Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = ceramic nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3873 KiB  
Article
Porous Silica Gels Doped with Gold Nanoparticles: Preparation, Microstructure, Optical and Textural Properties
by Nina Danchova, Dimitar Shandurkov, Roumen Tsekov, Luben Mihaylov, Tony Spassov and Stoyan Gutzov
Gels 2025, 11(6), 454; https://doi.org/10.3390/gels11060454 - 13 Jun 2025
Viewed by 358
Abstract
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. [...] Read more.
Porous silica gel powders, doped with gold nanoparticles (AuNPs), were obtained by heating silica gels containing 1-dodecanethiol and tetrachloroauric acid at temperatures of 450 °C, 700 °C and 900 °C, and characterized using X-ray diffraction, TEM/EDS studies, UV/Vis reflectance spectroscopy and DTA/TG investigations. The color and microstructure of the obtained samples with a composition SiO2:AuNPs (about 0.03% Au) depend on the heating temperature. The UV/Vis reflection spectra of the samples are explained using Mie’s theory. The thermal stability of the obtained samples, as well as the processes occurring in the sol–gel matrix upon heating, were monitored by DTA/TG. The textural properties of the obtained materials were described based on adsorption–desorption isotherms. The obtained nanocomposites are promising pigments for ceramic glazes, similar to the Purple of Cassius. The textural properties of certain samples, SBET = 200–350 m2/g, a mean pore diameter (DAV) of approximately 10 nm and a specific pore volume (Vt) between 0.5 and 0.8 cm3/g, make them promising candidates for catalytic applications, comparable to aerogel-like materials. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Figure 1

12 pages, 1556 KiB  
Article
Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application
by Angelica Luceri, Michela Toppan, Alessandro Calogero, Antonio Rinaldi and Cristina Balagna
Nanomaterials 2025, 15(12), 911; https://doi.org/10.3390/nano15120911 - 12 Jun 2025
Viewed by 552
Abstract
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In [...] Read more.
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In this study, innovative antibacterial nanocomposite coatings, composed of zirconia and silver nanocluster, were developed and deposited via eco-friendly co-sputtering physical vapor deposition (PVD) method onto electrospun polymeric membranes (PCL and PAN-PCL) for water filtration applications. Structural and morphological analyses, including XRD and UV-Vis spectroscopy, confirmed the deposition of a composite coating, consisting of an amorphous zirconia matrix embedding silver nanoclusters, homogeneously distributed on one side of the polymeric fibers. Wettability evaluations showed an increase in hydrophobicity after coating, particularly affecting the filtration performance of the PCL membranes. Antibacterial tests revealed strong inhibition against Staphylococcus epidermidis (Gram-positive) and partial efficacy against Escherichia coli (Gram-negative). Filtration tests of contaminated solutions revealed a 99% reduction in Bacillus subtilis, significant inhibition of Listeria monocytogenes, and limited effect on E. coli, with no bacterial proliferation observed on the coated membranes. These results underscore the effectiveness of ZrO2/Ag nanocomposites in enhancing microbial control and suggest a promising, scalable strategy for sustainable and safe water purification systems. Full article
(This article belongs to the Special Issue Ceramic Matrix Nanocomposites)
Show Figures

