Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,969)

Search Parameters:
Keywords = cellular therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3599 KB  
Article
Antioxidant Intervention in NAFLD: Astaxanthin and Kokum Modulate Redox Status and Lysosomal Degradation
by Natalia Ksepka, Natalia Kuzia, Sara Frazzini, Luciana Rossi, Małgorzata Łysek-Gładysińska, Michał Ławiński and Artur Jóźwik
Molecules 2026, 31(2), 321; https://doi.org/10.3390/molecules31020321 (registering DOI) - 16 Jan 2026
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder characterized by hepatic lipid accumulation, oxidative stress, and disturbance of lysosomal degradation. Central to these processes is glutathione (GSH), a key antioxidant regulating redox balance and cellular homeostasis. This study aimed to evaluate [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder characterized by hepatic lipid accumulation, oxidative stress, and disturbance of lysosomal degradation. Central to these processes is glutathione (GSH), a key antioxidant regulating redox balance and cellular homeostasis. This study aimed to evaluate the therapeutic potential of two dietary antioxidants—astaxanthin and Garcinia indica (kokum)—in modulating hepatic redox status, lysosomal function, and metabolic gene expression in a murine model of diet-induced NAFLD. A total of 120 male Swiss Webster mice were allocated into control and steatotic groups, followed by a 90-day supplementation period with astaxanthin, kokum, or their combination. Liver tissue was collected post-supplementation for biochemical, antioxidant, and qRT-PCR analyses. Outcomes included lysosomal enzymes activities, superoxide dismutase (SOD), GSH, vitamin C, total polyphenols, DPPH radical-scavenging activity, and total antioxidant capacity (TAC). NAFLD induced marked oxidative stress, lysosomal overactivation, and alteration of antioxidant-related gene expression. Combined supplementation restored GSH, enhanced TAC, reduced lysosomal stress markers, and significantly upregulated nuclear factor erythroid 2-related factor 2 (Nfe2l2) while downregulating fatty acid synthase (FASN) and partially rescuing lipoprotein lipase (LpL). Correlation analyses revealed strong associations between antioxidant capacity, lysosomal function, and transcriptional regulation, supporting the therapeutic relevance of combined antioxidant therapy for concurrent redox and lysosomal dysregulation in NAFLD. These findings underscore the therapeutic potential of targeting redox and cellular degradation pathways with antioxidant-based interventions to re-establish hepatic metabolic balance in NAFLD and related disorders. Full article
(This article belongs to the Special Issue Antioxidant, and Anti-Inflammatory Activities of Natural Plants)
Show Figures

Graphical abstract

32 pages, 3971 KB  
Review
Emerging Gel Technologies for Atherosclerosis Research and Intervention
by Sen Tong, Jiaxin Chen, Yan Li and Wei Zhao
Gels 2026, 12(1), 80; https://doi.org/10.3390/gels12010080 (registering DOI) - 16 Jan 2026
Abstract
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled [...] Read more.
