Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ceramic composite projectiles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5597 KB  
Article
A Novel Multi-Scale Ceramic-Based Array (SiCb+B4Cp)/7075Al as Promising Materials for Armor Structure
by Tian Luo, Zhenlong Chao, Shanqi Du, Longtao Jiang, Shengpeng Chen, Runwei Zhang, Huimin Han, Bingzhuo Han, Zhiwei Wang, Guoqin Chen and Yong Mei
Materials 2023, 16(17), 5796; https://doi.org/10.3390/ma16175796 - 24 Aug 2023
Cited by 6 | Viewed by 1699
Abstract
Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose an aluminum matrix composite using pressure infiltration, containing an array [...] Read more.
Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose an aluminum matrix composite using pressure infiltration, containing an array of ceramic balls, the reinforcement of which consists of centimeter-scale SiC balls and micron-scale B4C particles. Three different array layouts were designed and fabricated: compact balls in the front panel (F-C), non-compact balls in the front panel (F-NC), and compact balls inside the target (I-C). The penetration resistance properties were tested using a 12.7 mm armor-piercing incendiary (API). The results show that there are no significant internal defects, and the ceramic balls are well-bonded with the matrix composite. The F-NC structure behaves the best penetration resistance with minimal overall damage; the I-C structure has a large area of spalling and the most serious damage. Finite element simulation reveals that the ceramic balls play a major role in projectile erosion; in the non-compact structure, the composite materials between the ceramic balls can effectively disperse the stress, thereby avoiding the damage caused by direct contact between ceramic balls and improving the efficiency of ceramic ball erosion projectiles. Furthermore, it is essential to have a certain thickness of supporting materials to prevent spalling failure caused by stress wave transmission during penetration. This multi-scale composite exhibits excellent ballistic performance, providing valuable insights for developing anti-penetration composite armor in future applications. Full article
Show Figures

Figure 1

18 pages, 4455 KB  
Article
Dynamic Response Analysis of Projectile Target Penetration Based on an FE-SPH Adaptive Coupling Method
by Tianyi He, Weidong Wu, Yuan Zhu, Yaqin Jiang, Yong Mei, Yuzheng Lv, Jianli Shao and Yunhou Sun
Metals 2023, 13(6), 1074; https://doi.org/10.3390/met13061074 - 5 Jun 2023
Cited by 2 | Viewed by 2649
Abstract
The penetration of projectiles into targets has a broad background in engineering. In this work, numerical simulations of the projectile-target penetration problem are conducted using the Finite Element Method (FEM), the Smoothed Particle Hydrodynamics (SPH) and the Finite Element–Smoothed Particle Hydrodynamics Adaptive Coupling [...] Read more.
The penetration of projectiles into targets has a broad background in engineering. In this work, numerical simulations of the projectile-target penetration problem are conducted using the Finite Element Method (FEM), the Smoothed Particle Hydrodynamics (SPH) and the Finite Element–Smoothed Particle Hydrodynamics Adaptive Coupling Method (FE-SPH ACM) based on the LS-DYNA software package. First, the penetration experiments using aluminum targets and ceramic targets are simulated. The experimental and simulation results show that the FE-SPH ACM has the better accuracy in calculating the debris cloud head velocity and interface velocity, with an error of no more than 4%. Furthermore, we use the FE-SPH ACM to investigate the anti-penetration performance of aluminum/ceramic composite targets in different combinations. We find that the reasonable layout can improve the protective performance of multi-layered target, especially composite target plates with ceramic as the front layer. In addition, the ballistic limit velocities for ceramic-aluminum ratios of 3/7, 5/5 and 7/3 are approximately 1300 m/s, 1400 m/s and 1500 m/s, respectively. Obviously, increasing the proportion of ceramic materials can enhance the anti-penetration performance. Full article
(This article belongs to the Special Issue Deformation and Fracture of Condensed Materials in Extreme Conditions)
Show Figures