Graphical abstract

19 pages, 4579 KiB  
Article
Effect of Heating Rate on the Properties and Mechanism of Nanocomposite Ceramic Coatings Prepared by Slurry Method
by Yuntian Zhang, Yinhui Li, Jiaqi Cao, Songyuchen Ma, Guangsong Chen, Kunquan Duan and Jie Liu
Appl. Sci. 2025, 15(12), 6561; https://doi.org/10.3390/app15126561 - 11 Jun 2025
Viewed by 426
Abstract
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite [...] Read more.
Nano-titanium dioxide ceramic coatings exhibit excellent wear resistance, corrosion resistance, and self-cleaning properties, showing great potential as multifunctional protective materials. This study proposes a synergistic reinforcement strategy by encapsulating micron-sized Al2O3 particles with nano-TiO2. A core-shell structured nanocomposite coating composed of 65 wt% nano-TiO2 encapsulating 30 wt% micron-Al2O3 was precisely designed and fabricated via a slurry dip-coating method on Q235 steel substrates. The microstructure and surface morphology of the coatings were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Comprehensive performance evaluations including densification, adhesion strength, wear resistance, and thermal shock resistance were conducted. Optimal coating properties were achieved under the conditions of a binder-to-solvent ratio of 1:15 (g/mL), a heating rate of 2 °C/min, and a sintering temperature of 400 °C. XRD analysis confirmed the formation of multiple crystalline phases during the 400 °C curing process, including titanium pyrophosphate (TiP2O7), aluminum phosphate (AlPO4), copper aluminate (Cu(AlO2)2), and a unique titanium phosphate phase (Ti3(PO4)4) exclusive to the 2 °C/min heating rate. Adhesion strength tests revealed that the coating sintered at 2 °C/min exhibited superior interfacial bonding strength and outstanding performance in wear resistance, hardness, and thermal shock resistance. The incorporation of nano-TiO2 into the 30 wt% Al2O3 matrix significantly enhanced the mechanical properties of the composite coating. Mechanistic studies indicated that the bonding between the nanocomposite coating and the metal substrate is primarily achieved through mechanical interlocking, forming a robust physical interface. These findings provide theoretical guidance for optimizing the fabrication process of metal-based ceramic coatings and expanding their engineering applications in various industries. Full article
Show Figures

Figure 1

13 pages, 3761 KiB  
Article
Enhancing Energy Density of BaTiO3-Bi(M)O3@SiO2/PVDF Nanocomposites via Filler Component Modulation and Film Structure Design
by Jin Hu and Fangfang Liu
Nanomaterials 2025, 15(8), 569; https://doi.org/10.3390/nano15080569 - 8 Apr 2025
Viewed by 468
Abstract
The low energy density (Ud) of polymeric dielectrics is unfavorable for the integration and miniaturization of electronics, thus limiting their application prospects. Introducing high-εr (dielectric constant) ceramic nanofillers to polymer matrices is the most common strategy to enhance [...] Read more.
The low energy density (Ud) of polymeric dielectrics is unfavorable for the integration and miniaturization of electronics, thus limiting their application prospects. Introducing high-εr (dielectric constant) ceramic nanofillers to polymer matrices is the most common strategy to enhance their εr, and hence their Ud. By comparison, enhancing breakdown strength (Eb) is a more effective strategy to enhance Ud. Herein, 0.6BaTiO3-0.4Bi(Mg0.5Ti0.5)O3 and 0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3 nanofibers coated with SiO2 were utilized as fillers in PVDF-based nanocomposites. The combination of experimental and simulation results suggests that the intrinsic properties of nanofillers are the determining factor of the Eb of polymer-based nanocomposites, and SiO2 coating and film structure design are effective strategies to enhance their Eb, and consequently their Ud. As a result, the sandwich-structured PVDF/6 wt% 0.85BaTiO3-0.15Bi(Mg0.5Zr0.5)O3@SiO2 nanofiber within PVDF/PVDF nanocomposite films achieved a maximum Ud of 11.1 J/cm3 at an Eb of 458 MV/m, which are 2.15 and 1.40 times those of pristine PVDF, respectively. Full article
(This article belongs to the Special Issue Functional Polymer and Ceramic Nanocomposites)
Show Figures

Graphical abstract

24 pages, 3605 KiB  
Review
Solution Combustion Synthesis for Various Applications: A Review of the Mixed-Fuel Approach
by Samantha Padayatchee, Halliru Ibrahim, Holger B. Friedrich, Ezra J. Olivier and Pinkie Ntola
Fluids 2025, 10(4), 82; https://doi.org/10.3390/fluids10040082 - 25 Mar 2025
Cited by 3 | Viewed by 1355
Abstract
As solution combustion synthesis (SCS) becomes a universal route to metal oxide nanomaterials, it also paves the way for mixed-fuel combustion synthesis as an advanced approach to the synthesis of materials of desirable properties for diverse applications. Major significance is attached to the [...] Read more.
As solution combustion synthesis (SCS) becomes a universal route to metal oxide nanomaterials, it also paves the way for mixed-fuel combustion synthesis as an advanced approach to the synthesis of materials of desirable properties for diverse applications. Major significance is attached to the rates of decomposition and combustion temperatures of the fuel as determinant factors of the morphology and physicochemical properties of the materials obtained. This has promoted the use of mixed-fuel systems characterized by lower decomposition temperatures of organic fuels and higher rates of combustion. The review work presented herein provides a comprehensive analysis of the applications of mixed-fuel SCS in ceramics, fuel cells, nanocomposite materials, and the recycling of lithium battery materials while taking into consideration the effects of the mixed-fuel system on the physicochemical and morphological properties of those materials, as compared to their analogues prepared via single-fuel SCS. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