Atherosclerosis remains a leading cause of cardiovascular mortality despite advances in pharmacological and interventional therapies. Current treatment approaches face limitations including systemic side effects, inadequate local drug delivery, and restenosis following vascular interventions. Gel-based technologies offer unique advantages through tunable mechanical properties, controlled degradation kinetics, high drug-loading capacity, and potential for stimuli-responsive therapeutic release. This review examines gel platforms across multiple scales and applications in atherosclerosis research and intervention. First, gel-based in vitro models are discussed. These include hydrogel matrices simulating plaque microenvironments, three-dimensional cellular culture platforms, and microfluidic organ-on-chip devices. These devices incorporate physiological flow to investigate disease mechanisms under controlled conditions. Second, therapeutic strategies are addressed through macroscopic gels for localized treatment. These encompass natural polymer-based, synthetic polymer-based, and composite formulations. Applications include stent coatings, adventitial injections, and catheter-delivered depots. Natural polymers often possess intrinsic biological activities including anti-inflammatory and immunomodulatory properties that may contribute to therapeutic effects. Third, nano- and microgels for systemic delivery are examined. These include polymer-based nanogels with stimuli-responsive drug release responding to oxidative stress, pH changes, and enzymatic activity characteristic of atherosclerotic lesions. Inorganic–organic composite nanogels incorporating paramagnetic contrast agents enable theranostic applications by combining therapy with imaging-guided treatment monitoring. Current challenges include manufacturing consistency, mechanical stability under physiological flow, long-term safety assessment, and regulatory pathway definition. Future opportunities are discussed in multi-functional integration, artificial intelligence-guided design, personalized formulations, and biomimetic approaches. Gel technologies demonstrate substantial potential to advance atherosclerosis management through improved spatial and temporal control over therapeutic interventions. Full article
12 pages, 611 KB  
Article
Isolation of Neuroprotective Constituents from Dryopteris crassirhizoma Rhizomes Inhibiting Beta-Amyloid Production and BACE1 Activity
by Hwan Bin Joo, Tae Eun Park, Min Sung Ko, Chung Hyeon Lee, Kwang Woo Hwang and So-Young Park
Separations 2026, 13(1), 35; https://doi.org/10.3390/separations13010035 (registering DOI) - 16 Jan 2026
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition that progressively impairs cognitive processes, particularly learning and memory. A key pathological feature of AD involves senile plaques mainly composed of β-amyloid (Aβ) peptides, generated via the amyloidogenic pathway from amyloid precursor protein (APP) through sequential β-secretase (BACE1) and γ-secretase cleavage, positioning BACE1 inhibition as a prime therapeutic target. In this study, we applied bioassay-guided fractionation of the butanol-soluble fraction from Dryopteris crassirhizoma rhizomes, previously reported to inhibit Aβ production, to isolate and characterize Aβ-lowering constituents. Through successive chromatographic steps, nine compounds were isolated and structurally classified into flavonoids, chromones, and phloroglucinols, including epicatechin (1), β-carboxymethyl-(-)-epicatechin (2), 7-methoxy-isobiflorin (3), biflorin (4), eriodictyol (5), noreugenin (6), phloroglucinols (butyrylphloroglucinol (7), 2-propionyl-4-methylphloroglucinol (8), and 2-butyryl-4-methylphloroglucinol (9) by comprehensive spectroscopic analysis (NMR, MS, UV, IR). These compounds were assessed for effects on sAPPβ and BACE1 (β-secretase) levels by Western blot, with Aβ production quantified via ELISA in a cellular AD model (APP-CHO cells). Compounds 59 significantly reduced sAPPβ and BACE1 expression while potently suppressing Aβ generation. These results demonstrate that diverse constituents from D. crassirhizoma rhizomes inhibited Aβ production through BACE1 suppression, highlighting their potential as natural lead compounds for AD prevention or therapy. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
17 pages, 2196 KB  
Review
Lipid Droplets in Cancer: New Insights and Therapeutic Potential
by Shriya Joshi, Chakravarthy Garlapati, Amartya Pradhan, Komal Gandhi, Adepeju Balogun and Ritu Aneja
Int. J. Mol. Sci. 2026, 27(2), 918; https://doi.org/10.3390/ijms27020918 - 16 Jan 2026
Abstract
The progression of neoplastic diseases is driven by a complex interplay of biological processes, including uncontrolled proliferation, enhanced invasion, metastasis, and profound metabolic reprogramming. Among the hallmarks of cancer, as revised by Hanahan and Weinberg, the reprogramming of energy metabolism has emerged as [...] Read more.
