Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = cellular inhibitor of apoptosis 1/2 (cIAP1/2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5421 KiB  
Article
Modulation of TNFR 1-Triggered Inflammation and Apoptosis Signals by Jacaranone in Cancer Cells
by Jie Liu, Yang Xu, Guobin Xie, Bingjie Geng, Renjing Yang, Wenjing Tian, Haifeng Chen and Guanghui Wang
Int. J. Mol. Sci. 2024, 25(24), 13670; https://doi.org/10.3390/ijms252413670 - 20 Dec 2024
Cited by 1 | Viewed by 1213
Abstract
Jacaranone derived from Senecio scandens, a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately [...] Read more.
Jacaranone derived from Senecio scandens, a traditional Chinese medicine used for centuries, has been documented to exhibit anti-inflammatory and antiproliferative properties in various tumor cell lines. However, the mechanism of action and relationship between inflammation and apoptosis induced by jacaranone remain inadequately elucidated. In this study, the targets of jacaranone and cancer were identified from various databases, while potential targets and pathways were predicted through the analysis of the protein–protein interactions (PPI) network and pathway enrichment. Through a comprehensive network pharmacology analysis and corroborating experimental findings, we revealed that jacaranone induces tumor cell death by fine-tuning the tumor necrosis factor receptor 1 (TNFR1) downstream signaling pathway. TNFR1 serves as a key node that assembles into complexes I and II, regulating pathways including the nuclear factor (NF)-κB signaling pathway and the cell apoptosis pathway, which play crucial roles in cellular life activities. Jacaranone successfully guides survival signaling pathways to apoptotic mechanisms by inhibiting the assembly of complex I and promoting the formation of complex II. In particular, the main action mechanism of jacaranone lies in inducing the degradation of the inhibitor of apoptosis protein (cIAP)-2. cIAP-2 serves as an E3 ubiquitin ligase that ubiquitinates receptor-interacting serine/threonine-protein kinase 1 (RIPK1), thereby hindering the formation of complex I and effectively reducing the phosphorylation of Inhibitor of κB kinase (IKK) β. When the deubiquitylation process of RIPK1 is triggered, it may promote the formation of complex II, which ultimately leads to cell apoptosis. This fully demonstrates the key role of jacaranone in regulating TNFR1 complexes, especially through the degradation of cIAP-2. Taken together, jacaranone hinders the assembly of TNFR1 complex I and promotes the formation of complex II to induce apoptosis of cancer cells. Our findings unveil a novel mechanism underlying jacaranone, while also presenting a fresh approach for the development of new pharmaceuticals. Full article
(This article belongs to the Special Issue Apoptosis and Cell Signaling in Disease)
Show Figures

Figure 1

19 pages, 3393 KiB  
Article
Anti-Cancer Potential of Isoflavone-Enriched Fraction from Traditional Thai Fermented Soybean against Hela Cervical Cancer Cells
by Amonnat Sukhamwang, Sirinada Inthanon, Pornngarm Dejkriengkraikul, Tistaya Semangoen and Supachai Yodkeeree
Int. J. Mol. Sci. 2024, 25(17), 9277; https://doi.org/10.3390/ijms25179277 - 27 Aug 2024
Cited by 2 | Viewed by 1667
Abstract
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the [...] Read more.
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the ethyl acetate fraction of Thua Nao (TN-EA) exhibits strong anti-cancer potential against HeLa cells. High-performance liquid chromatography (HPLC) analysis identified genistein and daidzein as the major isoflavones in TN-EA responsible for its anti-cancer activity. TN-EA and genistein reduced cell proliferation and induced G2/M phase arrest, while daidzein induced G1 arrest. These responses were associated with the downregulation of cell cycle regulators, including Cyclin B1, cycle 25C (Cdc25C), and phosphorylated cyclin-dependent kinase 1 (CDK-1), and the upregulation of the cell cycle inhibitor p21. Moreover, TN-EA and its active isoflavones promoted apoptosis in HeLa cells through the intrinsic pathway, evidenced by increased levels of cleaved Poly (ADP-ribose) polymerase (PARP) and caspase-3, loss of mitochondrial membrane potential, and the downregulation of anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), cellular inhibitor of apoptosis proteins 1 (cIAP), and survivin. Additionally, TN-EA and its active isoflavones effectively reduced cell invasion and migration by downregulating extracellular matrix degradation enzymes, including Membrane type 1-matrix metalloproteinase (MT1-MMP), urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR), and reduced the levels of the mesenchymal marker N-cadherin. At the molecular level, TN-EA suppressed STAT3 activation via the regulation of JNK and Erk1/2 signaling pathways, leading to reduced proliferation and invasion of HeLa cells. Full article
(This article belongs to the Special Issue Anticancer Activity of Natural Products and Related Compounds)
Show Figures

