Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = cationic porphyrins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2847 KB  
Article
Supramolecular Photosensitizers Based on HMeQ[6] and Their Photodynamic Effects on Triple-Negative Breast Cancer Cells
by Beibei Song, Qingyi Kong, Bo Xiao, Ting Huang, Yan Su, Baofei Sun, Guangwei Feng, Xiaojun Wen and Jian Feng
Molecules 2025, 30(23), 4576; https://doi.org/10.3390/molecules30234576 - 28 Nov 2025
Viewed by 503
Abstract
The principal challenge in the development of efficient porphyrin-based photosensitizers is the intrinsic aggregation-induced quenching effect, which significantly impairs the generation efficiency of singlet oxygen (1O2) in photodynamic therapy (PDT). This study addresses this limitation through a supramolecular approach [...] Read more.
The principal challenge in the development of efficient porphyrin-based photosensitizers is the intrinsic aggregation-induced quenching effect, which significantly impairs the generation efficiency of singlet oxygen (1O2) in photodynamic therapy (PDT). This study addresses this limitation through a supramolecular approach grounded in host-guest chemistry. Partially methyl-substituted cucurbit[6]uril (HMeQ[6]) was selected as the macrocyclic host owing to its smaller portal size and larger outer diameter, features that facilitate both strong binding affinity and effective spatial isolation. A porphyrin derivative functionalized with two cationic arms (DPPY) was designed and synthesized as the guest molecule. The results derived from 1H NMR titration and UV spectroscopy analyses demonstrate that, in aqueous solution, these components self-assemble via host-guest interactions to form a 2:1 stoichiometric supramolecular complex (DPPY@HMeQ[6]) with a binding constant of 2.11 × 105 M−1. TEM, AFM, and DLS analyses indicate that this complex further assembles into nanosheet structures with dimensions of approximately 100 nm. Spectroscopic analyses reveal that encapsulation by HMeQ[6] effectively inhibits π-π stacking aggregation of DPPY molecules, resulting in an approximate threefold increase in fluorescence intensity and an extension of fluorescence lifetime from 3.2 ns to 6.2 ns. Relative to free DPPY, the complex demonstrates a sixfold enhancement in 1O2 generation efficiency. Subsequently, 4T1 cells, derived from mouse triple-negative breast tumors, were selected as the experimental model. These cells exhibit high invasiveness and metastatic potential, thereby effectively recapitulating the pathological progression of human triple-negative breast cancer. In vitro cellular assays indicate efficient internalization of the complex by 4T1 cells, inducing a concentration-dependent increase in reactive oxygen species (ROS) and oxidative stress following light irradiation. The in vitro cytotoxicity of the supramolecular photosensitizer was assessed employing the CCK-8 assay and flow cytometry techniques. The half-maximal inhibitory concentration (IC50) against cancer cells is 1.8 μM, with apoptosis rates reaching up to 65.3%, while exhibiting minimal dark toxicity. This study expands the potential applications of methyl-substituted cucurbiturils within functional supramolecular assemblies and proposes a viable approach for the development of efficient and activatable supramolecular photosensitizers. Full article
(This article belongs to the Special Issue Recent Advances in Supramolecular Chemistry)
Show Figures

