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Abstract: Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to
solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose
an aluminum matrix composite using pressure infiltration, containing an array of ceramic balls,
the reinforcement of which consists of centimeter-scale SiC balls and micron-scale B4C particles.
Three different array layouts were designed and fabricated: compact balls in the front panel (F-C),
non-compact balls in the front panel (F-NC), and compact balls inside the target (I-C). The penetration
resistance properties were tested using a 12.7 mm armor-piercing incendiary (API). The results show
that there are no significant internal defects, and the ceramic balls are well-bonded with the matrix
composite. The F-NC structure behaves the best penetration resistance with minimal overall damage;
the I-C structure has a large area of spalling and the most serious damage. Finite element simulation
reveals that the ceramic balls play a major role in projectile erosion; in the non-compact structure, the
composite materials between the ceramic balls can effectively disperse the stress, thereby avoiding
the damage caused by direct contact between ceramic balls and improving the efficiency of ceramic
ball erosion projectiles. Furthermore, it is essential to have a certain thickness of supporting materials
to prevent spalling failure caused by stress wave transmission during penetration. This multi-
scale composite exhibits excellent ballistic performance, providing valuable insights for developing
anti-penetration composite armor in future applications.

Keywords: Al matrix composites; 12.7 mm API; ballistic performance; finite element simulation;
LS-DYNA

1. Introduction

In the field of armor materials, with the advancement of anti-armor weapon develop-
ment, it is difficult for a single material to meet the growing protection demands; thereby,
composite samples prepared for being used in the fabrication of armor have received
attention [1–4]. These composite samples, combining various materials, can fully exploit
the advantageous properties of each material to achieve excellent protection performance
while maintaining the integrity of the target plate. Currently, major types of composite
armor include lattice armor [5,6], biomimetic armor [7,8], functionally graded armor [9,10],
and ceramic composite armor [11–13].

The mainstream ceramic composite armor primarily consists of ceramic front panels
and polymer rear materials [1,14,15]. Ceramic materials are widely applied in the armor
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domain due to their excellent properties, such as lightweight and high strength. However,
their brittleness poses a challenge as localized cracks can accelerate the overall failure of
the panel, often resulting in extensive collapse during penetration, which hinders multi-hit
capability [12,16]. To address this issue, front panels have evolved from being solely com-
posed of ceramic plates to include ordered array structures of ceramic tiles, balls, columns,
and particles [17]. The utilization of independent ceramic units can effectively mitigate
the failure of ceramic panels, thereby maximizing the erosion effect of the ceramic layer
against projectiles. Additionally, this approach is beneficial for harnessing the potential
of composite armor in countering multi-hit threats. In this regard, spherical shapes can
effectively prevent stress concentration-induced damage caused by shape edges.

Similarly, the backing materials have diversified into various material systems, such
as aluminum alloys and their composites, titanium alloys, and high-performance fiber
materials [18]. Titanium alloys may exhibit sudden failure during penetration due to
adiabatic shear instability [19,20]. Fiber composite materials have relatively lower shear
strength and face challenges related to high production costs and limited environmental
adaptability [4,21,22]. In contrast, on top of the high strength, low density, and low cost of
aluminum alloy, aluminum composite materials offer excellent design flexibility, providing
greater possibilities for optimizing the structure and performance of composite armor.
Considering these factors, we chose independent ceramic ball units constrained by high-
strength aluminum composites to obtain an ideal composite armor.

The penetration resistance mechanism of array structures has been widely studied [1,17,23].
Hu et al. [24] utilized squeeze casting infiltration to prepare a composite material consisting of
6 mm Al2O3 ceramic balls constrained within a 6061A1 matrix and subjected them to ballistic
testing using a 12.7 mm incendiary projectile and a 30 mm armor-piercing projectile. The results
revealed that the collisions between neighboring balls effectively dispersed the load brought
by the projectile, and the alternate arrangement of the ductile alloy and the high-strength
ceramic balls played a role in energy dispersion and accelerating the shockwave reflection,
which improves the penetration resistance.