17 pages, 15700 KiB  
Article
All-Organic Quantum Dots-Boosted Energy Storage Density in PVDF-Based Nanocomposites via Dielectric Enhancement and Loss Reduction
by Ru Guo, Xi Yuan, Xuefan Zhou, Haiyan Chen, Haoran Xie, Quan Hu, Hang Luo and Dou Zhang
Polymers 2025, 17(3), 390; https://doi.org/10.3390/polym17030390 - 31 Jan 2025
Viewed by 1185
Abstract
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the [...] Read more.
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the universal contradictory relationship between permittivity and breakdown strength in traditional ceramic/polymer nanocomposite still poses a huge challenge for a breakthrough in energy density. In this work, all-organic carbon quantum dot CDs were synthesized and introduced into a poly(vinylidene fluoride) PVDF polymer matrix to achieve significantly boosted energy storage performance. The ultrasmall and surface functionalized CDs facilitate the polar β-phase transition and crystallinity of PVDF polymer and modulate the energy level and traps of the nanocomposite. Surprisingly, a synergistic dielectric enhancement and loss reduction were achieved in CD/PVDF nanocomposite. For one thing, the improvement in εr and high-field Dm originates from the CD-induced polar transition and interface polarization. For another thing, the suppressed dielectric loss and high-field Dr are attributed to the conductive loss depression via the introduction of deep trap levels to capture charges. More importantly, Eb was largely strengthened from 521.9 kV mm−1 to 627.2 kV mm−1 by utilizing the coulomb-blockade effect of CDs to construct energy barriers and impede carrier migration. As a result, compared to the 9.9 J cm−3 for pristine PVDF, the highest discharge energy density of 18.3 J cm−3 was obtained in a 0.5 wt% CD/PVDF nanocomposite, which is competitive with most analogous PVDF-based nanocomposites. This study demonstrates a new paradigm of organic quantum dot-enhanced ferroelectric polymer-based dielectric energy storage performance and will promote its application for electrostatic film capacitors. Full article
(This article belongs to the Special Issue Piezoelectric Polymers and Devices)
Show Figures

Figure 1

18 pages, 13259 KiB  
Article
Impact of Ni Doping on the Microstructure and Mechanical Properties of TiB2 Films
by Ying Wang, Xu Wang, Hailong Shang, Xiaotong Liu, Yu Qi, Xiaoben Qi and Ning Zhong
Nanomaterials 2025, 15(3), 229; https://doi.org/10.3390/nano15030229 - 31 Jan 2025
Cited by 1 | Viewed by 952
Abstract
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness [...] Read more.
The TiB2 film exhibits exceptional hardness and chemical stability due to its unique crystal structure and robust covalent bonds, but it also demonstrates high brittleness and poor toughness, which restricts its practical applications in engineering. By appropriately incorporating metal dopants, the toughness of the ceramic matrix can be enhanced without compromising its inherent hardness. In this study, TiB2 films with different nickel contents (0–32.22 at.%) were fabricated through radio frequency magnetron sputtering. The microstructure, chemical composition, phase structure, and mechanical properties were analyzed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and nanoindentation tester. The pure TiB2 film exhibited (0001) and (0002) peaks; however, the addition of nickel resulted in broadening of the (0001) peak and disappearance of the (0002) peak, and no crystalline nickel or other nickel-containing phases could be identified. It was found that the incorporation of nickel refines the grain structure of titanium diboride, with nickel present in an amorphous form at the boundaries of titanium diboride, thereby forming a wrapped structure. The enrichment of nickel at the grain boundary becomes more pronounced as the nickel content is further increased, which hinders the growth of TiB2 grains, resulting in the thinning of columnar crystals and formation of nanocrystalline in the film, and the coating hardness remains above 20 GPa, when the nickel content is less than 10.83 at.%. With the increase in nickel content, titanium diboride exhibited a tendency to form an amorphous structure, while nickel became increasingly enriched at the boundaries, and the coating hardness and elastic modulus decreased. The wrapped microstructure could absorb the energy generated by compressive shear stress through plastic deformation, which should be beneficial to improve the toughness of the coatings. The addition of nickel enhanced the adhesion between the film and substrate while reducing the friction coefficient of the film. Specifically, when the nickel content reached 4.26 at.%, a notable enhancement in both nanohardness and toughness was observed for nanocomposite films. Full article
(This article belongs to the Special Issue Design and Applications of Heterogeneous Nanostructured Materials)
Show Figures

