Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = central nervous system-derived EVs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8639 KiB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 724
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 1422 KiB  
Article
Extracellular Vesicles Analysis as Possible Signatures of Antiphospholipid Syndrome Clinical Features
by Giulio Luigi Bonisoli, Giuseppe Argentino, Simonetta Friso and Elisa Tinazzi
Int. J. Mol. Sci. 2025, 26(7), 2834; https://doi.org/10.3390/ijms26072834 - 21 Mar 2025
Viewed by 611
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disease characterized by thrombosis and obstetric complications. Extracellular vesicles (EVs) of either platelet and endothelial origin are recognized to be involved in the pathophysiology of the disease. This study aimed to evaluate the potential role of [...] Read more.
Antiphospholipid syndrome (APS) is a rare autoimmune disease characterized by thrombosis and obstetric complications. Extracellular vesicles (EVs) of either platelet and endothelial origin are recognized to be involved in the pathophysiology of the disease. This study aimed to evaluate the potential role of endothelial- and platelet-derived extracellular vesicles and the clinical features or progression of APS. We enrolled 22 patients diagnosed with APS and 18 age and sex-matched healthy controls. We determined APS-specific antibody positivity and clinical manifestations in APS affected patients, with a focus on neurological, cardiovascular, dermatological, hematological manifestations, and pregnancy-related complications. Platelet-poor plasma was collected from either patients and controls for the analysis of EVs by flow cytometry technology using monoclonal antibodies to specifically identify those derived from either platelets and/or endothelial cells. EVs of endothelial and platelet origins were overall significantly increased in patients as compared to healthy controls. Furthermore, a significant association was also observed between the number of extracellular vesicles and specific organ involvement, particularly central nervous system manifestations, hematological abnormalities, and obstetric complications. An elevated proportion of endothelial-derived EVs in APS and a reduction of resting endothelial cell-derived EVs were observed in APS-affected women with obstetric complications. Our findings highlight the involvement of endothelial cells and platelets in mirroring the activities of endothelial cells and platelets in APS. Additionally, extracellular vesicles may serve as potential predictors of organ involvement and disease-related damage. Full article
Show Figures

Figure 1

25 pages, 3182 KiB  
Review
Roles, Functions, and Pathological Implications of Exosomes in the Central Nervous System
by Sonia Spinelli, Domenico Tripodi, Nicole Corti, Elena Zocchi, Maurizio Bruschi, Valerio Leoni and Roberto Dominici
Int. J. Mol. Sci. 2025, 26(3), 1345; https://doi.org/10.3390/ijms26031345 - 5 Feb 2025
Cited by 4 | Viewed by 2045
Abstract
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between [...] Read more.
Exosomes are a subset of extracellular vesicles (EVs) secreted by nearly all cell types and have emerged as a novel mechanism for intercellular communication within the central nervous system (CNS). These vesicles facilitate the transport of proteins, nucleic acids, lipids, and metabolites between neurons and glial cells, playing a pivotal role in CNS development and the maintenance of homeostasis. Current evidence indicates that exosomes from CNS cells may function as either inhibitors or enhancers in the onset and progression of neurological disorders. Furthermore, exosomes have been found to transport disease-related molecules across the blood–brain barrier, enabling their detection in peripheral blood. This distinctive property positions exosomes as promising diagnostic biomarkers for neurological conditions. Additionally, a growing body of research suggests that exosomes derived from mesenchymal stem cells exhibit reparative effects in the context of neurological disorders. This review provides a concise overview of the functions of exosomes in both physiological and pathological states, with particular emphasis on their emerging roles as potential diagnostic biomarkers and therapeutic agents in the treatment of neurological diseases. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

32 pages, 9144 KiB  
Article
Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway
by Samar Ahmad, Tania Christova, Melanie Pye, Masahiro Narimatsu, Siyuan Song, Jeffrey L. Wrana and Liliana Attisano
Cells 2025, 14(1), 56; https://doi.org/10.3390/cells14010056 - 6 Jan 2025
Viewed by 1569
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic [...] Read more.
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