Figure 1

18 pages, 3969 KiB  
Article
Hydroxyl Group Acetylation of Quercetin Enhances Intracellular Absorption and Persistence to Upregulate Anticancer Activity in HepG2 Cells
by Kozue Sakao, Hanako Saruwatari, Shohei Minami and De-Xing Hou
Int. J. Mol. Sci. 2023, 24(23), 16652; https://doi.org/10.3390/ijms242316652 - 23 Nov 2023
Cited by 8 | Viewed by 2643
Abstract
Quercetin, a flavonoid compound widely distributed in many plants, is known to have potent antitumor effects on several cancer cells. Our previous study revealed that the acetylation of quercetin enhanced its antitumor effect. However, the mechanisms remain unknown. This study aimed to elucidate [...] Read more.
Quercetin, a flavonoid compound widely distributed in many plants, is known to have potent antitumor effects on several cancer cells. Our previous study revealed that the acetylation of quercetin enhanced its antitumor effect. However, the mechanisms remain unknown. This study aimed to elucidate the bioavailability of acylated quercetin in the HepG2 cell model based on its antitumor effect. The positions of quercetin 3,7,3′,4′-OH were acetylated as 3,7,3′,4′-O-tetraacetylquercetin (4Ac-Q). The inhibitory effect of 4Ac-Q on HepG2 cell proliferation was assessed by measuring cell viability. The apoptosis was characterized by apoptotic proteins and mitochondrial membrane potential shifts, as well as mitochondrial reactive oxygen species (ROS) levels. The bioavailability of 4Ac-Q was analyzed by measuring the uptake and metabolites in HepG2 cells with high performance liquid chromatography (HPLC)—photodiode array detector (PDA) and—ultraviolet/visible detector (UV/Vis). The results revealed that 4Ac-Q enhanced the inhibitory effect on HepG2 cell proliferation and induced its apoptosis significantly higher than quercetin. Protein array analysis of apoptosis-related protein indicated that 4Ac-Q increased the activation or expression of pro-apoptotic proteins, including caspase-3, -9, as well as second mitochondria-derived activator of caspases (SMAC), and suppressed the expression of apoptosis inhibiting proteins such as cellular inhibitor of apoptosis (cIAP)-1, -2, Livin, Survivin, and X-linked inhibitor of apoptosis (XIAP). Furthermore, 4Ac-Q stimulated mitochondrial cytochrome c release into the cytosol by enhancing ROS level and depolarizing the mitochondrial membrane. Finally, the analysis of uptake and metabolites of 4Ac-Q in HpG2 cells with HPLC-PDA and -UV/Vis revealed that 4Ac-Q was metabolized to quercetin and several different acetylated quercetins which caused 2.5-fold higher quercetin present in HepG2 cells than parent quercetin. These data demonstrated that acetylation of the quercetin hydroxyl group significantly increased its intracellular absorption. Taken together, our findings provide the first evidence that acetyl modification of quercetin not only substantially augments the intracellular absorption of quercetin but also bolsters its metabolic stability to elongate its intracellular persistence. Therefore, acetylation could serve as a strategic approach to enhance the ability of quercetin and analogous flavonoids to suppress cancer cell proliferation. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

23 pages, 3147 KiB  
Review
BAG3: Nature’s Quintessential Multi-Functional Protein Functions as a Ubiquitous Intra-Cellular Glue
by Caitlyn M. Brenner, Muaaz Choudhary, Michael G. McCormick, David Cheung, Gavin P. Landesberg, Ju-Fang Wang, Jianliang Song, Thomas G. Martin, Joseph Y. Cheung, Hui-Qi Qu, Hakon Hakonarson and Arthur M. Feldman
Cells 2023, 12(6), 937; https://doi.org/10.3390/cells12060937 - 19 Mar 2023
Cited by 11 | Viewed by 5347
Abstract
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe [...] Read more.
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy. Full article
(This article belongs to the Special Issue Multitasking Proteins and Their Involvement in Pathogenesis)
Show Figures