The progression of neoplastic diseases is driven by a complex interplay of biological processes, including uncontrolled proliferation, enhanced invasion, metastasis, and profound metabolic reprogramming. Among the hallmarks of cancer, as revised by Hanahan and Weinberg, the reprogramming of energy metabolism has emerged as a critical feature that enables cancer cells to meet their heightened bioenergetic and biosynthetic demands. One significant aspect of this metabolic adaptation is the accumulation of lipid droplets (LDs) dynamic, cytoplasmic organelles primarily involved in lipid storage and metabolic regulation. LDs serve as reservoirs of neutral lipids and play a multifaceted role in cancer cell physiology. Their accumulation is increasingly recognized as a marker of tumor aggressiveness and poor prognosis. By storing lipids, LDs provide a readily accessible source of energy and essential building blocks for membrane synthesis, supporting rapid cell division and growth. Moreover, LDs contribute to cellular homeostasis by modulating oxidative stress, maintaining redox balance, and regulating autophagy, particularly under nutrient-deprived or hypoxic conditions commonly found in the tumor microenvironment. Importantly, LDs have been implicated in the development of resistance to cancer therapies. They protect cancer cells from the cytotoxic effects of chemotherapeutic agents by buffering endoplasmic reticulum (ER) stress, inhibiting apoptosis, and facilitating survival pathways. The presence of LDs has been shown to correlate with increased resistance to a variety of chemotherapeutic drugs, although the precise molecular mechanisms underlying this phenomenon remain incompletely understood. Emerging evidence suggests that chemotherapy itself can induce changes in LD accumulation, further complicating treatment outcomes. Given their central role in cancer metabolism and therapy resistance, LDs represent a promising target for therapeutic intervention. Strategies aimed at disrupting lipid metabolism or inhibiting LD biogenesis have shown potential in sensitizing cancer cells to chemotherapy and overcoming drug resistance. In this review, we comprehensively examine the current understanding of LD biology in cancer, highlight studies that elucidate the link between LDs and drug resistance, and discuss emerging approaches to target lipid metabolic pathways to enhance therapeutic efficacy across diverse cancer types. Full article
(This article belongs to the Special Issue Cancer Biomarkers and Metabolic Vulnerabilities)
14 pages, 1856 KB  
Article
Autophagy Activation in Mesenchymal Stem Cells with Lithium Chloride and Trehalose: Implications for Regenerative Medicine
by Ali Fouad, Yasser ElSherbini, Elsayed Abdelhady and Mohamed Abdraboh
BioMed 2026, 6(1), 4; https://doi.org/10.3390/biomed6010004 - 16 Jan 2026
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in activating autophagic signaling in MSCs has recently grown due to its significant potential in maintaining stemness, enhancing paracrine signaling, and providing therapeutic benefits for cancer and neurodegenerative diseases. This study aimed to explore the impact of autophagy induction on enhancing the therapeutic potential of MSCs by maintaining their plasticity and to assess different induction agents. Methods: In this study, MSCs were first extracted from the fat tissue of Sprague–Dawley (SD) rats and characterized phenotypically and molecularly by their positive expression of stemness markers CD29, CD106, and CD44, and their negative expression of hematopoietic surface markers CD14, CD34, and CD45, using a flow cytometry approach. Isolated MSCs were then treated separately with two FDA-approved autophagy inducers: Lithium Chloride and Trehalose, following assessment of autophagy activity. Results: Treated MSCs showed significant increases in autophagic activity at both the transcriptional and translational levels. The successful induction of autophagy in MSCs was confirmed through the elevated expression of autophagy-related genes such as ATG3, ATG13, ATG14, P62, and ULK1. These data were confirmed by the significant upregulation in LC3 protein expression and the formation of autophagosomes, which was detected using a transmission electron microscope. Furthermore, the expression of Oct4, Sox2, and Nanog genes was significantly enhanced after treatment with Trehalose and Lithium Chloride compared with untreated control MSCs which may indicate an upregulation of pluripotency. Meanwhile, Lithium Chloride and Trehalose did not significantly induce cellular apoptosis, indicated by the Bax/Bcl-2 expression ratio, and significantly decreased the expression of the antioxidant markers SOD and GPx. Conclusions: Treatment of MSCs with Trehalose and, in particular, Lithium Chloride significantly activated autophagic signaling, which showed a profound effect in enhancing cells’ pluripotency, reinforcing the usage of treated MSCs for autologous and/or allogenic cellular therapy. However, further in vivo studies for activating autophagy in cellular grafts should be conducted before their use in clinical trials. Full article
18 pages, 15399 KB  
Article
Identification of KHS-101 as a Transcription Factor EB Activator to Promote α-Synuclein Degradation
by Haizhen Zhu, Anqi Ren, Ting Li, Tao Zhou, Ailing Li, Xin Pan, Liang Chen and Jiayi Chen
Int. J. Mol. Sci. 2026, 27(2), 905; https://doi.org/10.3390/ijms27020905 - 16 Jan 2026
Abstract
Neurodegenerative disorders are increasingly linked to a progressive decline in lysosomal function. Activating Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, has therefore emerged as a promising therapeutic strategy to enhance cellular clearance in these conditions. In this study, [...] Read more.