Figure 1

20 pages, 20801 KB  
Article
Anti-Penetration Performance of Composite Structures with Metal-Packaged Ceramic Interlayer and UHMWPE Laminate
by Xin Sun, Longhui Zhang, Qitian Sun, Ping Ye, Wei Hao, Peizhuo Shi and Yongxiang Dong
Materials 2023, 16(6), 2469; https://doi.org/10.3390/ma16062469 - 20 Mar 2023
Cited by 8 | Viewed by 2817
Abstract
The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal [...] Read more.
The impact response of a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high molecular weight polyethylene (UHMWPE) laminate has been studied through a ballistic test and numerical simulation. The studied structure exhibits 50% higher anti-penetration performance than the traditional ceramic/metal structure with the same areal density. The metal-packaged ceramic interlayer and the UHMWPE laminate are key components in resisting the penetration. By using a metal frame to impose three-dimensional constraints on ceramic tiles, the metal-packaged ceramic interlayer can limit the crushing of the ceramic and contain the broken ceramic fragment to improve the erosion of the projectile. The large deformation of UHMWPE laminate absorbs a large amount of energy from the projectile. By decreasing the amplitude of the shock wave and changing the distribution of the impact load in the structure, the projectile has longer residence time on the interlayer. The anti-penetration performance shows within 10% variation when the impact position is varied. Due to the asymmetric deformation and high elastic recovery ability of the UHMWPE laminate, the projectile trajectory deflection is increased, and the broken ceramic fragments are restrained, thereby mitigating after-effect damage caused by the projectile after penetrating the structure. Full article
(This article belongs to the Special Issue Impact Behaviour of Materials and Structures)
Show Figures

Figure 1

21 pages, 18835 KB  
Article
Study on Anti-Penetration Performance of Semi-Cylindrical Ceramic Composite Armor against 12.7 mm API Projectile
by Anbang Jiang, Yongqing Li, Dian Li and Hailiang Hou
Crystals 2022, 12(10), 1343; https://doi.org/10.3390/cryst12101343 - 22 Sep 2022
Cited by 10 | Viewed by 2874
Abstract
To explore the anti-penetration performance of the specially shaped ceramic/metal composite armor, such an armor is designed and fabricated using a semi-cylindrical projectile resistant ceramic and metal back plate, and its anti-penetration performance for the 12.7 mm armor-piercing incendiary (API) projectile (also known [...] Read more.
To explore the anti-penetration performance of the specially shaped ceramic/metal composite armor, such an armor is designed and fabricated using a semi-cylindrical projectile resistant ceramic and metal back plate, and its anti-penetration performance for the 12.7 mm armor-piercing incendiary (API) projectile (also known as the 0.50 caliber API projectile) is investigated experimentally and numerically. The results show that due to the significant attitude deflection during projectile penetration, the penetration into the designed ceramic composite armor is quite different from that into the conventional homogeneous ceramic/metal composite armor, which can be roughly divided into the following four stages: asymmetric erosion of the projectile, ceramic cone squeezing movement, back plate failure and projectile exit. The failure mode of the back plate is mainly dishing deformation and petaling failure. When obvious attitude deflection occurs to the projectile, the breaches in the back plate are elliptical in varying degrees, and the height and size of petals are apparently different. The area of the composite armor is divided into different zones according to its anti-penetration performance. The influence of the ratio of semi-cylindrical ceramic diameter to projectile core diameter ξ on the anti-penetration performance is studied under constant areal density. The results show that the deflection effect of the composite armor is small when the ratio ξ is less than 2, and the anti-penetration performance is the strongest when ξ is close to 2. With the increase in the initial velocity of the projectile, the deflection effect of the composite armor on the projectile gradually weakened, and the erosion effect gradually increased. Full article
(This article belongs to the Special Issue Dynamic Behavior of Materials)
Show Figures