Figure 1

22 pages, 1084 KiB  
Review
Bone Regeneration: Mini-Review and Appealing Perspectives
by Sylvain Le Grill, Fabien Brouillet and Christophe Drouet
Bioengineering 2025, 12(1), 38; https://doi.org/10.3390/bioengineering12010038 - 7 Jan 2025
Cited by 2 | Viewed by 2101
Abstract
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or [...] Read more.
Bone is a natural mineral-organic nanocomposite protecting internal organs and allowing mobility. Through the ages, numerous strategies have been developed for repairing bone defects and fixing fractures. Several generations of bone repair biomaterials have been proposed, either based on metals, ceramics, glasses, or polymers, depending on the clinical need, the maturity of technologies, and knowledge of the natural constitution of the bone tissue to be repaired. The global trend in bone implant research is shifting toward osteointegrative, bioactive and possibly stimuli-responsive biomaterials and, where possible, resorbable implants that actively promote the regeneration of natural bone tissue. In this mini-review, the fundamentals of bone healing materials and clinical challenges are summarized and commented on with regard to progressing scientific discoveries. The main types of bone-healing materials are then reviewed, and their specific relevance to the field is reminded, with the citation of reference works. In the final part, we highlight the promise of hybrid organic-inorganic bioactive materials and the ongoing research activities toward the development of multifunctional or stimuli-responsive implants. This contribution is expected to serve as a commented introduction to the ever-progressing field of bone regeneration and highlight trends of future-oriented research. Full article
Show Figures

Figure 1

28 pages, 10020 KiB  
Review
Properties, Advantages, and Prospects of Using Cobalt-Free Composites Based on Tungsten Carbide in Industry
by Sherzod Kurbanbekov, Yernat Kozhakhmetov, Mazhyn Skakov, Bekbolat Seitov, Madina Aidarova and Yerkezhan Tabiyeva
Materials 2025, 18(1), 129; https://doi.org/10.3390/ma18010129 - 31 Dec 2024
Cited by 1 | Viewed by 1698
Abstract
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites [...] Read more.
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites to obtain similar or superior mechanical properties. Various synthesis methods such as powder metallurgy, encapsulation, 3D printing, and spark plasma sintering (SPS) are discussed, with SPS standing out for its effectiveness in densifying and preventing WC grain growth. The results show that cobalt-free composites exhibit high strength, wear and corrosion resistance, and harsh environment stability, making them viable competitors for WC-Co materials. The use of nickel and iron with SPS is shown to enable the development of environmentally friendly, cost-effective materials. It is emphasized that microstructural control and phase management during sintering are critical to improve a material’s properties. The application potential of these composites covers mechanical engineering, metallurgy, oil and gas, and aerospace, emphasizing their broad industrial relevance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2258 KiB  
Review
Biomimetic Natural Biomaterial Nanocomposite Scaffolds: A Rising Prospect for Bone Replacement
by Maja A. Zaczek-Moczydłowska, Kamil Joszko, Mahboubeh Kavoosi, Aleksandra Markowska, Wirginia Likus, Saeid Ghavami and Marek J. Łos
Int. J. Mol. Sci. 2024, 25(24), 13467; https://doi.org/10.3390/ijms252413467 - 16 Dec 2024
Cited by 1 | Viewed by 1641
Abstract
Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. [...] Read more.
Biomimetic natural biomaterial (BNBM) nanocomposite scaffolds for bone replacement can reduce the rate of implant failure and the associated risks of post-surgical complications for patients. Traditional bone implants, like allografts, and autografts, have limitations, such as donor site morbidity and potential patient inflammation. Over two million bone transplant procedures are performed yearly, and success varies depending on the material used. This emphasizes the importance of developing new biomaterials for bone replacement. Innovative BNBM nanocomposites for modern bone fabrication can promote the colonization of the desired cellular components and provide the necessary mechanical properties. Recent studies have highlighted the advantages of BNBM nanocomposites for bone replacement; therefore, this review focuses on the application of cellulose, chitosan, alginates, collagen, hyaluronic acid, and synthetic polymers enhanced with nanoparticles for the fabrication of nanocomposite scaffolds used in bone regeneration and replacement. This work outlines the most up-to-date overview and perspectives of selected promising BNBM nanocomposites for bone replacement that could be used for scaffold fabrication and replace other biomorphic materials such as metallics, ceramics, and synthetic polymers in the future. In summary, the concluding remarks highlight the advantages and disadvantages of BNBM nanocomposites, prospects, and future directions for bone tissue regeneration and replacement. Full article
Show Figures

