Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cationic surfactant blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2337 KiB  
Article
Preparation of Melamine Formaldehyde Foam and a Melamine-Formaldehyde-Organo-Clay Nanocomposite and Hybrid Composites
by Ahmet Gürses and Elif Şahin
Minerals 2023, 13(11), 1407; https://doi.org/10.3390/min13111407 - 2 Nov 2023
Cited by 8 | Viewed by 2878
Abstract
Mineral fillers can be added to thermoset polymers to improve thermal conductivity and deformation behavior, shrinkage, impact strength, dimensional stability and molding cycle time. This study aims to prepare various hybrid composites (MFHCs) using melamine formaldehyde foam (MF), a melamine formaldehyde organo-clay nanocomposite [...] Read more.
Mineral fillers can be added to thermoset polymers to improve thermal conductivity and deformation behavior, shrinkage, impact strength, dimensional stability and molding cycle time. This study aims to prepare various hybrid composites (MFHCs) using melamine formaldehyde foam (MF), a melamine formaldehyde organo-clay nanocomposite (MFNC) and also pumice as primary filler, and gypsum, kaolinite and a hollow glass sphere as secondary filler. It also focuses on the study of some mechanical properties and thermal conductivities, as well as their microscopic and spectroscopic characterization. For this, firstly, organo-clay was prepared with the solution intercalation method using montmorillonite, a cationic surfactant and long-chain hydrocarbon material, and then was produced using a melamine formaldehyde nanocomposite with in situ synthesis using a melamine formaldehyde pre-polymer and organo-clay. Finally, hybrid composites were prepared by blending various minerals and the produced nanocomposite. For morphological and textural characterization, both FTIR spectroscopy and XRD spectra, as well as SEM and HRTEM images of the raw montmorillonite (MMT), organo-montmorillonite (OMMT), pure polymer (MF) and prepared hybrid composites, were used. Spectroscopic and microscopic analyses have shown that materials with different textural arrangements and properties are obtained depending on effective adhesion interactions between polymer–clay nanocomposite particles and filler grains. Mechanical and thermal conductivity test results showed that melamine-formaldehyde-organo-clay nanocomposite foam (MFCNC) exhibited a very good thermal insulation performance despite its weak mechanical strength (λ: 0.0640 W/m K). On the other hand, among hybrid composites, it has been determined that the hybrid composite containing hollow glass beads (MFCPHHC) is a material with superior properties in terms of thermal insulation and mechanical strength (λ: 0.642 W/m K, bulk density: 0.36 g/cm3, bending strength: 228.41 Mpa, modulus of elasticity: 2.22 Mpa and screw holding resistance: 3.59 N/mm2). Full article
Show Figures

Figure 1

12 pages, 5777 KiB  
Article
Thermally Conductive and Electrically Insulating Epoxy Composites Filled with Network-like Alumina In Situ Coated Graphene
by Ruicong Lv, Haichang Guo, Lei Kang, Akbar Bashir, Liucheng Ren, Hongyu Niu and Shulin Bai
Nanomaterials 2023, 13(15), 2243; https://doi.org/10.3390/nano13152243 - 3 Aug 2023
Cited by 6 | Viewed by 2358
Abstract
With the rapid development of the electronics industry, there is a growing demand for packaging materials that possess both high thermal conductivity (TC) and low electrical conductivity (EC). However, traditional insulating fillers such as boron nitride, aluminum nitride, and alumina (Al2O [...] Read more.
With the rapid development of the electronics industry, there is a growing demand for packaging materials that possess both high thermal conductivity (TC) and low electrical conductivity (EC). However, traditional insulating fillers such as boron nitride, aluminum nitride, and alumina (Al2O3) have relatively low intrinsic TC. When graphene, which exhibits both superhigh TC and EC, is used as a filler to fill epoxy resin, the TC of blends can be much higher than that of blends containing more traditional fillers. However, the high EC of graphene limits its application in cases where electrical insulation is required. To address this challenge, a method for coating graphene sheets with an in situ grown Al2O3 layer has been proposed for the fabrication of epoxy-based composites with both high TC and low EC. In the presence of a cationic surfactant, a dense Al2O3 layer with a network structure can be formed on the surface of graphene sheets. When the total content of Al2O3 and graphene mixed filler reached 30 wt%, the TC of the epoxy composite reached 0.97 W m−1 K−1, while the EC remained above 1011 Ω·cm. Finite element simulations accurately predicted TC and EC values in accordance with experimental results. This material, with its combination of high TC and good insulation properties, exhibits excellent potential for microelectronic packaging applications. Full article
Show Figures