Figure 1

17 pages, 5826 KB  
Article
Dynamic and Ballistic Performance of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Nanocomposites
by Ulisses Oliveira Costa, Lucio Fabio Cassiano Nascimento, Wendell Bruno Almeida Bezerra, Pamela Pinto Neves, Noemi Raquel Checca Huaman, Sergio Neves Monteiro and Wagner Anacleto Pinheiro
Polymers 2022, 14(9), 1859; https://doi.org/10.3390/polym14091859 - 1 May 2022
Cited by 7 | Viewed by 3093
Abstract
Graphene oxide (GO) functionalized curaua fiber (CF) has been shown to improve the mechanical properties and ballistic performance of epoxy matrix (EM) nanocomposites with 30 vol% fiber. However, the possibility of further improvement in the property and performance of nanocomposites with a greater [...] Read more.
Graphene oxide (GO) functionalized curaua fiber (CF) has been shown to improve the mechanical properties and ballistic performance of epoxy matrix (EM) nanocomposites with 30 vol% fiber. However, the possibility of further improvement in the property and performance of nanocomposites with a greater percentage of GO functionalized CF is still a challenging endeavor. In the present work, a novel epoxy composite reinforced with 40 vol% CF coated with 0.1 wt% GO (40GOCF/EM), was subjected to Izod and ballistic impact tests as well as corresponding fractographic analysis in comparison with a GO-free composite (40CF/EM). One important achievement of this work was to determine the characteristics of the GO by means of FE-SEM and TEM. A zeta potential of −21.46 mV disclosed a relatively low stability of the applied GO, which was attributed to more multilayered structures rather than mono- or few-layer flakes. FE-SEM images revealed GO deposition, with thickness around 30 nm, onto the CF. Izod impact-absorbed energy of 813 J/m for the 40GOCF/EM was not only higher than that of 620 J/m for the 40CF/EM but also higher than other values reported for fiber composites in the literature. The GO-functionalized nanocomposite was more optimized for ballistic application against a 7.62 mm projectile, with a lower depth of penetration (24.80 mm) as compared with the 30 vol% GO-functionalized CF/epoxy nanocomposite previously reported (27.43 mm). Fractographic analysis identified five main events in the ballistic-tested 40GOCF/EM composed of multilayered armor: CF rupture, epoxy matrix rupture, CF/matrix delamination, CF fibril split, and capture of ceramic fragments by the CF. Microcracks were associated with the morphological aspects of the CF surface. A brief cost-effective analysis confirmed that 40GOCF/EM may be one of the most promising materials for personal multilayered ballistic armor. Full article
(This article belongs to the Special Issue Polymer Composites for Structural Applications)
Show Figures

Graphical abstract

20 pages, 8724 KB  
Article
Study on the Penetration Power of ZrO2 Toughened Al2O3 Ceramic Composite Projectile into Ceramic Composite Armor
by Rui Yang, Kuiwu Li, Likui Yin, Kai Ren, Yu Cheng, Taotao Li, Jianping Fu, Taiyong Zhao, Zhigang Chen and Jinlong Yang
Materials 2022, 15(8), 2909; https://doi.org/10.3390/ma15082909 - 15 Apr 2022
Cited by 10 | Viewed by 3038
Abstract
This work aims to improve the penetration ability of a 14.5 mm standard armor-piercing projectile into ceramic/armor steel (Al2O3/RHA) composite armor. To this end, ZrO2 toughened Al2O3(ZTA) is prepared as the material for bullet [...] Read more.
This work aims to improve the penetration ability of a 14.5 mm standard armor-piercing projectile into ceramic/armor steel (Al2O3/RHA) composite armor. To this end, ZrO2 toughened Al2O3(ZTA) is prepared as the material for bullet tips, utilizing in situ solidification injection molding that is realized via ceramic dispersant hydrolytic degradation. The penetration power of ZTA ceramic composite projectile, compared with standard armor, against 15 mm armor steel (RHA) and 30 mm Al2O3/RHA composite armor, is studied by ballistics testing combined with numerical simulation. The Tate theory is optimized and then employed to calculate the penetration depth and bullet core’s residual mass when ZTA ceramic composite projectile penetrates into Al2O3/RHA composite armor. The results show that when penetrating RHA of 15 mm, the penetration area of ZTA ceramic composite projectile into RHA increases by 27.59% and the exit area by 42.93%. While the standard projectile fails to penetrate the 30 mm Al2O3/RHA composite armor, the ZTA ceramic composite armor-piercing projectile succeeds, with the mass loss reduced by 66.67% over the standard one. The ZTA ceramic composite bullet has a better performance than the standard bullet in penetrating RHA and Al2O3/RHA composite armors. The test results, simulation, and theoretical analysis are consistent. This study has practical values for engineering applications to design new ceramic composite bullets. Full article
Show Figures