13 pages, 1845 KiB  
Article
Methodological Assessment of ExoGAG for Isolation of Cerebrospinal Fluid Extracellular Vesicles as a Source of Biomarkers
by Nil Salvat-Rovira, Anna Vazquez-Oliver, Elisa Rivas-Asensio, Marina Herrero-Lorenzo, Ana Gámez-Valero, Jesús Pérez-Pérez, Cristina Izquierdo, Antonia Campolongo, Eulàlia Martí, Jaime Kulisevsky and Rocío Pérez-González
Int. J. Mol. Sci. 2024, 25(24), 13705; https://doi.org/10.3390/ijms252413705 - 22 Dec 2024
Cited by 1 | Viewed by 1063
Abstract
Extracellular vesicles (EVs) in cerebrospinal fluid (CSF) represent a valuable source of biomarkers for central nervous system (CNS) diseases, offering new pathways for diagnosis and monitoring. However, existing methods for isolating EVs from CSF often prove to be labor-intensive and reliant on specialized [...] Read more.
Extracellular vesicles (EVs) in cerebrospinal fluid (CSF) represent a valuable source of biomarkers for central nervous system (CNS) diseases, offering new pathways for diagnosis and monitoring. However, existing methods for isolating EVs from CSF often prove to be labor-intensive and reliant on specialized equipment, hindering their clinical application. In this study, we present a novel, clinically compatible method for isolating EVs from CSF. We optimized the use of ExoGAG, a commercially available reagent that has been tested in plasma, urine and semen, and compared it directly with differential ultracentrifugation using Western blotting, protein quantification, nanoparticle tracking analysis, and cryogenic electron microscopy. Additionally, we analyzed the presence of specific microRNAs (miRNAs) known to be present in CSF-derived EVs. Our data demonstrate that ExoGAG is an effective method for isolating EVs from CSF, yielding a higher amount of EVs compared to traditional ultracentrifugation methods, and with comparable levels of specific miRNAs. In conclusion, the use of ExoGAG in a clinical setting may facilitate the testing of biomarkers essential for tracking brain pathology in CNS diseases. Full article
(This article belongs to the Special Issue Role of Extracellular Vesicles in Immunology)
Show Figures

Figure 1

12 pages, 2623 KiB  
Article
Tetraspanins, GLAST and L1CAM Quantification in Single Extracellular Vesicles from Cerebrospinal Fluid and Serum of People with Multiple Sclerosis
by Rocío Del Carmen Bravo-Miana, Jone Karmele Arizaga-Echebarria, Valeria Sabas-Ortega, Hirune Crespillo-Velasco, Alvaro Prada, Tamara Castillo-Triviño and David Otaegui
Biomedicines 2024, 12(10), 2245; https://doi.org/10.3390/biomedicines12102245 - 2 Oct 2024
Cited by 1 | Viewed by 2074
Abstract
Objective: This study aimed to unravel the single tetraspanin pattern of extracellular vesicles (EVs), L1CAM+ and GLAST+ EV levels as diagnostic biomarkers to stratify people with multiple sclerosis (pwMS), specifically relapsing–remitting (RRMS) and primary progressive (PPMS). Methods: The ExoView platform was [...] Read more.
Objective: This study aimed to unravel the single tetraspanin pattern of extracellular vesicles (EVs), L1CAM+ and GLAST+ EV levels as diagnostic biomarkers to stratify people with multiple sclerosis (pwMS), specifically relapsing–remitting (RRMS) and primary progressive (PPMS). Methods: The ExoView platform was used to directly track single EVs using a clinically feasible volume of cerebrospinal fluid (CSF) and serum samples. This technology allowed us to examine the patterns of classical tetraspanin and quantify the levels of L1CAM and GLAST proteins, commonly used to immunoisolate putative neuron- and astrocyte-derived EVs. Results: The tetraspanin EV pattern does not allow us to differentiate RRMS, PPMS and non-MS donors neither in CSF nor serum, but this was associated with the type of biofluid. L1CAM+ and GLAST+ EVs showed a very low presence of tetraspanin proteins. Additionally, a significant decrease in the particle count of L1CAM+ EVs was detected in L1CAM-captured spots, and L1CAM+ and GLAST+ EVs decreased in GLAST-captured spots in the CSF from PPMS subjects compared to RRMS. Interestingly, only GLAST+ EVs exhibited a lower quantity in the CSF from PPMS compared to both MS and non-MS samples. Finally, GLAST+ EVs demonstrated a medium negative and significative correlation with GFAP levels—a biomarker of MS progression, astrocyte damage and neurodegenerative processes. Conclusions: ExoView technology could track neural EV biomarkers and be potentially useful in the diagnostic evaluation and follow-up of pwMS. GLAST+ EVs might provide insights into the etiology of PPMS and could offer small windows to elucidate the molecular mechanisms behind its clinical presentation. Full article
(This article belongs to the Special Issue Extracellular Vesicles for Diagnosis and Treatment of Human Diseases)
Show Figures