Figure 1

21 pages, 3264 KiB  
Article
Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma
by Tiffany Toni, Ramya Viswanathan, Yvette Robbins, Sreenivasulu Gunti, Xinping Yang, Angel Huynh, Hui Cheng, Anastasia L. Sowers, James B. Mitchell, Clint T. Allen, Ethan L. Morgan and Carter Van Waes
Cancers 2023, 15(4), 1029; https://doi.org/10.3390/cancers15041029 - 6 Feb 2023
Cited by 8 | Viewed by 2867
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK–NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC. Full article
(This article belongs to the Special Issue Precision Medicine for Head and Neck Cancer)
Show Figures

Figure 1

28 pages, 9717 KiB  
Review
TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer
by Daniela Siegmund, Jennifer Wagner and Harald Wajant
Cancers 2022, 14(16), 4055; https://doi.org/10.3390/cancers14164055 - 22 Aug 2022
Cited by 54 | Viewed by 8505
Abstract
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the [...] Read more.
Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes. Full article
Show Figures

Figure 1

20 pages, 6018 KiB  
Article
Ginsenoside Rg5 Sensitizes Paclitaxel—Resistant Human Cervical-Adeno-Carcinoma Cells to Paclitaxel—And Enhances the Anticancer Effect of Paclitaxel
by Janani Ramesh, Rejani Chalikkaran Thilakan, Raja Mohan Gopalakrishnan, Singaravel Vijayapoopathi, Arianna Dorschel and Bhuvarahamurthy Venugopal
Genes 2022, 13(7), 1142; https://doi.org/10.3390/genes13071142 - 24 Jun 2022
Cited by 11 | Viewed by 3469
Abstract
In cervical cancer chemotherapy, paclitaxel (PTX) chemoresistance has become a major difficulty, and it also affects the survival rate of numerous tumor patients. Thus, for the reversal of chemoresistance, it is imperative to develop combinatory drugs with petite or almost no side effects [...] Read more.
In cervical cancer chemotherapy, paclitaxel (PTX) chemoresistance has become a major difficulty, and it also affects the survival rate of numerous tumor patients. Thus, for the reversal of chemoresistance, it is imperative to develop combinatory drugs with petite or almost no side effects to sensitize cells to paclitaxel. Ginsenoside Rg5 (GRg5) may act as a chemosensitizer by reversing multidrug resistance. The present study aimed to determine the potential of GRg5 as a chemosensitizer in PTX-resistant human cervical adeno-carcinoma cell lines (HeLa cells). MTT assay was carried out to assess whether GRg5 can potentiate the cytotoxic effect of PTX in PTX- resistant HeLa cells; using flow cytometry-based annexin V-FITC assay, cellular apoptosis was analyzed; the rate of expression of the cell cycle, apoptosis and major cell-survival-signaling-related genes and its proteins were examined using RT-PCR and Western blotting technique. We found increased mRNA expression of Bak, Bax, Bid, and PUMA genes, whereas the mRNA expression of Bcl2, Bcl-XL, c-IAP-1, and MCL-1 were low; GRg5 combination triggered the efficacy of paclitaxel, which led to increased expression of Bax with an enhanced caspase-9/-3 activation, and apoptosis. Moreover, the study supports GRg5 as an inhibitor of two key signaling proteins, Akt and NF-κB, by which GRg5 augments the susceptibility of cervical cancer cells to PTX chemotherapy. GRg5 drastically potentiated the antiproliferative and pro-apoptotic activity of paclitaxel in PTX-resistant human cervical cancer cells in a synergistic mode. Moreover, in the clinical context, combining paclitaxel with GRg5 may prove to be a new approach for enhancing the efficacy of the paclitaxel. Full article
(This article belongs to the Special Issue Cell Signalling and Inflammation in Cancer)
Show Figures