Neurodegenerative disorders are increasingly linked to a progressive decline in lysosomal function. Activating Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, has therefore emerged as a promising therapeutic strategy to enhance cellular clearance in these conditions. In this study, we identified KHS-101 as a novel TFEB activator through a high-throughput screen of blood–brain-barrier-permeable small molecules. We demonstrated that KHS-101 promotes TFEB nuclear translocation, enhances lysosomal biogenesis and proteolytic activity, and increases autophagic flux. Furthermore, KHS-101 significantly accelerates the degradation of pathogenic A53T mutant α-synuclein in a cellular model of Parkinson’s disease, suggesting its potential to mitigate α-synuclein-mediated proteotoxicity and hold neuroprotective potential. Our findings identify KHS-101 as a potent TFEB activator and highlight the therapeutic potential of modulating the autophagy-lysosomal pathway for treating Parkinson’s disease and related disorders. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 1001 KB  
Review
MicroRNAs—Are They Possible Markers of Allergic Diseases and Efficient Immunotherapy?
by Krzysztof Specjalski and Marek Niedoszytko
Int. J. Mol. Sci. 2026, 27(2), 902; https://doi.org/10.3390/ijms27020902 - 16 Jan 2026
Abstract
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers [...] Read more.
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers facilitating diagnosis of the most common allergic diseases, such as allergic rhinitis (miR-21, miR-126, miR-142-3p, miR-181a, miR-221), asthma (miR-16, miR-21, miR-126, miR-146a, miR-148a, miR-221, miR-223) and atopic dermatitis (miR-24, miR-124, miR-155, miR-191, miR-223, miR-483-5p), or objectively assessing severity of inflammation and endotype of the disease. In spite of the large body of literature available, its scientific value is limited due to the small numbers of study participants, heterogeneity of populations enrolled, and diverse methodology. Some studies have revealed significant changes in miRNAs’ profile in the course of allergen immunotherapy. Tolerance induction is associated with processes controlled by miRNAs: enhanced activity of Treg cells and increased production of tolerogenic IL-10 and TGF-β. Thus, miRNAs may be candidates as biomarkers of successful immunotherapy. Finally, they are also possible therapeutic agents or targets of therapies based on antagomirs blocking their activity. However, so far no studies are available that demonstrate efficacy in overcoming delivery barriers, tissue targeting or drugs’ safety. As a consequence, despite promising results of in vitro and animal model studies, translation into human therapeutic agents is uncertain. Full article
Show Figures

Figure 1

15 pages, 6332 KB  
Article
Glycation Product Synthesized in Anhydrous Conditions Mimics an Epitope in Epithelial and Mesenchymal Tissues
by Monika Czech, Elżbieta Gamian, Agata Kochman, Marta Woźniak, Emilia Jaskuła, Piotr Ziółkowski and Andrzej Gamian
Biomedicines 2026, 14(1), 196; https://doi.org/10.3390/biomedicines14010196 - 16 Jan 2026
Abstract
Background: Advanced glycation end-products (AGEs) are formed and deposited in tissues, contributing to various disorders, including diabetes, other metabolic diseases, and aging. A new epitope, AGE10, was identified in human and animal tissues using a monoclonal antibody raised against synthetic melibiose-derived glycation [...] Read more.