Based on the above anti-penetration mechanism, some studies have also optimized the
size and shape of ceramic units [25–28]. Liu et al. [25] employed a combined experimental
and simulation approach to investigate the influence of ceramic ball size on ballistic perfor-
mance. It was found that reducing the size of ceramic balls within a certain range (6–20 mm)
could enhance the penetration resistance of the target plate. Jiang et al. [26] discussed the
projectile deflection caused by specially shaped ceramics, which in turn optimized the
anti-penetration performance. However, current research in this field has predominantly
emphasized the optimization of ceramic balls, with relatively limited investigations into
the synergistic effects between ceramic ball arrays and constraint materials.

In order to investigate the synergistic effects between ceramic ball arrays and con-
straint materials during penetration, this study designed and fabricated composite targets
with three different arrangements of ceramic balls, followed by ballistic testing. The nu-
merical model was established using LS-DYNA to analyze the velocity-time history of
the projectile, energy variations in different components, and damage patterns during
the penetration process. Experimental and simulation results demonstrate that the ce-
ramic balls’ arrangement can significantly influence composite armor’s ballistic resistance,
which provides experimental and theoretical support for the structural optimization of the
composite target.

2. Materials and Methods
2.1. Sample Design and Fabrication

A target plate thickness of 20 mm was chosen to investigate the optimal arrangement
of ceramic balls under the condition of equal areal density (~55 kg/m2). Figure 1 shows the
preparation process and structural schematics of the designed composite armor. 8 mm SiC
ceramic balls (Yangzhou Northern Sanshan Industrial Ceramics Co., Ltd., Yangzhou, China)
were selected because of their high strength and mature sintering process. Additionally,
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the spherical shape can minimize the premature damage caused by the stress concentration
within the ceramic during penetration. Due to its high strength and excellent penetration
resistance, B4C (Mudanjiang Jingang Diamond Boron Carbide Co., Ltd., Mudanjiang,
China) was chosen as the reinforcement in the composite, serving as both support and
constraint. The B4C particle D50 size is 17.5 µm, and the volume fraction of B4C in the
composite material is 50%.
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Figure 1. Schematic illustration for the composite armor. (a) Fabrication procedure, (b) Structure.

For material preparation, SiC ceramic balls were first arranged inside the mold, and
the 3D printing mold was used to achieve equal spacing of the balls (2 mm); then, an
appropriate amount of B4C powder was placed inside the mold, followed by pouring
molten 7075 aluminum (Northeast Light Alloy Co., Ltd., Harbin, China) into the mold.
The target plate was then fabricated as an integrated structure via pressure infiltration. A
more detailed preparation process was described in previous works [9,10]. The specimens
were subjected to T6 heat treatment: solution treated at 475 ◦C for 1 h, after which water-
quenched and aged at 120 ◦C for 24 h. The three different structures are labeled as F-C for
compact balls in the front, F-NC for non-compact balls in the front, and I-C for compact
balls inside the target. Table 1 gives the details of the produced composite armor.

Table 1. The details of the ceramic composite armor samples.

F-C F-NC I-C

Density of
B4Cp/7075Al

composite (g/cm3)
2.65 2.65 2.66

Relative density of
B4Cp/7075Al
composite (%)

99.4 99.4 99.8

Area density (kg/m2) 55.7 54.0 55.6
Thickness (mm) 20.7 20.5 20.8

2.2. Ballistic Impact Test

Figure 2 shows the schematic diagram of the ballistic test setup, including a bal-
listic gun, velocity measuring system, and target plate support. The round target plate
(D = 130 mm) is supported by a thick steel plate. The 12.7 mm armor-piercing incendiary
projectile (API) was fired toward the center of the armor sample at a velocity of 818 m/s,
with a distance of 10 m between the ballistic gun and the target. Each experimental
condition yielded at least two valid data.



Materials 2023, 16, 5796 4 of 15

Materials 2023, 16, x FOR PEER REVIEW 4 of 15 
 

 

2.2. Ballistic Impact Test 
Figure 2 shows the schematic diagram of the ballistic test setup, including a ballistic 

gun, velocity measuring system, and target plate support. The round target plate (D = 130 
mm) is supported by a thick steel plate. The 12.7 mm armor-piercing incendiary projectile 
(API) was fired toward the center of the armor sample at a velocity of 818 m/s, with a 
distance of 10 m between the ballistic gun and the target. Each experimental condition 
yielded at least two valid data. 

 
Figure 2. The schematic diagram of the ballistic impact test. 