Figure 1

13 pages, 4002 KiB  
Article
pH-Responsive Viscoelastic Fluids of a C22-Tailed Surfactant Induced by Trivalent Metal Ions
by Zhi Xu, Shuai Yu, Rong Fu, Ji Wang and Yujun Feng
Molecules 2023, 28(12), 4621; https://doi.org/10.3390/molecules28124621 - 7 Jun 2023
Cited by 2 | Viewed by 1621
Abstract
pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, [...] Read more.
pH-responsive viscoelastic fluids are often achieved by adding hydrotropes into surfactant solutions. However, the use of metal salts to prepare pH-responsive viscoelastic fluids has been less documented. Herein, a pH-responsive viscoelastic fluid was developed by blending an ultra-long-chain tertiary amine, N-erucamidopropyl-N, N-dimethylamine (UC22AMPM), with metal salts (i.e., AlCl3, CrCl3, and FeCl3). The effects of the surfactant/metal salt mixing ratio and the type of metal ions on the viscoelasticity and phase behavior of fluids were systematically examined by appearance observation and rheometry. To elucidate the role of metal ions, the rheological properties between AlCl3− and HCl−UC22AMPM systems were compared. Results showed the above metal salt evoked the low-viscosity UC22AMPM dispersions to form viscoelastic solutions. Similar to HCl, AlCl3 could also protonate the UC22AMPM into a cationic surfactant, forming wormlike micelles (WLMs). Notably, much stronger viscoelastic behavior was evidenced in the UC22AMPM−AlCl3 systems because the Al3+ as metal chelators coordinated with WLMs, promoting the increment of viscosity. By tuning the pH, the macroscopic appearance of the UC22AMPM−AlCl3 system switched between transparent solutions and milky dispersion, concomitant with a viscosity variation of one order of magnitude. Importantly, the UC22AMPM−AlCl3 systems showed a constant viscosity of 40 mPa·s at 80 °C and 170 s−1 for 120 min, indicative of good heat and shear resistances. The metal-containing viscoelastic fluids are expected to be good candidates for high-temperature reservoir hydraulic fracturing. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