Graphical abstract

14 pages, 2992 KiB  
Article
HO-3867 Induces Apoptosis via the JNK Signaling Pathway in Human Osteosarcoma Cells
by Peace Wun-Ang Lu, Chia-Hsuan Chou, Jia-Sin Yang, Yi-Hsien Hsieh, Meng-Ying Tsai, Ko-Hsiu Lu and Shun-Fa Yang
Pharmaceutics 2022, 14(6), 1257; https://doi.org/10.3390/pharmaceutics14061257 - 13 Jun 2022
Cited by 17 | Viewed by 2741
Abstract
Metastatic osteosarcoma often results in poor prognosis despite the application of surgical en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown. [...] Read more.
Metastatic osteosarcoma often results in poor prognosis despite the application of surgical en bloc excision along with chemotherapy. HO-3867 is a curcumin analog that induces cell apoptosis in several cancers, but the apoptotic effect and its mechanisms on osteosarcoma cells are still unknown. After observing the decrease in cellular viability of three human osteosarcoma U2OS, HOS, and MG-63 cell lines, and the induction of cellular apoptosis and arrest in sub-G1 phase in U2OS and HOS cells by HO-3867, the human apoptosis array showed that heme oxygenase (HO)-1 and cleaved caspase-3 expressions had significant increases after HO-3867 treatment in U2OS cells and vice versa for cellular inhibitors of apoptosis (cIAP)1 and X-chromosome-linked IAP (XIAP). Western blot analysis verified the results and showed that HO-3867 activated the initiators of both extrinsic caspase 8 and intrinsic caspase 9, and significantly increased cleaved PARP expression in U2OS and HOS cells. Moreover, with the addition of HO-3867, ERK1/2, and JNK1/2 phosphorylation were increased in U2OS and HOS cells. Using the inhibitor of JNK (JNK in 8), HO-3867’s increases in cleaved caspases 3, 8, and 9 could be expectedly suppressed, indicating that JNK signaling is responsible for both apoptotic pathways, including extrinsic and intrinsic, in U2OS and HOS cells caused by HO-3867. Through JNK signaling, HO-3867 has proven to be effective in causing both extrinsic and intrinsic apoptotic pathways of human osteosarcoma cells. Full article
(This article belongs to the Special Issue Novel Strategies for Cancer Targeted Delivery)
Show Figures

Figure 1

19 pages, 7615 KiB  
Review
Cytoplasmic and Nuclear Functions of cIAP1
by Aymeric Zadoroznyj and Laurence Dubrez
Biomolecules 2022, 12(2), 322; https://doi.org/10.3390/biom12020322 - 17 Feb 2022
Cited by 14 | Viewed by 4724
Abstract
Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by [...] Read more.
Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by promoting the degradation of critical components of signaling pathways. Thus, cIAP1 appears to be a potent determinant of the response of cells, enabling their rapid adaptation to changing environmental conditions or intra- or extracellular stresses. It is expressed in almost all tissues, found in the cytoplasm, membrane and/or nucleus of cells. cIAP1 regulates innate immunity by controlling signaling pathways mediated by tumor necrosis factor receptor superfamily (TNFRs), some cytokine receptors and pattern recognition-receptors (PRRs). Although less documented, cIAP1 has also been involved in the regulation of cell migration and in the control of transcriptional programs. Full article
(This article belongs to the Special Issue State-of-the-Art Cell Death in France 2020-2021)
Show Figures