Figure 1

28 pages, 392 KiB  
Review
Emerging Role of Extracellular Vesicles as Biomarkers in Neurodegenerative Diseases and Their Clinical and Therapeutic Potential in Central Nervous System Pathologies
by Michele Malaguarnera and Andrea Cabrera-Pastor
Int. J. Mol. Sci. 2024, 25(18), 10068; https://doi.org/10.3390/ijms251810068 - 19 Sep 2024
Cited by 14 | Viewed by 3964
Abstract
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers [...] Read more.
The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood–brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy. Full article
36 pages, 1323 KiB  
Review
Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases
by Gabriele Zanirati, Paula Gabrielli dos Santos, Allan Marinho Alcará, Fernanda Bruzzo, Isadora Machado Ghilardi, Vinicius Wietholter, Fernando Antônio Costa Xavier, João Ismael Budelon Gonçalves, Daniel Marinowic, Ashok K. Shetty and Jaderson Costa da Costa
Int. J. Mol. Sci. 2024, 25(13), 7371; https://doi.org/10.3390/ijms25137371 - 5 Jul 2024
Cited by 11 | Viewed by 3574
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of [...] Read more.
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings. Full article
(This article belongs to the Special Issue Extracellular Vesicles and Nanoparticles)
Show Figures

Figure 1

18 pages, 6384 KiB  
Article
Ultrastructural Characterization of PBMCs and Extracellular Vesicles in Multiple Sclerosis: A Pilot Study
by Roberto De Masi, Stefania Orlando, Elisabetta Carata and Elisa Panzarini
Int. J. Mol. Sci. 2024, 25(13), 6867; https://doi.org/10.3390/ijms25136867 - 22 Jun 2024
Cited by 3 | Viewed by 1677
Abstract
Growing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically [...] Read more.
Growing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically relevant contributors to the disease and to neuroinflammation. Recently, several studies have suggested the involvement of EVs as key mediators of neuroimmune crosstalk in central nervous system (CNS) autoimmunity. To assess the role of EVs in MS, we applied electron microscopy (EM) techniques and Western blot analysis to study the morphology and content of plasma-derived EVs as well as the ultrastructure of PBMCs, considering four MS patients and four healthy controls. Through its exploratory nature, our study was able to detect significant differences between groups. Pseudopods and large vesicles were more numerous at the plasmalemma interface of cases, as were endoplasmic vesicles, resulting in an activated aspect of the PBMCs. Moreover, PBMCs from MS patients also showed an increased number of multivesicular bodies within the cytoplasm and amorphous material around the vesicles. In addition, we observed a high number of plasma-membrane-covered extensions, with multiple associated large vesicles and numerous autophagosomal vacuoles containing undigested cytoplasmic material. Finally, the study of EV cargo evidenced a number of dysregulated molecules in MS patients, including GANAB, IFI35, Cortactin, Septin 2, Cofilin 1, and ARHGDIA, that serve as inflammatory signals in a context of altered vesicular dynamics. We concluded that EM coupled with Western blot analysis applied to PBMCs and vesiculation can enhance our knowledge in the physiopathology of MS. Full article
(This article belongs to the Special Issue Neuroinflammation: Advancements in Pathophysiology and Therapies)
Show Figures