Graphical abstract

17 pages, 2314 KB  
Article
Supramolecular Chirogenesis in Porphyrin-Based Systems: Chirality Transfer from Anionic Chiral Surfactants to Cationic, Achiral Porphyrins
by Paola Sbardella, Manuela Stefanelli, Giuseppe Pomarico, Cecilia Bombelli, Francesca Ceccacci, Roberto Paolesse, Mariano Venanzi and Donato Monti
Int. J. Mol. Sci. 2025, 26(23), 11330; https://doi.org/10.3390/ijms262311330 - 24 Nov 2025
Viewed by 422
Abstract
The chirality transfer from chiral domains to achiral molecules is an important theoretical and applicative issue. In this work, we have investigated the interaction between two anionic chiral surfactants bearing a proline residue as hydrophilic head and the cationic, achiral porphyrin Zn(II) [5-{4-(3-trimethylammonium)propyloxyphenyl}-10,15,20-triphenylporphyrinyl]chloride [...] Read more.
The chirality transfer from chiral domains to achiral molecules is an important theoretical and applicative issue. In this work, we have investigated the interaction between two anionic chiral surfactants bearing a proline residue as hydrophilic head and the cationic, achiral porphyrin Zn(II) [5-{4-(3-trimethylammonium)propyloxyphenyl}-10,15,20-triphenylporphyrinyl]chloride to assess the effects of the structural variations in both units on the chirality transfer efficiency and amplification. We showed that the efficiency of transferring molecular information depends on the surfactant’s features, namely the chiral configuration of the polar head, the length of the aliphatic chain, and the aggregation state. At the same time, the presence of a coordinated metal and the peripheral charged group on the porphyrin macrocycle are key factors. In detail, the study of the hetero-aggregates formed at a surfactant concentration below the critical micellar concentration (cmc) indicates that the chirality depends on the synergy of hydrophobic effect, coordination interaction, and electrostatic forces. If the surfactant concentration is higher than the cmc, at a low concentration, porphyrins are included in micelles as monomers. Under these conditions, no chirality transfer is evident. When the porphyrin is in excess with respect to the micelles, an efficient asymmetry induction is again observed, transmitted from the chiral polar head to the porphyrin oligomers included in the micelle, through the polar heads and the hydrocarbon chains of the surfactants. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Graphical abstract

16 pages, 1960 KB  
Article
Photodynamic Inactivation Enhances Antibiotic Efficacy Without Affecting Drug Stability: Insights into Photosensitizer–Antibiotic Combination Therapies
by Rocío B. Acosta, Edgardo N. Durantini and Mariana B. Spesia
Int. J. Mol. Sci. 2025, 26(23), 11267; https://doi.org/10.3390/ijms262311267 - 21 Nov 2025
Viewed by 556
Abstract
Photodynamic inactivation (PDI) represents a promising strategy to overcome bacterial resistance by combining light, oxygen, and a photosensitizer (PS) to generate reactive oxygen species (ROS) that damage essential cellular components. Combining PDI with conventional antibiotics (ATBs) may further enhance bacterial eradication through complementary [...] Read more.
Photodynamic inactivation (PDI) represents a promising strategy to overcome bacterial resistance by combining light, oxygen, and a photosensitizer (PS) to generate reactive oxygen species (ROS) that damage essential cellular components. Combining PDI with conventional antibiotics (ATBs) may further enhance bacterial eradication through complementary mechanisms. In this study, the tetracationic 5,10,15,20-tetra(4-N,N,N-trimethylammoniophenyl)porphyrin (TMAP4+) was evaluated in combination with ATBs: ampicillin (AMP) and rifampicin (RIF) against Staphylococcus aureus and cephalexin (CFX) against Escherichia coli. The photostability of all agents was assessed under the experimental irradiation conditions, and no evidence of physical interaction between TMAP4+ and the ATBs was detected. AMP and CFX remained photostable, while RIF exhibited only minimal photodegradation under white light, confirming its stability during PDI treatments. The antimicrobial assays revealed that irradiation significantly enhanced the bactericidal activity of TMAP4+. When combined with ATBs, photoactivated TMAP4+ led to a pronounced reduction in the minimum inhibitory concentration (MIC) values of AMP and RIF for S. aureus and of CFX for E. coli, indicating additive effects. Growth curve analyses corroborated these results, showing delayed bacterial growth and decreased maximal optical densities in the combined treatments compared to single agents. Overall, these findings demonstrate that the photodynamic process can potentiate the antimicrobial effect of conventional ATBs without compromising their stability, supporting the potential of PS–ATB combination therapies as a valuable approach to improve antibacterial efficacy and mitigate ATB resistance. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