Figure 1

5 pages, 176 KiB  
Editorial
Advances in Nanocomposites: Preparation, Characterization, Properties, and Applications
by Reshma B Nambiar, Anand Babu Perumal and Emmanuel Rotimi Sadiku
Molecules 2024, 29(24), 5924; https://doi.org/10.3390/molecules29245924 - 16 Dec 2024
Cited by 1 | Viewed by 1892
Abstract
Nanocomposites are a class of nanomaterials wherein one or more phases, of a nano-sized dimension (zero dimensions, one dimension, and two dimensions), are embedded in ceramic, metal, or polymer materials, etc [...] Full article
16 pages, 2940 KiB  
Article
Organic–Inorganic Hybrid Ladder-like Polysilsesquioxanes as Compatibilized Nanofiller for Nanocomposite Materials
by Dominique Mouysset, Marion Rollet, Emily Bloch, Stéphane Gastaldi, Eric Besson and Trang N. T. Phan
Molecules 2024, 29(24), 5832; https://doi.org/10.3390/molecules29245832 - 11 Dec 2024
Viewed by 1091
Abstract
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the [...] Read more.
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects. Polysilsesquioxanes (PSQs) are a silicon polymer family that offers different sizes, shapes and structures and possesses ceramics properties (i.e., high thermal and/or oxidative resistance and high chain rigidity), thanks to the siloxane backbone. In this article, we propose to incorporate polymer-grafted ladder polysilsesquioxanes (LPSQs) as nanofillers in thermoplastic matrices. Chloride-functionalized LPSQs were synthesized from two different precursors and thoroughly characterized by 1H, 13C and 29Si NMR, as well as by SEC and WAXS. The well-defined LPSQ was then converted into an azide analog. The resulting hybrid material was functionalized with poly(ethylene glycol) (PEG) chains and incorporated into poly(ethylene oxide) or poly(methyl methacrylate) matrices. We found that the viscoelastic properties of the nanocomposite materials were impacted by plasticizing or the reinforcement effect depending on the grafted PEG chain length. Full article
Show Figures

Figure 1

27 pages, 6034 KiB  
Review
High-Performance Advanced Composites in Multifunctional Material Design: State of the Art, Challenges, and Future Directions
by Sónia Simões
Materials 2024, 17(23), 5997; https://doi.org/10.3390/ma17235997 - 7 Dec 2024
Cited by 25 | Viewed by 4815
Abstract
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, [...] Read more.
This review examines high-performance advanced composites (HPACs) for lightweight, high-strength, and multi-functional applications. Fiber-reinforced composites, particularly those utilizing carbon, glass, aramid, and nanofibers, are highlighted for their exceptional mechanical, thermal, and environmental properties. These materials enable diverse applications, including in the aerospace, automotive, energy, and defense sectors. In extreme conditions, matrix materials—polymers, metals, and ceramics—and advanced reinforcement materials must be carefully chosen to optimize performance and durability. Significant advancements in manufacturing techniques, such as automated and additive methods, have improved precision, reduced waste, and created highly customized and complex structures. Multifunctional composites integrating structural properties with energy storage and sensing capabilities are emerging as a breakthrough aligned with the trend toward smart material systems. Despite these advances, challenges such as recyclability, scalability, cost, and robust quality assurance remain. Addressing these issues will require the development of sustainable and bio-based composites, alongside efficient recycling solutions, to minimize their environmental impact and ensure long-term technological viability. The development of hybrid composites and nanocomposites to achieve multifunctionality while maintaining structural integrity will also be described. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Figure 1