Figure 1

16 pages, 8720 KiB  
Article
GO-Y078, a Curcumin Analog, Induces Both Apoptotic Pathways in Human Osteosarcoma Cells via Activation of JNK and p38 Signaling
by Peace Wun-Ang Lu, Renn-Chia Lin, Jia-Sin Yang, Eric Wun-Hao Lu, Yi-Hsien Hsieh, Meng-Ying Tsai, Ko-Hsiu Lu and Shun-Fa Yang
Pharmaceuticals 2021, 14(6), 497; https://doi.org/10.3390/ph14060497 - 24 May 2021
Cited by 20 | Viewed by 3310
Abstract
Osteosarcoma is the most common primary bone malignancy in teenagers and continues to confer a generally poor prognosis due to its highly metastatic potential. Poor solubility in water and instability of curcumin limits its bioavailability for use in the adjuvant situation to improve [...] Read more.
Osteosarcoma is the most common primary bone malignancy in teenagers and continues to confer a generally poor prognosis due to its highly metastatic potential. Poor solubility in water and instability of curcumin limits its bioavailability for use in the adjuvant situation to improve the prognosis and the long-term survival of patients with osteosarcoma. To further obtain information regarding the apoptosis induced by a new curcumin analog, GO-Y078, in human osteosarcoma cells, flow cytometric analysis, annexin V-FITC/PI apoptosis staining assay, human apoptosis array, and Western blotting were employed. GO-Y078 dose-dependently decreased viabilities of human osteosarcoma U2OS, MG-63, 143B, and Saos-2 cells and induced sub-G1 fraction arrest and apoptosis in U2OS and 143B cells. In addition to the effector caspase 3 and poly adenosine diphosphate-ribose polymerase, GO-Y078 significantly activated both initiators of extrinsic caspase 8 and intrinsic caspase 9, whereas cellular inhibitors of apoptosis 1 (cIAP-1) and X-chromosome-linked IAP (XIAP) in U2OS and 143B cells were significantly repressed. Moreover, GO-Y078 increased phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2, and p38 in U2OS and 143B cells. Using inhibitors of JNK (JNK-in-8) and p38 (SB203580), GO-Y078′s increases in cleaved caspases 8, 9, and 3 could be expectedly suppressed, but they could not be affected by co-treatment with the ERK inhibitor (U0126). Altogether, GO-Y078 simultaneously induces both apoptotic pathways and cell arrest in U2OS and 143B cells through activating JNK and p38 signaling and repressing IAPs. These findings contribute to a better understanding of the mechanisms responsible for GO-Y078′s apoptotic effects on human osteosarcoma cells. Full article
(This article belongs to the Special Issue Osteosarcomas: Treatment Strategies)
Show Figures