16 pages, 1153 KB  
Article
Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity
by Davor Margetić, Petra Jadrijević-Mladar, Anamaria Brozovic and Lidija-Marija Tumir
Molecules 2025, 30(18), 3682; https://doi.org/10.3390/molecules30183682 - 10 Sep 2025
Viewed by 890
Abstract
A series of novel guanidino-aryl (GA) compounds containing phenanthrene, fluoranthene, fluorene, and naphthalene aromatic cores were synthesized to investigate their interactions with DNA, RNA, and G-quadruplex structures. Among the novel compounds, the phenanthrene-guanidino compound demonstrated the highest micromolar affinity for AT-DNA, [...] Read more.
A series of novel guanidino-aryl (GA) compounds containing phenanthrene, fluoranthene, fluorene, and naphthalene aromatic cores were synthesized to investigate their interactions with DNA, RNA, and G-quadruplex structures. Among the novel compounds, the phenanthrene-guanidino compound demonstrated the highest micromolar affinity for AT-DNA, possibly due to partial phenanthrene intercalation in addition to hydrogen bonding and electrostatic interactions of guanidine cation. All new guanidino-aryl GA compounds bind strongly to the Tel22 G-quadruplex structure with similar affinities regardless of aromatic core size. The 1:1 stoichiometric complex is stabilised by π-π stacking interactions with the top or bottom G-tetrad, together with strong electrostatic interactions of the guanidino cation. The guanidino-porphyrin PoGU displayed distinct binding stoichiometry, indicating possible sandwiching between two G-quadruplex structures. Within the GA compounds tested, guanidino-fluorene exhibited moderate antimetabolic activity against the HeLa cell line, without selectivity against the healthy cell line. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Graphical abstract

17 pages, 7508 KB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Cited by 2 | Viewed by 1140
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

8 pages, 1277 KB  
Short Note
trans-Dihydroxo[5,10,15,20-tetrakis(3-pyridinium)porphyrinato]tin(IV) Nitrate
by Nirmal Kumar Shee and Hee-Joon Kim
Molbank 2025, 2025(2), M2014; https://doi.org/10.3390/M2014 - 27 May 2025
Viewed by 1008
Abstract
The treatment of trans-dihydroxo[5,10,15,20-tetrakis(3-pyridyl)porphyrinato]Sn(IV) or [Sn(OH)2(TPyP)] with 1% nitric acid in a mixture of water and acetone resulted in the formation of an ionic complex 1 [Sn(OH)2(TPyHP)](NO3)4. Complex 1 was fully characterized [...] Read more.
The treatment of trans-dihydroxo[5,10,15,20-tetrakis(3-pyridyl)porphyrinato]Sn(IV) or [Sn(OH)2(TPyP)] with 1% nitric acid in a mixture of water and acetone resulted in the formation of an ionic complex 1 [Sn(OH)2(TPyHP)](NO3)4. Complex 1 was fully characterized by 1H NMR spectroscopy, elemental analysis, UV-vis spectroscopy, powder X-ray diffraction, fluorescence spectroscopy, FT-IR spectroscopy, and single-crystal X-ray crystallography. X-ray crystallographic analysis confirmed that each peripheral pyridyl N atom is protonated to form tetra-cationic species {Sn(OH)2(TPyHP)}4+ stabilized by four NO3 counter anions. Intermolecular hydrogen bonding interaction between axial hydroxo ligands leads to the formation of a 1D porphyrin array. Nitrate anions also involve hydrogen bonding interactions with axial hydroxo ligands and the peripheral pyridinium groups. Full article
Show Figures