Figure 1

17 pages, 1903 KiB  
Review
Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond
by Shumeng Wang, Junyi Luo, Hailong Wang, Ting Chen, Jiajie Sun, Qianyun Xi and Yongliang Zhang
Int. J. Mol. Sci. 2024, 25(6), 3478; https://doi.org/10.3390/ijms25063478 - 20 Mar 2024
Cited by 5 | Viewed by 2547
Abstract
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs [...] Read more.
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome–gut–brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome–gut–brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases. Full article
Show Figures

Figure 1

12 pages, 261 KiB  
Perspective
Contribution of Small Extracellular Vesicles from Schwann Cells and Satellite Glial Cells to Pain Processing
by Parisa Gazerani
Neuroglia 2024, 5(1), 1-12; https://doi.org/10.3390/neuroglia5010001 - 28 Jan 2024
Cited by 1 | Viewed by 2888
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound particles released by cells into extracellular space. These vesicles carry various molecules, such as proteins and lipids, and can serve as mediators of intercellular communication. EVs have been implicated in the communication between different [...] Read more.
Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound particles released by cells into extracellular space. These vesicles carry various molecules, such as proteins and lipids, and can serve as mediators of intercellular communication. EVs have been implicated in the communication between different cell types in the nervous system, for instance, the neurons and glial cells of the central nervous system (CNS) and peripheral nervous system (PNS). Satellite glial cells (SGCs) surround and support neurons in the sensory ganglia of the PNS, and it has been proposed that the EVs released by SGCs may contribute to the processing of pain-related signals and features. This includes the modulation of neuronal activity, the release of pro-inflammatory signaling molecules, and sensitization. A noticeable finding is that EVs can transfer bioactive molecules, including proteins and microRNAs (miRNAs), between cells, influencing cellular functions such as gene expression regulation involved in the transmission and modulation of pain signals. Schwann cells (SCs) also release EVs. SC-derived EVs sequester TNFR1, influencing TNFα activity and regulating neuroinflammation in peripheral nerve injuries. Understanding peripheral glia’s EVs role in pain processing is an emerging area in neuroscience. Here, the latest findings, challenges, and potential are presented to encourage future research. Full article
(This article belongs to the Special Issue Exclusive Papers Collection of Editorial Board Members in Neuroglia)
15 pages, 3534 KiB  
Article
Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway
by Jae-Hyoung Song, Seo-Hyeon Mun, Heejung Yang, Yong Soo Kwon, Seong-Ryeol Kim, Min-young Song, Youngwook Ham, Hwa-Jung Choi, Won-Jin Baek, Sungchan Cho and Hyun-Jeong Ko
Viruses 2024, 16(1), 16; https://doi.org/10.3390/v16010016 - 21 Dec 2023
Cited by 5 | Viewed by 2621
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved [...] Read more.
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses. Full article
(This article belongs to the Special Issue Pharmacology of Antivirals Targeting Metabolism and Immunity)
Show Figures