50 pages, 9724 KiB  
Article
Increasing Reservoir Recovery Efficiency through Laboratory-Proven Hybrid Smart Water-Assisted Foam (SWAF) Flooding in Carbonate Reservoirs
by Anas M. Hassan, Mohammed Ayoub, Mysara Eissa, Emad W. Al-Shalabi, Abdullah Al-Mansour and Abdulrahman Al-Quraishi
Energies 2022, 15(9), 3058; https://doi.org/10.3390/en15093058 - 22 Apr 2022
Cited by 13 | Viewed by 3750
Abstract
This contribution introduces a new hybrid enhanced oil recovery (EOR) method which combines smart water-assisted foam (SWAF) flooding, known as the SWAF process. The concept of applying SWAF flooding in carbonate reservoirs is a novel approach previously unexplored in the literature. The synergy [...] Read more.
This contribution introduces a new hybrid enhanced oil recovery (EOR) method which combines smart water-assisted foam (SWAF) flooding, known as the SWAF process. The concept of applying SWAF flooding in carbonate reservoirs is a novel approach previously unexplored in the literature. The synergy effect of the SWAF technique has the potential to mitigate a number of limitations related to individual (i.e., conventional water injection and foam flooding) methods encountered in carbonates. In general, carbonate rocks are characterized by a mixed-wet to oil-wet wettability state, which contributes to poor oil recovery. Hence, the smart water solution has been designed to produce a dual-improvement effect of altering carbonate rock wettability towards more water-wet, which preconditions the reservoir and augments the stability of the foam lamellae, which has for some conditions more favorable relative permeability behavior. Then the smart water solution is combined with surfactant (surfactant aqueous solution or SAS) and gas injection produces a synergy effect, which leads to more wettability alteration, and interfacial tension (IFT) reduction, and thus improves the oil recovery. Accordingly, to determine the optimal conditions of smart water solution with an optimal SAS, we conducted a series of experimental laboratory studies. The experimental design is divided into three main steps. At first, the screening process is required so that the candidates can be narrowed down for our designed smart water using the contact angle tests that employ calcite plate (i.e., Indiana limestone or ILS) as the first filter. Following this, the optimum smart water solutions candidates are blended with different types of cationic and anionic surfactants to create optimum SAS formulations. Subsequently, a second screening process is performed with the aim to narrow down the SAS candidates with varying types of gases (i.e., carbon dioxide, CO2 and nitrogen, N2) via the aqueous stability test (AST), foamability test (FT), and foam stability test (FST). We employed the state-of-the-art R5 parameter tests for rapid and accurate results in place of the conventional foam half-life method. The most effective combination of SAS and gas candidates are endorsed for the core-flooding experiments. In this work, two types of crude oils (Type A and B) with different total acid and base numbers (TAN and TBN). Results showed that the greatest wettability changes occurred for SW (MgCl2) solution at 3500 (ppm) for both crude oil types. This demonstrates the efficacy of our designed SW in the wettability alteration of carbonates, which is also supported by the zeta-potential measurements. The concentrations of both SW (MgCl2) and CTAB-based surfactants considerably affect the stability of the SAS (i.e., up to 90% foam stability). However when in the presence of crude oil, for the same SAS solution, the foam stability is reduced from 90% to 80%, which indicates the negative effect of crude oil on foam stability. Moreover, the core floods results showed that the MgCl2-foam injection mixture (MgCl2 + CTAB + AOS + N2) provided the highest residual oil recovery factor of SWAF process of 92% cumulative recovery of original oil in core (OIIC). This showcases the effectiveness of our proposed SWAF technique in oil recovery from carbonate reservoirs. Additionally, changing the large slug of 5 PVs to a small slug of 2 PVs of smart water solution was more effective in producing higher OIIC recovery and in reducing the fluid circulation costs (i.e., thereby, lowering CO2 footprint), making the SWAF process environmentally benign. Thus, it is expected that under optimum conditions (SW solution and SAS), the novel SWAF process can be a potentially successful hybrid EOR method for carbonate reservoirs, having both economic and environmental benefits. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery Processes Evaluation, Design and Implementation)
Show Figures

Graphical abstract

18 pages, 13001 KiB  
Article
The Antimicrobial Mode of Action of Maltol and Its Synergistic Efficacy with Selected Cationic Surfactants
by Noa Ziklo, Maayan Bibi and Paul Salama
Cosmetics 2021, 8(3), 86; https://doi.org/10.3390/cosmetics8030086 - 9 Sep 2021
Cited by 18 | Viewed by 5802
Abstract
Maltol, mostly used as a flavoring molecule, also has various potential applications as a biomedical compound. Despite its extensive use in the food industry, maltol’s antimicrobial activity was evaluated only briefly, and was suggested to be insufficient on its own. Recently, we have [...] Read more.
Maltol, mostly used as a flavoring molecule, also has various potential applications as a biomedical compound. Despite its extensive use in the food industry, maltol’s antimicrobial activity was evaluated only briefly, and was suggested to be insufficient on its own. Recently, we have shown that maltol can be used in conjunction with cationic surfactant species to receive higher activity against contaminant microorganisms. In this paper, we have broadened the antimicrobial efficacy studies and evidenced maltol’s mode of action against Gram-negative, Gram-positive bacteria, and fungi. In addition, to increase its efficacy, blends of maltol and two selected cationic surfactants, dodecyl-dimethyl-ammonium chloride (DDAC) and polyquaternium 80 (P-80), were appraised for their activity. Broad efficacy studies revealed synergistic interactions between maltol and both cationic surfactants against most of the tested microorganisms. Electron microscopy images were used to evaluate the microorganisms’ morphology following treatment, pinpointing the specific cell wall damage caused by each of the compounds. Our findings indicate that maltol’s effect on the microbial cell wall can be complemented by catalytic amounts of selected cationic surfactants to enhance and extend its activity. Such a solution can be used as a broad-spectrum preservative for personal care products in cosmetic applications. Full article
Show Figures