Figure 1

16 pages, 6791 KB  
Article
Tetramethyl Cucurbit[6]uril–Porphyrin Supramolecular Polymer Enhances Photosensitization
by Bo Xiao, Yueyue Liao, Jinyu Zhang, Ke Chen, Guangwei Feng, Jian Feng and Chunlin Zhang
Int. J. Mol. Sci. 2024, 25(23), 13037; https://doi.org/10.3390/ijms252313037 - 4 Dec 2024
Cited by 3 | Viewed by 1445
Abstract
Porphyrins serve as photosensitizers (PS) in the realm of cancer photodynamic therapy (PDT). Upon excitation by laser light, porphyrins are capable of converting molecular oxygen into highly cytotoxic singlet oxygen (1O2). However, the rigid π-conjugated structure of porphyrins frequently [...] Read more.
Porphyrins serve as photosensitizers (PS) in the realm of cancer photodynamic therapy (PDT). Upon excitation by laser light, porphyrins are capable of converting molecular oxygen into highly cytotoxic singlet oxygen (1O2). However, the rigid π-conjugated structure of porphyrins frequently results in the formation of aggregates in aqueous solutions, which leads to the self-quenching of the excited state. Cucurbit[n]urils exhibit the capacity to stably bind with porphyrins via host–guest interactions, effectively inhibiting their aggregation and potentially enhancing the therapeutic efficacy of PDT. In this study, water-soluble tetramethyl cucurbit[6]uril (TMeQ[6]) was selected as the host, while four propionic acid group-appended porphyrin cationic (TPPOR) was utilized as guests to construct a supramolecular photosensitizer (TPPOR-2TMeQ[6]) in a molar ratio of 2:1. Further experimental findings demonstrate that the presence of TMeQ[6] inhibits the aggregation of TPPOR through non-covalent interactions. This inhibition reduces the energy difference between the excited singlet and triplet states, thereby enhancing the conversion efficiency of 1O2. Moreover, TPPOR-2TMeQ[6] exhibits favorable biocompatibility and minimal dark toxicity against breast cancer cells (4T1). Upon intracellular excitation, the levels of reactive oxygen species (ROS) significantly increase, inducing oxidative stress in 4T1 cells and leading to apoptosis. Consequently, the findings of this study suggest that the enhanced photosensitization achieved through this supramolecular approach is likely to promote the anticancer therapeutic effects of PDT, thereby broadening the application prospects of porphyrins within PDT systems. Full article
Show Figures

Figure 1

9 pages, 2396 KB  
Article
Effects of Clay Nanosheets on the Photostability of Cationic Porphyrin
by Yoshinori Tahara, Yugo Hirade, Kyosuke Arakawa, Tetsuya Shimada, Tamao Ishida, Hiroshi Tachibana and Shinsuke Takagi
Molecules 2024, 29(16), 3738; https://doi.org/10.3390/molecules29163738 - 7 Aug 2024
Cited by 2 | Viewed by 1532
Abstract
The photodecomposition behavior of cationic porphyrin ZnTMAP4+ (zinc tetrakis-(N,N,N-trimethylanilinium-4-yl) porphyrin) in water and complexed with clay nanosheets was investigated by light irradiation to the Soret band of ZnTMAP4+. The decomposition of ZnTMAP4+ was [...] Read more.
The photodecomposition behavior of cationic porphyrin ZnTMAP4+ (zinc tetrakis-(N,N,N-trimethylanilinium-4-yl) porphyrin) in water and complexed with clay nanosheets was investigated by light irradiation to the Soret band of ZnTMAP4+. The decomposition of ZnTMAP4+ was observed by UV–visible absorption spectroscopy. While the decomposition quantum yield (ϕdec) was 3.4 × 10−4 in water, that was 9.4 × 10−7 on the exfoliated clay nanosheets. It was revealed that the photostability of ZnTMAP4+ was stabilized by the complex formation with clay. When ZnTMAP4+ was intercalated between the stacked clay nanosheets, ϕdec was further decreased to 4.9 × 10−7. The photostability increased by 361 times and 693 times for the exfoliated and stacked state, respectively. These results indicate that the flat clay surface has the potential to control intra- and intermolecular photochemical reactions. Full article
Show Figures