Graphical abstract

15 pages, 3277 KiB  
Article
Development of a Bestatin-SAHA Hybrid with Dual Inhibitory Activity against APN and HDAC
by Jiangying Cao, Wei Zhao, Chunlong Zhao, Qian Liu, Shunda Li, Guozhen Zhang, C. James Chou and Yingjie Zhang
Molecules 2020, 25(21), 4991; https://doi.org/10.3390/molecules25214991 - 28 Oct 2020
Cited by 19 | Viewed by 4497
Abstract
With five histone deacetylase (HDAC) inhibitors approved for cancer treatment, proteolysis-targeting chimeras (PROTACs) for degradation of HDAC are emerging as an alternative strategy for HDAC-targeted therapeutic intervention. Herein, three bestatin-based hydroxamic acids (P1, P2 and P3) were designed, synthesized and [...] Read more.
With five histone deacetylase (HDAC) inhibitors approved for cancer treatment, proteolysis-targeting chimeras (PROTACs) for degradation of HDAC are emerging as an alternative strategy for HDAC-targeted therapeutic intervention. Herein, three bestatin-based hydroxamic acids (P1, P2 and P3) were designed, synthesized and biologically evaluated to see if they could work as HDAC degrader by recruiting cellular inhibitor of apoptosis protein 1 (cIAP1) E3 ubiquitin ligase. Among the three compounds, the bestatin-SAHA hybrid P1 exhibited comparable even more potent inhibitory activity against HDAC1, HDAC6 and HDAC8 relative to the approved HDAC inhibitor SAHA. It is worth noting that although P1 could not lead to intracellular HDAC degradation after 6 h of treatment, it could dramatically decrease the intracellular levels of HDAC1, HDAC6 and HDAC8 after 24 h of treatment. Intriguingly, the similar phenomenon was also observed in the HDAC inhibitor SAHA. Cotreatment with proteasome inhibitor bortezomib could not reverse the HDAC decreasing effects of P1 and SAHA, confirming that their HDAC decreasing effects were not due to protein degradation. Moreover, all three bestatin-based hydroxamic acids P1, P2 and P3 exhibited more potent aminopeptidase N (APN, CD13) inhibitory activities than the approved APN inhibitor bestatin, which translated to their superior anti-angiogenic activities. Taken together, a novel bestatin-SAHA hybrid was developed, which worked as a potent APN and HDAC dual inhibitor instead of a PROTAC. Full article
(This article belongs to the Special Issue Anticancer Compounds with Different Biological Targets)
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Dual Targeting of the p38 MAPK-HO-1 Axis and cIAP1/XIAP by Demethoxycurcumin Triggers Caspase-Mediated Apoptotic Cell Death in Oral Squamous Cell Carcinoma Cells
by Ming-Hsien Chien, Wei-En Yang, Yi-Chieh Yang, Chia-Chi Ku, Wei-Jiunn Lee, Meng-Ying Tsai, Chiao-Wen Lin and Shun-Fa Yang
Cancers 2020, 12(3), 703; https://doi.org/10.3390/cancers12030703 - 16 Mar 2020
Cited by 34 | Viewed by 5421
Abstract
Demethoxycurcumin (DMC) is a curcumin analogue with better stability and higher aqueous solubility than curcumin after oral ingestion and has the potential to treat diverse cancers, including oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the anticancer effects [...] Read more.
Demethoxycurcumin (DMC) is a curcumin analogue with better stability and higher aqueous solubility than curcumin after oral ingestion and has the potential to treat diverse cancers, including oral squamous cell carcinoma (OSCC). The aim of this study was to investigate the anticancer effects and underlying mechanisms of DMC against OSCC. We found that DMC suppressed cell proliferation via simultaneously inducing G2/M-phase arrest and cell apoptosis. Mechanistic investigations found that the downregulation of cellular IAP 1 (cIAP1)/X-chromosome-linked IAP (XIAP) and upregulation of heme oxygenase-1 (HO-1) were critical for DMC-induced caspase-8/-9/-3 activation and apoptotic cell death. Moreover, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK)1/2 were activated by DMC treatment in OSCC cells, and only the inhibition of p38 MAPK significantly abolished DMC-induced HO-1 expression and caspase-8/-9/-3 activation. The analyses of clinical datasets revealed that patients with head and neck cancers expressing high HO-1 and low cIAP1 had the most favorable prognoses. Furthermore, a combinatorial treatment of DMC with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib, significantly enhanced the inhibitory effect of gefitinib on the proliferation of OSCC cells. Overall, the current study supported a role for DCM as part of a therapeutic approach for OSCC through suppressing IAPs and activating the p38-HO-1 axis. Full article
(This article belongs to the Special Issue Head and Neck Cancers)
Show Figures

Graphical abstract

14 pages, 1016 KiB  
Review
Elimination of Osteosarcoma by Necroptosis with Graphene Oxide-Associated Anti-HER2 Antibodies
by Hongmei Xiao, Peter E. Jensen and Xinjian Chen
Int. J. Mol. Sci. 2019, 20(18), 4360; https://doi.org/10.3390/ijms20184360 - 5 Sep 2019
Cited by 33 | Viewed by 6990
Abstract
The prognosis for non-resectable or recurrent osteosarcoma (OS) remains poor. The finding that the majority of OS overexpress the protooncogene HER2 raises the possibility of using HER2 as a therapeutic target. However, clinical trials on the anti-HER2 antibody trastuzumab (TRA) in treating OS [...] Read more.
The prognosis for non-resectable or recurrent osteosarcoma (OS) remains poor. The finding that the majority of OS overexpress the protooncogene HER2 raises the possibility of using HER2 as a therapeutic target. However, clinical trials on the anti-HER2 antibody trastuzumab (TRA) in treating OS find no therapeutic benefit. HER2 overexpression in OS is not generally associated with gene amplification, with low-level expression regarded as HER2 “negative”, as per criteria used to classify breast cancer HER2 status. Nevertheless, active HER2-targeting approaches, such as virus-based HER2 vaccines or CAR-T cells have generated promising results. More recently, it has been found that the noncovalent association of TRA with nanomaterial graphene oxide (GO) generates stable TRA/GO complexes capable of rapidly killing OS cells. TRA/GO induces oxidative stress and strong HER2 signaling to elicit immediate degradation of both cIAP (cellular inhibitor of apoptosis protein) and caspase 8, leading to activation of necroptosis. This is an attractive mechanism of cancer cell death as chemo/apoptosis-resistant tumors may remain susceptible to necroptosis. In addition, necroptosis is potentially immunogenic to promote tumor immunity, as opposed to apoptosis that tends to silence tumor immunity. Currently, no established anticancer therapeutics are known to eliminate cancers by necroptosis. The aim of this article is to review the rationale and mechanisms of TRA/GO-mediated cytotoxicity. Full article
Show Figures