18 pages, 11582 KiB  
Article
Thermal Properties of Polysiloxane/Ag Nanocomposites with Different Network Structures and Distributions of Si–H Groups
by Monika Wójcik-Bania and Edyta Stochmal
Materials 2024, 17(23), 5809; https://doi.org/10.3390/ma17235809 - 27 Nov 2024
Viewed by 941
Abstract
Polysiloxanes with silver nanoparticles (Ag NPs) have garnered attention for their distinctive physicochemical properties, which make them promising candidates for advanced material applications. This study presents a systematic investigation into the thermal properties and degradation mechanisms of polysiloxane/Ag nanocomposites, emphasising the innovative incorporation [...] Read more.
Polysiloxanes with silver nanoparticles (Ag NPs) have garnered attention for their distinctive physicochemical properties, which make them promising candidates for advanced material applications. This study presents a systematic investigation into the thermal properties and degradation mechanisms of polysiloxane/Ag nanocomposites, emphasising the innovative incorporation of Ag NPs directly into polysiloxane networks via in situ reduction of Ag⁺ ions by Si-H groups. Six polysiloxane matrices were synthesised by hydrosilylation of poly(methylhydrosiloxane) (PMHS) or poly(vinylsiloxane) (polymer V3) with three cross-linking agents of varying molecular structures and functionality. Thermogravimetric analysis combined with mass spectrometry revealed that the introduction of Ag NPs alters the thermal properties of polysiloxane networks, primarily affecting the redistribution of Si bonds that occurs during the pyrolysis of these systems. Monitoring the pyrolysis process using FTIR spectroscopy allowed us to investigate the effect of the presence of Ag NPs on the degradation mechanism of the studied nanocomposites. The presence of the free-carbon phase and metallic silver phase in the Ag-containing silicon oxycarbide materials obtained was confirmed by Raman spectroscopy and XRD analyses, respectively. These findings demonstrate the possibility of fabricating Ag/SiOC materials with ceramic residues in the range of 43 to 84%. This work provides new insights into the thermal behaviour of polysiloxane/Ag nanocomposites and underscores their potential for high-performance applications in thermally demanding environments. Full article
(This article belongs to the Special Issue Advanced Polymer Matrix Nanocomposite Materials (2nd Edition))
Show Figures

Graphical abstract

18 pages, 3716 KiB  
Article
Fabrication and Processing of Magnesium-Based Metal Matrix Nanocomposites for Bioabsorbable Implants
by Andres Larraza, Shane Burke, Pedram Sotoudehbagha and Mehdi Razavi
Metals 2024, 14(12), 1318; https://doi.org/10.3390/met14121318 - 22 Nov 2024
Cited by 1 | Viewed by 1042
Abstract
A novel magnesium (Mg)-based metal matrix nanocomposite (MMNC) was fabricated using ultrasonic melt treatment to promote the de-agglomeration of the bioactive glass–ceramic nanoparticles and the homogenization of the melt. The cast samples were then heat treated, machined, and hot rolled to reduce grain [...] Read more.
A novel magnesium (Mg)-based metal matrix nanocomposite (MMNC) was fabricated using ultrasonic melt treatment to promote the de-agglomeration of the bioactive glass–ceramic nanoparticles and the homogenization of the melt. The cast samples were then heat treated, machined, and hot rolled to reduce grain size and remove structural defects. Standard mechanical and electrochemical tests were conducted to determine the effect of fabrication and processing on the mechanical and corrosion properties of MMNCs. Compression tests, potentiodynamic polarization tests, electrochemical impedance spectroscopy, and static immersion testing were conducted to determine the characteristics of the MMNCs. The results showed that the combination of ultrasonic melt processing and thermomechanical processing caused the corrosion rate to increase from 8.7 mmpy after 10 days of immersion to 22.25 mmpy when compared with the ultrasonicated MMNCs but remained stable throughout the immersion time, showing no statistically significant change during the incubation periods. These samples also experienced increased yield stress (135.5 MPa) and decreased elongation at break (21.92%) due to the significant amount of grain refinement compared to the ultrasonicated MMNC (σY = 59.6 MPa, elongation = 40.44%). The MMNCs that underwent ultrasonic melt treatment also exhibited significant differences in the corrosion rate calculated from immersion tests. Full article
(This article belongs to the Special Issue Feature Papers in Biobased and Biodegradable Metals)
Show Figures

Figure 1

Back to TopTop