The anti-penetration performance is evaluated using the dimension of the damaged 
area and the remaining depth of penetration (DOP) into the backing material. Due to the 
irregular shape of the damaged area, we need to find a more reasonable way to describe 
its dimensions. According to the reference [9], the diameter of the damaged area D was 
quantified using the entrance diameter (D1) and exit diameter (D2) of the projectile holes, 
which is given by: 𝐷 𝐷 𝐷 /2 (1)

D1 presents the entrance diameter (on the front plane), while D2 presents the exit di-
ameter (on the rear plane) of the projectile hole in the target plate. The calculation formu-
las for D1 and D2 are as follows: 𝐷 𝐷 𝐷 /2, 𝑖 1,2 (2)

Dx denotes the longest distance within the damaged area, and Dy represents the dis-
tance between the tangent lines parallel to the X-axis along the damaged area, as shown 
in Figure 3. 

 

Figure 2. The schematic diagram of the ballistic impact test.

The anti-penetration performance is evaluated using the dimension of the damaged
area and the remaining depth of penetration (DOP) into the backing material. Due to the
irregular shape of the damaged area, we need to find a more reasonable way to describe
its dimensions. According to the reference [9], the diameter of the damaged area D was
quantified using the entrance diameter (D1) and exit diameter (D2) of the projectile holes,
which is given by:

D =
√(

D2
1 + D2

2
)
/2 (1)

D1 presents the entrance diameter (on the front plane), while D2 presents the exit
diameter (on the rear plane) of the projectile hole in the target plate. The calculation
formulas for D1 and D2 are as follows:

Di =

√(
D2

x + D2
y

)
/2, i = 1, 2 (2)

Dx denotes the longest distance within the damaged area, and Dy represents the
distance between the tangent lines parallel to the X-axis along the damaged area, as shown
in Figure 3.
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2.3. Numerical Simulation
2.3.1. Model Specifications

The numerical simulations were performed using LS-DYNA via dynamics explicit
to understanding the anti-penetration mechanism of different structures against 12.7 mm
API. It has been demonstrated that using the Lagrange finite element technique for the
dynamic loading processes at high-speed events could provide reliable predictions. A
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three-dimensional (3D) finite element model was employed to build the projectile and
targets, as shown in Figure 4, containing three parts: the bullet, the cylindrical target plate
(ceramic balls and composite material), and the backing plate. Figure 4a,b show the detailed
morphology, boundary conditions, and dimensions of the projectile–target structure. The
displacement of the nodes at the bottom of the backing target plate is constrained in the
z-direction, and a reflection-free boundary condition is imposed on the peripheral nodes of
the cylindric target.
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Figure 4 shows the finite element model of the projectile and target, which was
meshed using a Lagrange eight-node solid element with full integration. The projectile–
target structure was meshed uniformly in order to maintain numerical accuracy. To avoid
mesh distortion, a pixel point ball was used to approximate it, as shown in Figure 4c. We
select suitable element size dimensions of 0.5 × 0.5 × 0.35 mm based on the convergence
study [17,22]. More detailed information about the mesh of the projectile–target structure
is shown in Figure 4d,e.

2.3.2. The Contact Types

The dynamic erosion contact (ERODING_SURFACE_TO_SURFACE_CONTACT) is
applied to achieve the interaction between the projectile and target plate, as well as the
components of the projectile–target structure itself. The contact strength of the ceramic
balls and the composite material is described using commercial software LS-DYNA R12
keywords SURFACE_TO_SURFACE_TIEBREAK_CONTACT. The element deletion tech-
nique is introduced to simulate the potential crack initiation and propagation. When the
damage of an element exceeds the critical value defined by keywords ADD_EROSION and
the damage model included in the constitutive equation of the material in LS-DYNA, all
the components of stress in that element are reset to 0, the material fails, and the element is
deleted.

The ERODING_SURFACE_TO_SURFACE_CONTACT keyword is particularly use-
ful for simulating complex contact behavior in multi-body systems, especially in cases
involving material erosion, frictional wear, and surface damage [22,29,30]. In contrast, The
SURFACE_TO_SURFACE_TIEBREAK_CONTACT keyword is used to deal with prioritiza-
tion and competing conditions between multiple contact surfaces to ensure the accuracy
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and stability of simulations in complex contact situations. These prioritization rules can be
determined based on a number of conditions, such as normal force, shear force, friction,
etc. [31–33].