Figure 1

15 pages, 57760 KB  
Article
Study of Impact Characteristics of ZrO2 Ceramic Composite Projectiles on Ceramic Composite Armor
by Weizhan Wang, Taiyong Zhao, Fangao Meng, Peng Tian, Guanglei Li and Zhigang Chen
Materials 2022, 15(4), 1519; https://doi.org/10.3390/ma15041519 - 17 Feb 2022
Cited by 7 | Viewed by 2764
Abstract
Exploring new armor-piercing materials is crucial for improving the penetrative ability of projectiles. Based on the process of in situ solidification injection molding through ceramic dispersant hydrolytic degradation, a ZrO2 ceramic material suitable for use as the tip of a 12.7 mm [...] Read more.
Exploring new armor-piercing materials is crucial for improving the penetrative ability of projectiles. Based on the process of in situ solidification injection molding through ceramic dispersant hydrolytic degradation, a ZrO2 ceramic material suitable for use as the tip of a 12.7 mm kinetic energy (KE) projectile was prepared. The ZrO2 ceramic tip can be matched with the metal core of a conventional projectile to form a ceramic composite projectile, increasing the damage to the Al2O3 ceramic composite armor. Specifically, the ZrO2 ceramic tip can increase the impact load on the Al2O3 ceramic panel, prolonging the pre-damage phase and reducing the stable penetration phase, shortening the mass erosion time of the metal core compared with a 12.7 mm metal KE projectile tip. The ceramic composite projectile with the ZrO2 ceramic tip has a lower critical penetration velocity than a 12.7 mm metal KE projectile for Al2O3 ceramic composite armor. Furthermore, the residual velocity, residual length, and residual mass of the metal core of the ceramic composite projectile that penetrated the Al2O3 ceramic composite armor are greater than those of a 12.7 mm metal KE projectile. Full article
Show Figures

Figure 1

22 pages, 8957 KB  
Article
Comparison of Numerical Simulation Techniques of Ballistic Ceramics under Projectile Impact Conditions
by Pawel Zochowski, Marcin Bajkowski, Roman Grygoruk, Mariusz Magier, Wojciech Burian, Dariusz Pyka, Miroslaw Bocian and Krzysztof Jamroziak
Materials 2022, 15(1), 18; https://doi.org/10.3390/ma15010018 - 21 Dec 2021
Cited by 31 | Viewed by 5689
Abstract
This article presents an analysis of the effectiveness of available numerical techniques in mapping the characteristic behavior of ballistic ceramics under projectile impact conditions. As part of the work, the ballistic tests were performed on the layered ceramic/steel composite armor and tested with [...] Read more.
This article presents an analysis of the effectiveness of available numerical techniques in mapping the characteristic behavior of ballistic ceramics under projectile impact conditions. As part of the work, the ballistic tests were performed on the layered ceramic/steel composite armor and tested with the 7.62 × 39 mm, armor-piercing incendiary (API) BZ projectile. The experimental tests were then mapped using computer simulations. In numerical analyses, four different techniques were used to describe cubic ceramic tiles Al2O3 placed on the ARMOX 500T steel backing plate, i.e.,: the Finite Element Method without Erosion (FEM), Finite Element with erosion (FEM + Erosion), Smoothed Particles Hydrodynamics (SPH) and a hybrid method that converts finite elements to SPH particles after exceeding the defined failure criteria (FEM to SPH conversion). The effectiveness of the individual methods was compared in terms of quality (mapping of characteristic phenomena occurring during the penetration process), quantity (bulge height of the backing plate) and time needed to complete the calculations. On the basis of the results of the experiments and numerical simulations, it was noticed that the most accurate reproduction of the phenomenon of ballistic impact of AP projectiles on ceramic/steel composite armor can be obtained by using a hybrid method, incorporating the conversion of finite elements into SPH particles. This method should be used in cases where accuracy of the results is more important than the time required to complete the calculations. In other situations where the purpose of the calculation is not to determine, for example, the exact value of penetration depth but only to observe a certain trend, the FEM method with defined erosion criteria (variant 2), which is more than 10 times faster, can be successfully used. Full article
Show Figures