Graphical abstract

6 pages, 1312 KB  
Short Note
5,10,15,20-Tetrakis-(4-(3-carbamoyl-pyridyl)-methylphenyl)porphyrin Bromide
by Giuseppe Satta, Silvia Gaspa, Luisa Pisano, Lidia De Luca and Massimo Carraro
Molbank 2024, 2024(2), M1836; https://doi.org/10.3390/M1836 - 13 Jun 2024
Viewed by 1884
Abstract
The synthesis of a new tetracationic porphyrin derivative is described. Contrary to the best known derivatives in the literature, which are derived from 5,10,15,20-tetrakis-4-pyridylporphyrin (TPyP), in this procedure we start from 5,10,15,20-tetrakis-(4-carboxymethoxyphenyl)porphyrin (TPPCOOMe), obtained by the condensation reaction between pyrrole and 4-formylbenzoate. The [...] Read more.
The synthesis of a new tetracationic porphyrin derivative is described. Contrary to the best known derivatives in the literature, which are derived from 5,10,15,20-tetrakis-4-pyridylporphyrin (TPyP), in this procedure we start from 5,10,15,20-tetrakis-(4-carboxymethoxyphenyl)porphyrin (TPPCOOMe), obtained by the condensation reaction between pyrrole and 4-formylbenzoate. The reaction is carried out in refluxed xylene, avoiding the use of halogenated solvents. The final product, 5,10,15,20-tetrakis-(4-(3-carbamoyl-pyridyl)-methylphenyl)porphyrin bromide (P15p), exhibits four cationic portions that make it soluble in water and suitable for G4 stabilization. The choice to synthesize a derivative of TPPCOOMe is based on the idea of having a possible stabilizer that, unlike those obtained from TPyP, shows the cationic moieties farther from the porphyrin core and thus closer to the phosphate groups present on the G4 loops. Full article
Show Figures

Figure 1

15 pages, 3873 KB  
Article
Sn(IV)porphyrin-Incorporated TiO2 Nanotubes for Visible Light-Active Photocatalysis
by Nirmal Kumar Shee, Gi-Seon Lee and Hee-Joon Kim
Molecules 2024, 29(7), 1612; https://doi.org/10.3390/molecules29071612 - 3 Apr 2024
Cited by 7 | Viewed by 1987
Abstract
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of [...] Read more.
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min−1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation. Full article
Show Figures

Figure 1

2 pages, 784 KB  
Correction
Correction: Mamardashvili et al. New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers 2021, 13, 829
by Galina M. Mamardashvili, Dmitriy A. Lazovskiy, Ilya A. Khodov, Artem E. Efimov and Nugzar Z. Mamardashvili
Polymers 2024, 16(5), 618; https://doi.org/10.3390/polym16050618 - 23 Feb 2024
Cited by 1 | Viewed by 1228
Abstract
In the original publication [...] Full article
Show Figures

Figure 6

14 pages, 4579 KB  
Article
Effects of Temperature, Axial Ligand, and Photoexcitation on the Structure and Spin-State of Nickel(II) Complexes with Water-Soluble 5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin
by Máté Miklós Major, Zsolt Valicsek and Ottó Horváth
Molecules 2024, 29(2), 310; https://doi.org/10.3390/molecules29020310 - 8 Jan 2024
Cited by 3 | Viewed by 2398
Abstract
Water-soluble metalloporphyrins, depending on the metal center, possess special spectral, coordination, and photochemical features. In nickel(II) porphyrins, the Ni(II) center can occur with low-spin or high-spin electronic configuration. In aqueous solution, the cationic nickel(II) complex (Ni(II)TMPyP4+, where H2TMPyP4+ [...] Read more.
Water-soluble metalloporphyrins, depending on the metal center, possess special spectral, coordination, and photochemical features. In nickel(II) porphyrins, the Ni(II) center can occur with low-spin or high-spin electronic configuration. In aqueous solution, the cationic nickel(II) complex (Ni(II)TMPyP4+, where H2TMPyP4+ = 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin), exists in both forms in equilibrium. In this study, an equilibrium system involving the low-spin and high-spin forms of Ni(II)TMPyP4+ was investigated via application of irradiation, temperature change, and various potential axial ligands. Soret band excitation of this aqueous system, in the absence of additional axial ligands, resulted in a shift in the equilibrium toward the low-spin species due to the removal of axial solvent ligands. The kinetics and the thermodynamics of the processes were also studied via determination of the rate and equilibrium constants, as well as the ΔS, ΔH, and ΔG values. Temperature increase had a similar effect. The equilibrium of the spin isomers was also shifted by decreasing the solvent polarity (using n-propanol) as well as by the addition of a stronger coordinating axial ligand (such as ammonia). Since triethanolamine is an efficient electron donor in Ni(II)TMPyP4+-based photocatalytic systems, its interaction with this metalloporphyin was also studied. The results promote the development of efficient photocatalytic systems based on this complex. Full article
Show Figures