Graphical abstract

12 pages, 3814 KiB  
Article
Cryptotanshinone Induces Cell Cycle Arrest and Apoptosis of NSCLC Cells through the PI3K/Akt/GSK-3β Pathway
by Sang-A Kim, Ok-Hwa Kang and Dong-Yeul Kwon
Int. J. Mol. Sci. 2018, 19(9), 2739; https://doi.org/10.3390/ijms19092739 - 13 Sep 2018
Cited by 75 | Viewed by 4574
Abstract
Cryptotanshinone (CTT) is a natural product and a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miltiorrhizabunge. Notably, CTT has a variety of anti-cancer actions, including the activation of apoptosis, anti-proliferation, and reduction in angiogenesis. We further investigated [...] Read more.
Cryptotanshinone (CTT) is a natural product and a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miltiorrhizabunge. Notably, CTT has a variety of anti-cancer actions, including the activation of apoptosis, anti-proliferation, and reduction in angiogenesis. We further investigated the anti-cancer effects of CTT using MTS, LDH, and Annexin V assay, DAPI staining, cell cycle arrest, and Western blot analysis in NSCLC cell lines. NSCLC cells treated with CTT reduced cell growth through PI3K/Akt/GSK3β pathway inhibition, G0/G1 cell cycle arrest, and the activation of apoptosis. CTT induced an increase of caspase-3, caspase-9, poly-ADP-ribose polymerase (PARP), and Bax, as well as inhibition of Bcl-2, survivin, and cellular-inhibitor of apoptosis protein 1 and 2 (cIAP-1 and -2). It also induced G0/G1 phase cell cycle arrest by decreasing the expression of the cyclin A, cyclin D, cyclin E, Cdk 2, and Cdk 4. These results highlight anti-proliferation the latent of CTT as natural therapeutic agent for NSCLC. Therefore, we investigated the possibility of CTT as an anti-cancer agent by comparing with GF, which is a representative anti-cancer drug. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

9 pages, 225 KiB  
Review
Negative Regulators of JAK/STAT Signaling in Rheumatoid Arthritis and Osteoarthritis
by Charles J. Malemud
Int. J. Mol. Sci. 2017, 18(3), 484; https://doi.org/10.3390/ijms18030484 - 24 Feb 2017
Cited by 105 | Viewed by 9420
Abstract
Elevated levels of pro-inflammatory cytokines are generally thought to be responsible for driving the progression of synovial joint inflammation in rheumatoid arthritis (RA) and osteoarthritis (OA). These cytokines activate several signal transduction pathways, including the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT), [...] Read more.
Elevated levels of pro-inflammatory cytokines are generally thought to be responsible for driving the progression of synovial joint inflammation in rheumatoid arthritis (RA) and osteoarthritis (OA). These cytokines activate several signal transduction pathways, including the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Stress-Activated/Mitogen-Activated Protein Kinase (SAPK/MAPK) and phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathways which regulate numerous cellular responses. However, cytokine gene expression, matrix metalloproteinase gene expression and aberrant immune cell and synoviocyte survival via reduced apoptosis are most critical in the context of inflammation characteristic of RA and OA. Negative regulation of JAK/STAT signaling is controlled by Suppressor of Cytokine Signaling (SOCS) proteins. SOCS is produced at lower levels in RA and OA. In addition, gaining further insight into the role played in RA and OA pathology by the inhibitors of the apoptosis protein family, cellular inhibitor of apoptosis protein-1, -2 (c-IAP1, c-IAP2), X (cross)-linked inhibitor of apoptosis protein (XIAP), protein inhibitor of activated STAT (PIAS), and survivin (human) as well as SOCS appears to be a worthy endeavor going forward. Full article
(This article belongs to the Special Issue Apoptotic Chondrocytes and Osteoarthritis)
Back to TopTop