It must be pointed out that the element deletion technique is just a feasible approach
to realize material separation, and it suffers from mass, momentum, energy loss, etc. To
reduce the influence of element elimination on the impact, elements in the possible fracture
region should be controlled to a sufficiently small size within an allowable computational
expense. Due to the non-uniformity of the structure, there are many possibilities for the
projectile impacting sites on the composite armor surface. To eliminate variances caused by
the bullets hitting different positions, we made all the bullets hit the center of the ceramic
ball directly at 818 m/s.

2.3.3. Material Parameters

In the numerical model, SiC ceramic balls were modeled by the Johnson Holmquist
Ceramics constitutive model (JH-2) [11], while the projectile, B4C/Al composite material,
and the backing plate 6211 armor steel were modeled using the Johnson–Cook model
(J–C) [9] that is able to characterize metal materials well undergoing large strains, high
strain rates, and high temperatures. The parameters of the J–C and JH-2 models are listed
in Tables 2 and 3.

Table 2. The J–C model constants of the projectile and B4C/Al composite (unit: cm-g-µs) [9].

Material ρ g pr a b n c m tm

projectile 7.85 0.77 0.29 0.014 0.0015 0.12 0 1 1768
B4C/Al composite 2.65 0.783 0.24 0.009 0.0025 0.11 0.072 2.34 933

d1 d2 d3 d4 d5

projectile 1.0 0 0 0 0
B4C/Al composite 0.0261 0.263 0 0 8.4

Table 3. The JH-2 model constants of SiC (unit: cm-g-µs) [11].

Material ρ g a b c m n t sfmax

SiC

3.16 1.83 0.96 0.35 0.65 0.0045 1 0.0037 0.13
hel phel beta d1 d2 k1 k2 k3 fs

0.13 0.059 1.0 0.48 0.48 2.047 0 0 1.2

3. Results
3.1. Structure Characterization

Figure 5 presents the pictures of the composite armor before the ballistic test. The
macroscopic surface of the target plate exhibits no discernible defects. Based on the CT
images, it can be observed that in the F-C and I-C structures, the ceramic balls are compactly
arranged as expected. Only in the F-NC structure does the position of ceramic balls vary
slightly during the aluminum infiltration processes. The ceramic ball gaps are still filled
with composite material in accordance with the expected design.
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Characterization of the target plate microstructure was also performed, and the re-
sults are shown in Figure 6. Within the composite material, B4C particles were uniformly
distributed and exhibited good bonding with the 7075Al matrix without any significant
voids or defects observed. Although there were a few pores present within the SiC ce-
ramic balls, no noticeable cracks were detected. The intact structure of the ceramic balls
helps prevent premature failure during the penetration process, thereby facilitating their
resistance to penetration. Additionally, under the influence of pressure, the aluminum
matrix and ceramic balls exhibited mutual infiltration, forming a tight metallurgical bond.
Furthermore, surface undulations were observed on the ceramic balls, providing favorable
conditions for mechanical interlocking between the composite material and the ceramic
balls. These factors contribute to the effective support and constraint provided by the
composite material to the ceramic balls.
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Traditional composite armor, with polymer materials such as epoxy as the represen-
tative constraint material, exhibits disadvantages such as low strength and poor bonding
with ceramic despite their low density. As a result, the penetration resistance performance
of ceramics cannot be fully utilized [1,17,34]. In this study, the pressure infiltration process
was employed to achieve an ideal interface bonding between the ceramic balls and the
composite material. The high-strength composite material provides excellent support
and constraint for the ceramic balls, thereby enhancing the projectile erosion effect of the
ceramic balls and improving the overall ballistic performance.

3.2. Ballistic Performance

Ballistic testing was conducted on composite armor with different array arrangements.
Due to experimental conditions, complete fragments were not collected from some target
plates. In this study, the anti-penetration performance of the target plates was comprehen-
sively evaluated based on the remaining depth of penetration (DOP) in the backing plate
and the damage to the target plates. The specific penetration test results are presented in
Table 4.

Table 4. Ballistic test data for different composite armors.

F-C F-NC I-C

Bullet speed (m/s) 827 825 821
DOP (mm) 1.00 0.65 1.52

D1 (cm) 5.77 2.64 7.68
D2 (cm) 2.12 3.87 4.89
D (cm) 4.37 3.31 6.44

From the perspective of residual penetration depth in the backing plate, the F-NC tar-
get plate exhibited the smallest DOP, indicating minimal remaining energy of the projectile
upon reaching the backing plate. Furthermore, no significant spallation occurred in the
target plate, demonstrating excellent resistance to penetration.