Figure 1

9 pages, 2629 KB  
Communication
Enhancement of the Rates for Insertion of Zinc(II) Ions into a Cationic Porphyrin Catalyzed by Poly(glutamate)
by Roberto Zagami, Maria Angela Castriciano, Andrea Romeo and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2023, 24(24), 17371; https://doi.org/10.3390/ijms242417371 - 12 Dec 2023
Cited by 2 | Viewed by 1630
Abstract
The self-assembly of porphyrins onto polyelectrolytes could lead to interesting changes in their reactivity with respect to the bulk solution. Here, we investigated the kinetics of Zn2+ incorporation into tetra-cationic water-soluble 5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)porphyrin (TMpyP(4)) in the presence of poly(L-glutamic acid) (PGA) in a [...] Read more.
The self-assembly of porphyrins onto polyelectrolytes could lead to interesting changes in their reactivity with respect to the bulk solution. Here, we investigated the kinetics of Zn2+ incorporation into tetra-cationic water-soluble 5,10,15,20-tetrakis-(N-methylpyridinium-4-yl)porphyrin (TMpyP(4)) in the presence of poly(L-glutamic acid) (PGA) in a pH range from 4 to 6.5. Under these conditions, the porphyrin electrostatically interacted with the polymer, which gradually switched from an α-helical to a random coil structure. The profile of the logarithm of the observed rate constant (kobs) versus the pH was sigmoidal with an inflection point close to the pH of the conformation transition for PGA. At a pH of 5.4, when PGA was in its highly charged random coil conformation, an almost 1000-fold increase in the reaction rates was observed. An increase in the ionic strength of the bulk solution led to a decrease in the metal insertion rates. The role of the charged matrix was explained in terms of its ability to assemble both reagents in proximity, in agreement with the theory of counter-ion condensation around polyelectrolytes in an aqueous solution. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2023)
Show Figures

Figure 1

30 pages, 7511 KB  
Review
Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy
by Inga O. Savelyeva, Kseniya A. Zhdanova, Margarita A. Gradova, Oleg V. Gradov and Natal’ya A. Bragina
Curr. Issues Mol. Biol. 2023, 45(12), 9793-9822; https://doi.org/10.3390/cimb45120612 - 6 Dec 2023
Cited by 23 | Viewed by 5148
Abstract
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass [...] Read more.
Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity. Full article
(This article belongs to the Special Issue Advanced Research in Antimicrobial and Antiviral Drugs)
Show Figures

Figure 1

11 pages, 5147 KB  
Article
High-Precision Optical Excited Heaters Based on Au Nanoparticles and Water-Soluble Porphyrin
by Alexey V. Povolotskiy, Oksana S. Smirnova, Diana A. Soldatova, Anastasia V. Povolotckaia and Daniil A. Lukyanov
Metals 2023, 13(11), 1851; https://doi.org/10.3390/met13111851 - 5 Nov 2023
Cited by 11 | Viewed by 2121
Abstract
Gold nanoparticles are widely used as local heaters under optical excitation. Hybrid molecular-plasmon nanostructures based on gold nanoparticles and water-soluble porphyrin have been developed. A colloidal solution of gold nanoparticles was obtained by laser ablation of metallic gold in water, ensuring its highest [...] Read more.
Gold nanoparticles are widely used as local heaters under optical excitation. Hybrid molecular-plasmon nanostructures based on gold nanoparticles and water-soluble porphyrin have been developed. A colloidal solution of gold nanoparticles was obtained by laser ablation of metallic gold in water, ensuring its highest chemical purity. The hybrid nanostructures formation was performed due to the Coulomb interaction of cationic porphyrin and gold nanoparticles. The revealed functional properties of hybrid nanostructures make them promising for controllable nano-heater applications (for example, photothermal therapy). Gold nanoparticles act as heaters, whereas porphyrin serves as a fluorescent thermometer with a single optical excitation. Full article
(This article belongs to the Special Issue Recent Advances in Nanostructured Metallic Materials)
Show Figures

Figure 1

Back to TopTop