Background: Advanced glycation end-products (AGEs) are formed and deposited in tissues, contributing to various disorders, including diabetes, other metabolic diseases, and aging. A new epitope, AGE10, was identified in human and animal tissues using a monoclonal antibody raised against synthetic melibiose-derived glycation end-products (MAGE), which were synthesized under anhydrous conditions with bovine serum albumin or myoglobin. The biology of the AGE10 epitope, particularly its role in diseases and in cancer tissues, is not well understood. Methods: The study was aimed at investigating the immunohistochemical recognition of AGE10 with the MoAb-anti-MAGE antibody. Results: Data obtained show that AGE10 is recognized in striated muscles but not in tumors of muscular origin. AGE10 is also stained in both normal and cancerous salivary glands and in adenomas of the large intestine. The staining is cytoplasmic. Discussion: Our approach may provide a methodology for cell biology research; AGE10 may be related to an advanced lipoxidation end-product; further investigation of MAGE may clarify disease mechanisms, support the development of novel therapeutic strategies. Conclusions: The key finding is that antibodies recognize mainly the epitope in epithelial and some mesenchymal tissues. Thus, the potential for AGE10 as a diagnostic marker is limited. The implications concern the biology of this epitope, the unique tissue distribution, and a role in cellular metabolism. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 3332 KB  
Article
Calpain-2 Regulates Kinesin and Dynein Dysfunction in Neurotoxin-Induced Motoneuron Injury
by Vandana Zaman, Camille Green, Kayce Sitgreaves, Amy Gathings, Kelsey P. Drasites, Noah Coleman, Jessica Huell, Townsend McDonald, Narendra L. Banik and Azizul Haque
Brain Sci. 2026, 16(1), 92; https://doi.org/10.3390/brainsci16010092 - 16 Jan 2026
Abstract
Background/Objectives: Neurodegenerative diseases are driven by multiple interconnected pathological mechanisms involving both intrinsic and extrinsic molecular and cellular processes. Efficient bidirectional intracellular transport is essential for neuronal survival and function, enabling the movement of organelles, proteins, and vesicles between the neuronal soma and [...] Read more.
Background/Objectives: Neurodegenerative diseases are driven by multiple interconnected pathological mechanisms involving both intrinsic and extrinsic molecular and cellular processes. Efficient bidirectional intracellular transport is essential for neuronal survival and function, enabling the movement of organelles, proteins, and vesicles between the neuronal soma and distal compartments. This process is primarily mediated by kinesin-dependent anterograde transport and dynein-dependent retrograde transport. Disruption of either motor protein compromises endosome–lysosome recycling, leading to cellular dysfunction and neurodegeneration. However, the mechanisms underlying motor protein impairment in Parkinson’s disease (PD) remain incompletely understood. Methods: We investigated the involvement of kinesin and dynein in intracellular transport dysfunction using both in vitro and in vivo models of PD. Cultured neuronal cells were exposed to MPP+ (1-methyl-4-phenylpyridinium) to model PD-associated neurotoxicity, and motor protein function, vesicular trafficking, and endosomal recycling were assessed. In parallel, an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD was used to evaluate dynein-positive fiber density in the spinal cord. The role of calpain-2 was examined by co-treatment with the selective calpain-2 inhibitor zLLYCH2F in both experimental systems. Results: MPP+ exposure disrupted kinesin- and dynein-mediated transport in neuronal cytoplasm, resulting in impaired vesicular trafficking and defective endosome–lysosome recycling. These alterations led to abnormal accumulation of vesicles in both perinuclear regions and at the cell periphery. Pharmacological inhibition of calpain-2 with zLLYCH2F restored motor protein function and normalized vesicle distribution in MPP+-treated cells. Consistent with in vitro findings, MPTP-treated mice exhibited a significant reduction in dynein-positive fiber density within the spinal cord, which was prevented by co-treatment with zLLYCH2F. Conclusions: Our findings demonstrate that calpain-2 activation contributes to kinesin and dynein dysfunction following MPP+/MPTP exposure, leading to impaired intracellular transport and vesicle recycling in PD models. Inhibition of calpain-2 preserves motor protein function, maintains cytoskeletal integrity, and supports normal intracellular trafficking. These results identify calpain-2 as a critical regulator of motor protein stability and suggest that targeting calpain-2 may represent a promising therapeutic strategy for mitigating intracellular transport defects in Parkinson’s disease. Full article
Show Figures

Figure 1

30 pages, 30300 KB  
Review
An Exploration of Nanobiotechnology Bridging Patho-Therapeutics with Regenerative and Clinical Perspectives in Periodontitis
by Baozhu Zhang, Muhammad Umar Javed, Yinghe Zhang and Bing Guo
J. Funct. Biomater. 2026, 17(1), 45; https://doi.org/10.3390/jfb17010045 - 15 Jan 2026
Abstract
Periodontal disease represents a major global concern characterized by chronic biofilm-driven inflammation, excessive oxidative stress, progressive tissue destruction, and impaired regenerative capacity. Beyond conventional antimicrobial approaches, recent progress has shifted toward host-directed and regenerative therapeutic strategies aimed at restoring both oral function and [...] Read more.