Regarding the damage condition shown in Figure 7, the F-C and F-NC target plates
exhibited relatively fewer fragmented pieces and overall minor damage. In the F-C target
plate, cracks propagated primarily radially outward from the impact point, with a few
secondary cracks formed during crack expansion. Due to the rigid contact between the ce-
ramic balls on the front plate, some ceramic balls collapsed near the impact point, resulting
in spalling and the formation of enlarged holes. However, no spalling damage occurred on
the rear surface of the target plate, indicating its effective load-bearing capability against
the projectile’s impact.
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Compared to the F-C target plate, the majority of ceramic balls near the impact point
on the I-C target plate either detached from the matrix or were torn in half during the
propagation of the stress wave. This results in extensive spalling on both the impact surface
and the rear surface of the target plate, leading to a larger area of damage.

3.3. Numerical Simulation
3.3.1. Validation of Material Parameters and Models

We validated the accuracy of material parameters and finite element models using the
remaining depth of penetration (DOP) and macroscopic damage. In ballistic experiments,
DOP is an important indicator, referring to the depth of penetration retained by a projectile
after passing through a target. A smaller value suggests that the target exerts significant
resistance to the projectile’s penetration [35]. Both in the experimental and simulation
results, there is a minimum value of DOP in the F-NC structure, indicating that the target
plate is effective in hindering the projectile. The difference between the DOP obtained from
the finite element simulation and the experimental measurement is within 8.0%, as shown
in Table 5. Figure 8 illustrates the overall damage of the target plates after penetration. It can
be observed that the F-NC target plate exhibits the least damage after penetration, while the
I-C target plate shows cracking at the ceramic ball layer in addition to radial and secondary
cracks, resulting in a lifting damage pattern. These results indicate that the numerical
simulation exhibits similar failure mechanisms to the experimental. By comparing the
simulated and experimental data, we observed a significant level of consistency, thereby
validating the accuracy of the material parameters and models.
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Table 5. Validation of numerical simulation by the remaining depth of penetration (DOP).

F-C F-NC I-C

DOP by experiment
(mm) 1.00 0.65 1.52

DOP by simulation
(mm) 1.08 0.64 1.64

Tolerance +8.0% −1.5% +7.9%
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3.3.2. Numerical Results

In addition to the macroscopic damage to the target plate shown in Figure 8, the
variations in projectile velocity and kinetic energy can also directly reflect the penetration
resistance of the target plate. As the bullet penetrates, it first encounters the B4C/Al
composite material. Compared with the ceramic balls, the B4C/Al composite material is
not effective in eroding the projectile, allowing the bullet to pass through at a high velocity.
From Figure 9a,c, it can be observed that the F-NC target plate performs exceptionally well
in reducing projectile velocity and kinetic energy. The time required for the projectile to pass
through the F-NC target plate is longer, at 50 µs, compared to 46 µs for the F-C target plate
and 42 µs for the I-C target plate, showing a significant improvement. The acceleration–time
curve also reveals that the F-NC target plate exhibits the highest acceleration of the projectile,
with the widest peak width, demonstrating superior deceleration effects on the projectile.
During the penetration of the I-C target plate, the occurrence of the first peak in projectile
acceleration is delayed, indicating that the ceramic balls play a primary role in both erosion
and deceleration of the projectile compared to the composite material [11,28].

Materials 2023, 16, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 8. Damage of the target plates after penetration by FEM. (a) F-C structure, (b) F-NC structure, 
(c) I-C structure. 

3.3.2. Numerical Results 
In addition to the macroscopic damage to the target plate shown in Figure 8, the var-

iations in projectile velocity and kinetic energy can also directly reflect the penetration 
resistance of the target plate. As the bullet penetrates, it first encounters the B4C/Al com-
posite material. Compared with the ceramic balls, the B4C/Al composite material is not 
effective in eroding the projectile, allowing the bullet to pass through at a high velocity. 
From Figure 9a,c, it can be observed that the F-NC target plate performs exceptionally 
well in reducing projectile velocity and kinetic energy. The time required for the projectile 
to pass through the F-NC target plate is longer, at 50 µs, compared to 46 µs for the F-C 
target plate and 42 µs for the I-C target plate, showing a significant improvement. The 
acceleration–time curve also reveals that the F-NC target plate exhibits the highest accel-
eration of the projectile, with the widest peak width, demonstrating superior deceleration 
effects on the projectile. During the penetration of the I-C target plate, the occurrence of 
the first peak in projectile acceleration is delayed, indicating that the ceramic balls play a 
primary role in both erosion and deceleration of the projectile compared to the composite 
material [11,28]. 

