read more.
To achieve good long-term temperature stability in devices used in energy-conversion applications, this study is aimed at developing combined ceramics, referred to as PZN-PMN-PZT, comprising Pb(Zn1/3Nb2/3)O3 (PZN) and Pb(Mn1/3Nb2/3)O3 (PMN), which are typical relaxor ferroelectric materials, and Pb(Zr,Ti)O3 (PZT). The piezoelectric properties were compared based on several parameters according to the change in the composition ratio between relaxor materials, amounts of Sb2O3 dopant, and Zr/Ti ratio in the PZT system. Finally, we established optimal poling conditions to improve the electrical properties of the optimized piezoelectric material, based on the evaluation of ceramic properties according to the applied voltage during the poling process. The optimized composition of the investigated piezoelectric ceramics is represented by 0.14PZN-0.06PMN-0.80PbZr0.49Ti0.51 + 0.3 wt.% CuO + 0.3 wt.% Fe2O3 with 0.1 wt.% Sb2O3 doping, which yielded the superior properties (d33 = 361 pC/N, Qm = 1234, Tc = 306 °C). Full article
Show Figures

Figure 1

Back to TopTop