Figure 1

15 pages, 5941 KB  
Article
Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target
by Raphael Henrique Morais Reis, Larissa Fernandes Nunes, Fernanda Santos da Luz, Verônica Scarpini Candido, Alisson Clay Rios da Silva and Sergio Neves Monteiro
Polymers 2021, 13(8), 1203; https://doi.org/10.3390/polym13081203 - 8 Apr 2021
Cited by 33 | Viewed by 3717
Abstract
Multilayered armor systems (MAS) with a front ceramic layer backed by a relatively unknown Amazonian guaruman fiber-reinforced (Ischnosiphon koem) epoxy composites, as second layer, were for the first time ballistic tested against the threat of 7.62 mm rifle ammunition. The amount [...] Read more.
Multilayered armor systems (MAS) with a front ceramic layer backed by a relatively unknown Amazonian guaruman fiber-reinforced (Ischnosiphon koem) epoxy composites, as second layer, were for the first time ballistic tested against the threat of 7.62 mm rifle ammunition. The amount of 30 vol% guaruman fibers was investigated in three distinct configurations: (i) continuous aligned, (ii) 0–90° cross-laid, and (iii) short-cut randomly dispersed. Additionally, single-target ballistic tests were also carried out in the best MAS-performed composite with cross-laid guaruman fibers against .22 caliber ammunition. The results disclosed that all composites as MAS second layer attended the US NIJ standard with corresponding penetration depth of (i) 32.9, (ii) 27.5, and (iii) 29.6 mm smaller than the lethal limit of 44 mm in a clay witness simulating a personal body. However, the continuous aligned guaruman fiber composite lost structural integrity by delamination after the 7.62 projectile impact. By contrast, the composite with cross-laid guaruman fibers kept its integrity for subsequent shootings as recommended by the standard. The single-target tests indicated a relatively higher limit velocity for .22 caliber projectile perforation, 255 m/s, and absorbed energy of 106 J for the cross-laid guaruman fibers, which are superior to corresponding results for other less known natural fiber epoxy composites. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

16 pages, 11242 KB  
Article
Study on the Penetration Performance of a 5.8 mm Ceramic Composite Projectile
by Kai Ren, Shunshan Feng, Zhigang Chen, Taiyong Zhao, Likui Yin and Jianping Fu
Materials 2021, 14(4), 721; https://doi.org/10.3390/ma14040721 - 4 Feb 2021
Cited by 9 | Viewed by 2490
Abstract
The penetration ability of a 5.8 mm standard projectile can be improved by inserting a ZrO2 ceramic ball with high hardness, high temperature, and pressure resistance at its head. Thereby, a ceramic composite projectile can be formed. A depth of penetration (DOP) [...] Read more.
The penetration ability of a 5.8 mm standard projectile can be improved by inserting a ZrO2 ceramic ball with high hardness, high temperature, and pressure resistance at its head. Thereby, a ceramic composite projectile can be formed. A depth of penetration (DOP) experiment and numerical simulation were conducted under the same condition to study the armor-piercing effectiveness of a standard projectile and ceramic composite projectile on 10 mm Rolled Homogeneous Armor (RHA) and ceramic/Kevlar composite armor, respectively. The results show that both the ceramic composite and standard projectiles penetrated the armor steel target at the same velocity (850 m/s). The perforated areas of the former (φ5 mm & φ2 mm) were 2.32 and 2.16 times larger, respectively, than those of the latter. The residual core masses of these two projectiles (φ5 mm & φ2 mm) were enhanced by 30.45% and 22.23%. Both projectiles penetrated the ceramic/Kevlar composite armor at the same velocity (750 m/s). Compared with the standard projectile, the residual core masses of the ceramic composite one (Ø5 mm & Ø2 mm) were enhanced by 12.4% and 3.6%, respectively. This paper also analyzes the penetration mechanism of the ceramic composite projectile on target plates by calculating its impact pressure. The results show that the ceramic composite projectile outperformed the standard projectile in penetration tests. The research results are instructive in promoting the application of the ZrO2 ceramic composite in an armor-piercing projectile design. Full article
Show Figures