 
Figure 9. Histories of the projectile during penetration. (a) Velocity–time curve, (b) Acceleration–
time curve, (c) Kinetic energy–time curve. 

4. Discussion 
4.1. Different Array Layouts 

It is obvious that ceramic ball array layouts will greatly affect the penetration re-
sistance from the results shown in Table 4 and Figure 7. Compared to the target plate with 
compact ceramic balls, the relatively softer composite material in the gaps between the 
ceramic balls helps alleviate stress concentration during penetration, thereby avoiding ex-
tensive damage caused by direct rigid contact between the ceramic balls. Such a buffer 
effect was also reported in Hu and Jiang’s research [24,28]. Simultaneously, the composite 
material alters the crack propagation path from “ceramic ball to ceramic ball” to “ceramic 
ball to composite to ceramic ball”, promoting crack nucleation and growth at the interface 

Figure 9. Histories of the projectile during penetration. (a) Velocity–time curve, (b) Acceleration–time
curve, (c) Kinetic energy–time curve.

4. Discussion
4.1. Different Array Layouts

It is obvious that ceramic ball array layouts will greatly affect the penetration resistance
from the results shown in Table 4 and Figure 7. Compared to the target plate with compact
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ceramic balls, the relatively softer composite material in the gaps between the ceramic
balls helps alleviate stress concentration during penetration, thereby avoiding extensive
damage caused by direct rigid contact between the ceramic balls. Such a buffer effect was
also reported in Hu and Jiang’s research [24,28]. Simultaneously, the composite material
alters the crack propagation path from “ceramic ball to ceramic ball” to “ceramic ball to
composite to ceramic ball”, promoting crack nucleation and growth at the interface between
the ceramic balls and composite material. This enhances the energy absorption capacity of
the target plate.

Numerical simulation results corroborate this point well. From the stress distribution
maps of the target plates shown in Figure 10, it can be observed that the maximum stress
occurs within the ceramic balls when the projectile contacts them, which aligns with
expectations. As penetration continues, ceramic balls in contact with the projectile fail
first due to stress transmission. In the F-C target plate, due to the compact arrangement
of ceramic balls, stress easily propagates to the adjacent ceramic balls, leading to their
failure, as shown in Figure 10a at 20 µs. Similar results are also confirmed in the I-C
target plate. In contrast, the relatively softer composite material between the ceramic
balls in the F-NC target plate acts as a buffer, reducing stress transmission. This prevents
premature failure due to the hard-to-hard contact between the ceramic balls. Ensuring the
integrity of the ceramic balls effectively prolongs the interaction time between the target
plate and the projectile, allowing the anti-penetration capability of the ceramic balls to be
fully utilized [17].
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4.2. Support Effect by Composite

In addition to the role of constraint and dispersing stress, we find that the support
provided by the composite material is also crucial in improving penetration resistance
by comparing the F-C and I-C structures. According to the stiffness theory of laminated
materials [36–38], when the ceramic balls are positioned inside, the supported composite
material thickness is only half of the other two types, and its stiffness is only 1/8. When
the bullet contacts the ceramic balls, composite material fails to provide sufficient support,
resulting in extensive collapse. Additionally, it was also found that the target plate was par-
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tially lifted along the ceramic ball layer in the I-C target plate after penetration, performing
the poorest penetration resistance among the three types of target plates.

A comparison of the damage observed in the F-C and I-C target plates in Figure 10
reveals that thinner support layers experience multiple crack failures during the repeated
propagation of stress waves, as shown at 20 and 30 µs. Failure of the rear support leads
to insufficient erosion of the projectile by the ceramic balls. Furthermore, when stress is
transferred from the ceramic layer to the edges of the target plate, the plate exhibits lifting
damage, resulting in overall failure.

In fact, both the constraint and support effects of the composite are designed to fully
exploit the anti-penetration resistance of the ceramic. The projectile erosion by the ceramic
occupies a major role in the ballistic performance [11,28].