Figure 1

14 pages, 4066 KiB  
Article
Rapid and Widespread Distribution of Intranasal Small Extracellular Vesicles Derived from Mesenchymal Stem Cells throughout the Brain Potentially via the Perivascular Pathway
by Weiwei Shen, Tongyao You, Wenqing Xu, Yanan Xie, Yingzhe Wang and Mei Cui
Pharmaceutics 2023, 15(11), 2578; https://doi.org/10.3390/pharmaceutics15112578 - 3 Nov 2023
Cited by 7 | Viewed by 2341
Abstract
Intranasal administration is a promising strategy to enhance the delivery of the sEVsomes-based drug delivery system to the central nervous system (CNS). This study aimed to explore central distributive characteristics of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) and underlying pathways. Here, we [...] Read more.
Intranasal administration is a promising strategy to enhance the delivery of the sEVsomes-based drug delivery system to the central nervous system (CNS). This study aimed to explore central distributive characteristics of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) and underlying pathways. Here, we observed that intranasal MSC-sEVs were rapidly distributed to various brain regions, especially in the subcortex distant from the olfactory bulb, and were absorbed by multiple cells residing in these regions. We captured earlier transportation of intranasal MSC-sEVs into the perivascular space and found an increase in cerebrospinal fluid influx after intranasal administration, particularly in subcortical structures of anterior brain regions where intranasal sEVs were distributed more significantly. These results suggest that the perivascular pathway may underlie the rapid and widespread central delivery kinetics of intranasal MSC-sEVs and support the potential of the intranasal route to deliver MSC-sEVs to the brain for CNS therapy. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Central Nervous System Diseases)
Show Figures

Figure 1

49 pages, 10581 KiB  
Article
Human Adult Astrocyte Extracellular Vesicle Transcriptomics Study Identifies Specific RNAs Which Are Preferentially Secreted as EV Luminal Cargo
by Keerthanaa Balasubramanian Shanthi, Daniel Fischer, Abhishek Sharma, Antti Kiviniemi, Mika Kaakinen, Seppo J. Vainio and Geneviève Bart
Genes 2023, 14(4), 853; https://doi.org/10.3390/genes14040853 - 31 Mar 2023
Cited by 4 | Viewed by 3377
Abstract
Astrocytes are central nervous system (CNS)-restricted glial cells involved in synaptic function and CNS blood flow regulation. Astrocyte extracellular vesicles (EVs) participate in neuronal regulation. EVs carry RNAs, either surface-bound or luminal, which can be transferred to recipient cells. We characterized the secreted [...] Read more.
Astrocytes are central nervous system (CNS)-restricted glial cells involved in synaptic function and CNS blood flow regulation. Astrocyte extracellular vesicles (EVs) participate in neuronal regulation. EVs carry RNAs, either surface-bound or luminal, which can be transferred to recipient cells. We characterized the secreted EVs and RNA cargo of human astrocytes derived from an adult brain. EVs were isolated by serial centrifugation and characterized with nanoparticle tracking analysis (NTA), Exoview, and immuno-transmission electron microscopy (TEM). RNA from cells, EVs, and proteinase K/RNase-treated EVs was analyzed by miRNA-seq. Human adult astrocyte EVs ranged in sizes from 50 to 200 nm, with CD81 as the main tetraspanin marker and larger EVs positive for integrin β1. Comparison of the RNA between the cells and EVs identified RNA preferentially secreted in the EVs. In the case of miRNAs, enrichment analysis of their mRNA targets indicates that they are good candidates for mediating EV effects on recipient cells. The most abundant cellular miRNAs were also abundant in EVs, and the majority of their mRNA targets were found to be downregulated in mRNA-seq data, but the enrichment analysis lacked neuronal specificity. Proteinase K/RNase treatment of EV-enriched preparations identified RNAs secreted independently of EVs. Comparing the distribution of cellular and secreted RNA identifies the RNAs involved in intercellular communication via EVs. Full article
(This article belongs to the Special Issue RNA in Extracellular Vesicles)
Show Figures

Figure 1

20 pages, 1850 KiB  
Review
Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases
by Ermanna Turano, Ilaria Scambi, Federica Virla, Bruno Bonetti and Raffaella Mariotti
Int. J. Mol. Sci. 2023, 24(3), 2917; https://doi.org/10.3390/ijms24032917 - 2 Feb 2023
Cited by 27 | Viewed by 4185
Abstract
Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are [...] Read more.
Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases)
Show Figures

Figure 1

Back to TopTop