Figure 1

13 pages, 4447 KB  
Article
Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison
by Fernanda Santos da Luz, Fabio da Costa Garcia Filho, Michelle Souza Oliveira, Lucio Fabio Cassiano Nascimento and Sergio Neves Monteiro
Polymers 2020, 12(9), 1920; https://doi.org/10.3390/polym12091920 - 26 Aug 2020
Cited by 83 | Viewed by 17632
Abstract
Natural-fiber-reinforced polymer composites have recently drawn attention as new materials for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present work, a comparison was carried out between [...] Read more.
Natural-fiber-reinforced polymer composites have recently drawn attention as new materials for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present work, a comparison was carried out between the ballistic performance of UHMWPE composite, commercially known as Dyneema, and epoxy composite reinforced with 30 vol % natural fibers extracted from pineapple leaves (PALF) in a hard armor system. This hard armor system aims to provide additional protection to conventional level IIIA ballistic armor vests, made with Kevlar, by introducing the PALF composite plate, effectively changing the ballistic armor into level III. This level of protection allows the ballistic armor to be safely subjected to higher impact projectiles, such as 7.62 mm caliber rifle ammunition. The results indicate that a hard armor with a ceramic front followed by the PALF/epoxy composite meets the National Institute of Justice (NIJ) international standard for level III protection and performs comparably to that of the Dyneema plate, commonly used in armor vests. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 1879 KB  
Article
Ballistic Behavior of Oblique Ceramic Composite Structure against Long-Rod Tungsten Projectiles
by Dujun Luo, Yangwei Wang, Fuchi Wang, Huanwu Cheng and Yu Zhu
Materials 2019, 12(18), 2946; https://doi.org/10.3390/ma12182946 - 11 Sep 2019
Cited by 15 | Viewed by 3817
Abstract
Oblique ceramic armor structure composed of an oblique part and a backing part was designed to resist the ballistic impact of long rod penetrators. The front part consisted of an oblique silicon carbide ceramic and a triangular titanium alloy prism. The backing part [...] Read more.
Oblique ceramic armor structure composed of an oblique part and a backing part was designed to resist the ballistic impact of long rod penetrators. The front part consisted of an oblique silicon carbide ceramic and a triangular titanium alloy prism. The backing part contained layered silicon carbide and armor steel designed to absorb the residual energy of penetrators. The structure’s response to penetration was examined experimentally by considering different impact locations on oblique targets. Numerical simulations of the experiments were performed to reproduce the penetration and failure processes that occurred in the armor modules. In addition, a simple layer structure with the identical line-of-sight thickness of each material used in the oblique impact was simulated under a normal impact. The rod and target performances with the oblique impact and normal impact were compared and analyzed in detail. The results showed that the oblique structure had a better ballistic performance as a result of an extra short dwell period before penetrating the ceramic in comparison with the normal layer case. The ability of the oblique targets to defeat long rod projectiles differed with the impact location on the ceramic. The present study paves the way for ceramic armor obliquity applications. Full article
Show Figures