4.3. Synergistic Effects between Ceramic Balls and Composite

Previous studies have shown that increasing the areal density of the target plate is
beneficial for enhancing penetration resistance. However, among the three target plates
considered in this study, the F-C target plate exhibits superior penetration resistance
compared to the I-C target plate under the same areal density. Additionally, the F-NC
target plate with lower areal density performs exceptionally well in terms of both target
plate damage and DOP. Therefore, it is necessary to explore the impact of ceramic ball
arrangement on the target plate’s penetration resistance from other aspects. Fortunately, the
stress distribution and energy variation during the penetration process appear to provide
solid evidence in this regard. The stress distribution has been well discussed in Figure 10.

The energy–time profiles of SiC ceramic balls and composite materials shown in
Figure 11 also provide strong evidence supporting the aforementioned viewpoint regarding
the energy dissipation by the composite material buffer. The F-NC target plate, which
exhibits the least energy dissipation by the ceramic balls, shows the smallest overall damage
and superior penetration resistance. Overall, the target plate can demonstrate excellent
penetration resistance only when the composite material effectively absorbs energy and
minimizes ceramic ball failure. References [11,24] also clarify that ceramics primarily act as
projectile erosion and composites act as energy absorbers.
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In addition to projectile erosion, the initiation and propagation of cracks within the
target plate are also important mechanisms for absorbing projectile kinetic energy, repre-
senting crucial research aspects in the protection field. Ceramic balls in the target plate
promote crack nucleation and growth at the ball–composite interface, enhancing energy
absorption. The expansion of cracks holds different implications for the target plate’s
resistance against single and multiple penetrations. For single penetration, a greater num-
ber of crack initiation and deflection indicate increased absorption of projectile kinetic
energy, thus improving the target plate’s penetration resistance. Conversely, maintaining
the integrity of the target plate is more critical for multiple penetrations.
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Due to the high strength of ceramic balls, some cracks tend to deflect around the
ceramic balls, forming bridge cracks in the composite material, as shown in Figure 7(a1,a2).
Such crack deflection not only enhances local energy absorption efficiency but also preserves
the integrity of the target plate to the maximum extent, exhibiting excellent resistance
against both single and multiple penetrations. Building upon this principle, the non-
compact arrangement of ceramic balls, utilizing composite materials with lower modulus
as buffers, serves to disperse stress and increase resistance to crack propagation from
ceramic balls to composites to ceramic balls, further improving the energy absorption
efficiency of the target plate [24,25].

Finally, we must state that there are some limitations in this paper, and we will continue
to investigate the effect of the shape, size, and spacing of the individual ceramic units on
the resistance to penetration in future studies. In addition, the difference in the penetration
resistance at different locations due to the structural inhomogeneity of the composite armor
is also one of the research directions.

5. Conclusions

To address the issue of overall failure in traditional ceramic panels during penetration,
we developed a composite armor using independent ceramic ball units as the panel layer
constrained by high-strength B4C/Al composite material. Using three different array
arrangements, we investigated the respective roles and synergistic effects of the ceramic
balls and composite material during the penetration process. These findings provide
innovative insights for the design and fabrication of future composite armor based on
independent ceramic units. The main conclusions are as follows:

1. The composite material with three different structures was prepared using the pres-
sure infiltration method. The B4C particles and SiC ceramic balls are uniformly
distributed within the composite material and tightly bonded to the metal matrix
without noticeable defects such as voids. Surface undulations of the ceramic balls pro-
vide favorable conditions for mechanical interlocking between the composite material
and the ceramic balls.

2. The F-NC structure exhibits the least macroscopic damage and DOP in the ballistic test,
demonstrating the most outstanding penetration resistance performance. In contrast,
the I-C structure experiences extensive spalling during penetration, indicating the
poorest penetration resistance.

3. During penetration, the ceramic balls primarily contribute to projectile erosion and
deceleration, while the composite material mainly serves the purpose of energy
absorption and support. In the F-NC structure, the target plate has a longer interaction
time with the projectile, highlighting the erosion and deceleration effects. This is
attributed to the buffer effect provided by the relatively soft composite material in
the gaps between the ceramic balls. It reduces stress transmission between the balls,
mitigates ceramic ball damage, and enhances the penetration resistance capability of
the target plate.
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