Periodontal disease represents a major global concern characterized by chronic biofilm-driven inflammation, excessive oxidative stress, progressive tissue destruction, and impaired regenerative capacity. Beyond conventional antimicrobial approaches, recent progress has shifted toward host-directed and regenerative therapeutic strategies aimed at restoring both oral function and tissue homeostasis. This review consolidates current developments in nanobiotechnology-based materials that modulate immune responses, scavenge reactive oxygen species, and promote angiogenesis and osteogenesis, thereby facilitating the effective regeneration of dental and periodontal tissues. Emphasis is placed on bioresponsive hydrogels, bioactive scaffolds, and gas-releasing platforms that integrate therapeutic regulation with tissue repair. The discussion further highlights key advances in polymeric and inorganic biomaterials designed to balance antibacterial action with cellular compatibility and regenerative potential. By linking pathophysiological mechanisms with material-guided healing processes, this review provides a comprehensive perspective on emerging nanobiotechnological solutions that bridge patho-therapeutics with regenerative and clinical dentistry. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Graphical abstract

43 pages, 2779 KB  
Review
Molecular and Immune Mechanisms Governing Cancer Metastasis, Including Dormancy, Microenvironmental Niches, and Tumor-Specific Programs
by Dae Joong Kim
Int. J. Mol. Sci. 2026, 27(2), 875; https://doi.org/10.3390/ijms27020875 - 15 Jan 2026
Abstract
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, [...] Read more.
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, long-term survival, and eventual outgrowth are examined, with a focus on how tumor-intrinsic programs interact with extracellular matrix (ECM) remodeling, angiogenesis, and immune regulation. Gene networks that sustain tumor-cell plasticity and invasion are described, including EMT-linked transcription factors such as SNAIL and TWIST, as well as broader transcriptional regulators like SP1. Also, how epigenetic mechanisms, such as EZH2 activity, DNA methylation, chromatin remodeling, and noncoding RNAs, lock in pro-metastatic states and support adaptation under therapeutic pressure. Finally, proteases and matrix-modifying enzymes that physically and biochemically reshape tissues, including MMPs, uPA, cathepsins, LOX/LOXL2, and heparinase, are discussed for their roles in releasing stored growth signals and building permissive niches that enable seeding and colonization. In parallel, immune-evasion strategies that protect circulating and newly seeded tumor cells are discussed, including platelet-mediated shielding, suppressive myeloid populations, checkpoint signaling, and stromal barriers that exclude effector lymphocytes. A major focus is metastatic dormancy, cellular, angiogenic, and immune-mediated, framed as a reversible survival state regulated by stress signaling, adhesion cues, metabolic rewiring, and niche constraints, and as a key determinant of late relapse. Tumor-specific metastatic programs across mesenchymal malignancies (osteosarcoma, chondrosarcoma, and liposarcoma) and selected high-burden cancers (melanoma, hepatocellular carcinoma, glioblastoma, and breast cancer) are highlighted, emphasizing shared principles and divergent organotropisms. Emerging therapeutic strategies that target both the “seed” and the “soil” are also discussed, including immunotherapy combinations, stromal/ECM normalization, chemokine-axis inhibition, epigenetic reprogramming, and liquid-biopsy-enabled minimal residual disease monitoring, to prevent reactivation and improve durable control of metastatic disease. Full article
(This article belongs to the Special Issue Molecular Mechanism Involved in Cancer Metastasis)
Show Figures

Figure 1

25 pages, 3718 KB  
Article
The WISP1/Src/MIF Axis Promotes the Malignant Phenotype of Non-Invasive MCF7 Breast Cancer Cells
by Maria-Elpida Christopoulou, Panagiota Karamitsou, Alexios Aletras and Spyros S. Skandalis
Cells 2026, 15(2), 160; https://doi.org/10.3390/cells15020160 - 15 Jan 2026
Abstract
Breast cancer is a heterogeneous disease that exists in multiple subtypes, some of which still lack targeted and effective therapy. A major challenge is to unravel their underlying molecular mechanisms and bring to light novel therapeutic targets. In this study, we investigated the [...] Read more.