Graphical abstract

18 pages, 14113 KB  
Article
Effect of Graphene Oxide Coating on Natural Fiber Composite for Multilayered Ballistic Armor
by Ulisses Oliveira Costa, Lucio Fabio Cassiano Nascimento, Julianna Magalhães Garcia, Sergio Neves Monteiro, Fernanda Santos da Luz, Wagner Anacleto Pinheiro and Fabio da Costa Garcia Filho
Polymers 2019, 11(8), 1356; https://doi.org/10.3390/polym11081356 - 16 Aug 2019
Cited by 91 | Viewed by 8320
Abstract
Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant [...] Read more.
Composites with sustainable natural fibers are currently experiencing remarkably diversified applications, including in engineering industries, owing to their lower cost and density as well as ease in processing. Among the natural fibers, the fiber extracted from the leaves of the Amazonian curaua plant (Ananas erectifolius) is a promising strong candidate to replace synthetic fibers, such as aramid (Kevlar™), in multilayered armor system (MAS) intended for ballistic protection against level III high velocity ammunition. Another remarkable material, the graphene oxide is attracting considerable attention for its properties, especially as coating to improve the interfacial adhesion in polymer composites. Thus, the present work investigates the performance of graphene oxide coated curaua fiber (GOCF) reinforced epoxy composite, as a front ceramic MAS second layer in ballistic test against level III 7.62 mm ammunition. Not only GOCF composite with 30 vol% fibers attended the standard ballistic requirement with 27.4 ± 0.3 mm of indentation comparable performance to Kevlar™ 24 ± 7 mm with same thickness, but also remained intact, which was not the case of non-coated curaua fiber similar composite. Mechanisms of ceramic fragments capture, curaua fibrils separation, curaua fiber pullout, composite delamination, curaua fiber braking, and epoxy matrix rupture were for the first time discussed as a favorable combination in a MAS second layer to effectively dissipate the projectile impact energy. Full article
(This article belongs to the Special Issue Natural Fibres and their Composites)
Show Figures

Figure 1

22 pages, 14313 KB  
Article
Identification of the Quasi-Static and Dynamic Behaviour of Projectile-Core Steel by Using Shear-Compression Specimens
by Yannick Duplan, Dominique Saletti and Pascal Forquin
Metals 2019, 9(2), 216; https://doi.org/10.3390/met9020216 - 12 Feb 2019
Cited by 3 | Viewed by 4487
Abstract
Armour-Piercing (AP) projectiles constitute a major threat to be considered for the design of bi-layer-armour configurations constructed using a ceramic front plate backed with a composite/metal layer. When they are not made of tungsten-carbide the cores of these projectiles are made of hard [...] Read more.
Armour-Piercing (AP) projectiles constitute a major threat to be considered for the design of bi-layer-armour configurations constructed using a ceramic front plate backed with a composite/metal layer. When they are not made of tungsten-carbide the cores of these projectiles are made of hard steel, and are the main part that defines the penetration performance of the projectile. However, due to specific testing difficulties, the dynamic behaviour of these high-strength steel AP projectiles has not been investigated in sufficient detail. In this study, a detailed experimental investigation of the dynamic behaviour of the steel used for the steel core of 7.62 mm BZ-type AP projectiles was analysed through the use of Shear-Compression Specimens (SCS). In this study, results from both quasi-static and dynamic experiments were examined. The data processing method employed was set and validated based on numerical simulations. Both quasi-static and dynamic SCS experiments were done with the steel tested which clearly indicated the steel cores exhibit a very high elastic limit, little strain-hardening, and very little strain-rate sensitivity despite the wide range of strain-rates considered. This experimental characterisation paves the way to the numerical modelling for the analysis of ballistic impact of 7.62 mm AP projectile against lightweight armour configurations. Full article
(This article belongs to the Special Issue Metallic Materials under Dynamic Loading)
Show Figures

Figure 1

Back to TopTop