Figure 1

16 pages, 2937 KiB  
Review
Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview
by Yuanfeng Pan, Qiuyang Xia and Huining Xiao
Polymers 2019, 11(8), 1283; https://doi.org/10.3390/polym11081283 - 1 Aug 2019
Cited by 62 | Viewed by 9856
Abstract
Antimicrobial polymers have attracted substantial interest due to high demands on improving the health of human beings via reducing the infection caused by various bacteria. The review presented herein focuses on rendering polysaccharides, mainly cellulosic-based materials and starch to some extent, antimicrobial via [...] Read more.
Antimicrobial polymers have attracted substantial interest due to high demands on improving the health of human beings via reducing the infection caused by various bacteria. The review presented herein focuses on rendering polysaccharides, mainly cellulosic-based materials and starch to some extent, antimicrobial via incorporating cationic polymers, guanidine-based types in particular. Extensive review on synthetic antimicrobial materials or plastic/textile has been given in the past. However, few review reports have been presented on antimicrobial polysaccharide, cellulosic-based materials, or paper packaging, especially. The current review fills the gap between synthetic materials and natural polysaccharides (cellulose, starch, and cyclodextrin) as substrates or functional additives for different applications. Among various antimicrobial polymers, particular attention in this review is paid to guanidine-based polymers and their derivatives, including copolymers, star polymer, and nanoparticles with core-shell structures. The review has also been extended to gemini surfactants and polymers. Cationic polymers with tailored structures can be incorporated into various products via surface grafting, wet-end addition, blending, or reactive extrusion, effectively addressing the dilemma of improving substrate properties and bacterial growth. Moreover, the pre-commercial trial conducted successfully for making antimicrobial paper packaging has also been addressed. Full article
(This article belongs to the Special Issue Antimicrobial Polymers II)
Show Figures

Graphical abstract

12 pages, 2727 KiB  
Article
An Evaluation of the Physicochemical Properties of Stabilized Oil-In-Water Emulsions Using Different Cationic Surfactant Blends for Potential Use in the Cosmetic Industry
by Pamela Agredo, Maria C. Rave, Juan D. Echeverri, Daniela Romero and Constain H. Salamanca
Cosmetics 2019, 6(1), 12; https://doi.org/10.3390/cosmetics6010012 - 18 Feb 2019
Cited by 51 | Viewed by 12753
Abstract
One of the most complex problems in hair care formulations is the duality of the surfactants used. In this regard, such surfactants must be cationic so as to interact with the negatively charged cuticle surface of hair. However, these interdependencies typically lead to [...] Read more.
One of the most complex problems in hair care formulations is the duality of the surfactants used. In this regard, such surfactants must be cationic so as to interact with the negatively charged cuticle surface of hair. However, these interdependencies typically lead to non-ideal values for the required hydrophilic–lipophilic balance (HLB) in the oil phase. This study was designed to evaluate the physicochemical properties of several oil-in-water emulsion prototypes for the potential use in hair conditioners. Here, a base formulation was utilized, incorporating binary mixtures of cationic surfactants in different proportions. The cationic surfactants employed were hydroxyethyl-behenamidopropyl-diammonium chloride, behentrimonium methosulphate, cetrimonium chloride, and (iv) Polyquaterniumpolyquaternium-70. The surfactants were evaluated for their capability to decrease the surface tension in an aqueous solution through contact angle measurements between the oily phase and the aqueous phase. The required HLB of the oil phase was also determined. The emulsification process was developed using standard preparation methods. For three months, the prototypes with high viscosity were packed in containers and stored in a stability chamber at accelerated conditions (40 ± 2 °C and 75 ± 5% RH). During this time, the size, size polydispersity, zeta potential, viscosity, rheological profile, and creaming index were all evaluated monthly. The results showed a slight change in the physical stability of the prototypes, where the droplet size increased moderately, however, did little to destabilize the formulations. This suggests that the mixtures of cationic surfactants used could be useful for technological developments in hair conditioning products. Full article
(This article belongs to the Special Issue Recent Advance in Hair Science and Hair Care Technologies)
Show Figures

Graphical abstract

Back to TopTop