Breast cancer is a heterogeneous disease that exists in multiple subtypes, some of which still lack targeted and effective therapy. A major challenge is to unravel their underlying molecular mechanisms and bring to light novel therapeutic targets. In this study, we investigated the role of WNT-inducible signaling pathway protein 1 (WISP1) matricellular protein in the acquirement of an invasive phenotype by breast cancer cells. To this aim, we treated non-invasive MCF7 cells with WISP1 and assessed the expression levels of macrophage migration inhibitory factor (MIF) and its cellular receptor CD74. Next, we examined the expression of epithelial-to-mesenchymal transition (EMT) markers as well as molecular effectors of the tumor microenvironment, such as CD44, the main hyaluronan receptor that also acts as a co-receptor for MIF, the hyaluronan oncogenic network, and specific matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). The results showed that WISP1 potently induces the expression of MIF cytokine and affects the expression of specific extracellular matrix molecules with established roles in the promotion of malignant properties. Notably, Src kinases and MIF are critically involved in these processes. Collectively, the present study demonstrates for first time a WISP1/Src/MIF axis as well as its ability to induce an invasive phenotype in MCF7 cells and highlights novel cellular and molecular processes involved in the epithelial-to-mesenchymal transition and the development of invasive breast cancer. This suggests that specific cues from the tumor microenvironment can activate a migratory/invasive phenotype in a subpopulation of cells residing within the heterogeneous breast tumor. Full article
Show Figures

Figure 1

29 pages, 10725 KB  
Article
Temporal and Spatial Patterns of Glial Activation After Unilateral Cortical Injury in Rats
by Karen Kalhøj Rich, Simone Hjæresen, Marlene Storm Andersen, Louise Bjørnager Hansen, Ali Salh Mohammad, Nilukshi Gopinathan, Tobias Christian Mogensen, Åsa Fex Svenningsen and Mengliang Zhang
Life 2026, 16(1), 142; https://doi.org/10.3390/life16010142 - 15 Jan 2026
Abstract
Traumatic brain injury (TBI) often leads to long-lasting motor deficits, but the underlying cellular mechanisms still remain poorly understood. In this study, we examined glial and neuronal responses after focal cortical aspiration injury of the right hindlimb sensorimotor cortex in adult male rats. [...] Read more.
Traumatic brain injury (TBI) often leads to long-lasting motor deficits, but the underlying cellular mechanisms still remain poorly understood. In this study, we examined glial and neuronal responses after focal cortical aspiration injury of the right hindlimb sensorimotor cortex in adult male rats. This is a model we have previously shown induces persistent gait asymmetry and postural deficits. Immunohistochemical analysis of activated microglia/macrophages (CD11b, IBA-1), astrocytes (GFAP), and neurons (NeuN) was performed bilaterally in the peri-lesional cortex at 3, 7, 14, 21, and 28 days post-injury (n = 3–6 per time point). The injury induced an early, sharply localized increase in CD11b-positive myeloid cells in the injured hemisphere, suggesting an activation of both resident microglia and infiltrating monocyte-derived cell. This was followed by a more sustained IBA-1-positive microglial activation that gradually extended contralaterally. Astrocytic activation showed a delayed but prolonged profile, rising ipsilaterally within the first week, peaking around two weeks, and becoming bilaterally elevated by four weeks. Sham-operated animals showed only basal glial immunoreactivity without signs of hypertrophy or reactive morphology at any time point. NeuN immunoreactivity remained stable across timepoints, suggesting preservation of neuronal soma labeling without evidence of overt secondary neuronal loss. These findings reveal a staged and spatially distinct glial response to focal cortical injury, with early myeloid activation, prolonged microglial reactivity, and delayed bilateral astrogliosis. Together, these findings are consistent with the possibility that persistent motor deficits after focal TBI arise from both primary tissue loss within the lesion core and peri-lesional glial remodeling, highlighting glial–neuronal interactions as a potential therapeutic target. Full article
Show Figures

Figure 1

19 pages, 881 KB  
Review
Molecular and Cellular Mechanisms Underlying Domoic Acid-Induced Neurotoxicity and Therapeutic Drugs: A Comprehensive Review
by Ruoyu Jiang, Zeyu Fan, Xinhao Li, Jiaping Yang, Mingjuan Sun, Binghua Jiao and Lianghua Wang
Int. J. Mol. Sci. 2026, 27(2), 867; https://doi.org/10.3390/ijms27020867 - 15 Jan 2026
Abstract
Domoic acid (DA) is a neurotoxic terpenoid compound produced by certain marine algae. It accumulates through the food web and poses a significant threat to humans and animals by selectively targeting hippocampal neurons, leading to neuronal degeneration, necrosis, and subsequent memory impairment. The [...] Read more.
Domoic acid (DA) is a neurotoxic terpenoid compound produced by certain marine algae. It accumulates through the food web and poses a significant threat to humans and animals by selectively targeting hippocampal neurons, leading to neuronal degeneration, necrosis, and subsequent memory impairment. The primary mechanism involves its potent agonism at glutamate receptors, which induces excessive calcium influx, resulting in excitotoxic cell swelling and death. Recent studies have further elucidated the critical role of downstream oxidative stress and other pathogenic factors in DA-induced neurotoxicity. These insights into its multifaceted mechanism have paved the way for novel therapeutic strategies, highlighting promising directions for future treatment development. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 327 KB  
Review
Advances in Screening, Immunotherapy, Targeted Agents, and Precision Surgery in Cervical Cancer: A Comprehensive Clinical Review (2018–2025)
by Priyanka Nagdev and Mythri Chittilla
Curr. Oncol. 2026, 33(1), 48; https://doi.org/10.3390/curroncol33010048 - 15 Jan 2026
Abstract
Cervical cancer remains a significant global health burden, disproportionately affecting women in low- and middle-income countries despite being preventable. Since 2018, rapid advances in molecular profiling, immunotherapy, refinement of minimally invasive surgery, and targeted therapeutics have transformed diagnostic and therapeutic paradigms. This narrative [...] Read more.
Cervical cancer remains a significant global health burden, disproportionately affecting women in low- and middle-income countries despite being preventable. Since 2018, rapid advances in molecular profiling, immunotherapy, refinement of minimally invasive surgery, and targeted therapeutics have transformed diagnostic and therapeutic paradigms. This narrative review synthesizes clinical and translational progress across the continuum of care from 2018 to 2025. We summarize the evolving landscape of precision screening—including HPV genotyping, DNA methylation assays, liquid biopsy, and AI-assisted cytology—and discuss their implications for global elimination goals. Surgical management has shifted toward evidence-based de-escalation with data from SHAPE, ConCerv, and ongoing RACC informing fertility preservation and minimally invasive approaches. For locally advanced disease, KEYNOTE-A18 establishes pembrolizumab plus chemoradiation as a new curative standard, while INTERLACE underscores the benefit of induction chemotherapy. In the metastatic setting, survival outcomes have improved with the integration of checkpoint inhibitors (KEYNOTE-826, BEATcc, EMPOWER-Cervical 1), vascular-targeted therapies, and antibody–drug conjugates, including tisotumab vedotin and emerging HER2 and TROP-2–directed agents. We further highlight emerging biomarkers—PD-L1, TMB, MSI status, HPV integration patterns, APOBEC signatures, methylation classifiers, ctHPV-DNA—and their evolving role in treatment selection and surveillance. Future directions include neoadjuvant checkpoint inhibition, PARP-IO combinations, HER3-directed ADCs, DDR-targeted radiosensitizers, HPV-specific cellular therapies, and AI-integrated precision medicine. Collectively, these advances are reshaping cervical cancer care toward biologically individualized, globally implementable strategies capable of accelerating WHO elimination targets. Full article
(This article belongs to the Special Issue Clinical Management of Cervical Cancer)
Back to TopTop