Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Spectroscopic Characterisation of GA1-GA4 in the Aqueous Medium
2.3. Interactions of GA1-GA4 with DNA and RNA
2.3.1. Thermal Melting Studies
2.3.2. Fluorimetric Titrations
2.3.3. Circular Dichroism Experiments
2.3.4. Discussion of the Spectroscopic Results
2.4. Interactions of GA1-GA4 and PoGU with G-Quadruplex
2.5. Biological Activity of GA1-GA4 and PoGU
3. Materials and Methods
3.1. Synthesis of Guanidino-Aryl Compounds GA1-GA4
3.1.1. General Procedure: Synthesis and Characterisation
3.1.2. General Procedure for Boc Deprotection
3.2. General Procedures for the Study of DNA/RNA Interactions
3.3. CD and Fluorescence Titrations
3.4. Thermal Denaturation Experiments
3.5. Evaluation of the Metabolic Activity
Cell Lines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chastain, M.; Tinoco, I. Structural Elements in RNA. In Progress in Nucleic Acid Research and Molecular Biology; Cohn, W.E., Moldave, K., Eds.; Academic Press: Cambridge, MA, USA, 1991; Volume 41, pp. 131–177. [Google Scholar]
- Saenger, W. (Ed.) Defining Terms for the Nucleic Acids. In Principles of Nucleic Acid Structure; Springer: New York, NY, USA, 1984; pp. 9–27. [Google Scholar]
- Smirnov, E.; Molínová, P.; Chmúrčiaková, N.; Vacík, T.; Cmarko, D. Non-canonical DNA structures in the human ribosomal DNA. Histochem. Cell Biol. 2023, 160, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Kaushik, S.; Kukreti, S. Non-canonical DNA structures: Diversity and disease association. Front. Genet. 2022, 13, 959258. [Google Scholar] [CrossRef] [PubMed]
- Demeunynck, M.; Bailly, C.; Wilson, W.D. (Eds.) Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Singer, B. Molecular Biology of Mutagens and Carcinogens; Plenum Press: New York, NY, USA, 1983. [Google Scholar]
- Bacolla, A.; Wang, G.; Vasquez, K.M. New Perspectives on DNA and RNA Triplexes As Effectors of Biological Activity. PLoS Genet. 2015, 11, e1005696. [Google Scholar] [CrossRef] [PubMed]
- Nanjunda, R.; Owens, E.A.; Mickelson, L.; Dost, T.L.; Stroeva, E.M.; Huynh, H.T.; Germann, M.W.; Henary, M.M.; Wilson, W.D. Selective G-Quadruplex DNA Recognition by a New Class of Designed Cyanines. Molecules 2013, 18, 13588–13607. [Google Scholar] [CrossRef]
- Nielsen, P.E. Design of Sequence-Specific DNA-Binding Ligands. Chem. A Eur. J. 1997, 3, 505–508. [Google Scholar] [CrossRef]
- Awadasseid, A.; Ma, X.; Wu, Y.; Zhang, W. G-quadruplex stabilization via small-molecules as a potential anti-cancer strategy. Biomed. Pharmacother. 2021, 139, 111550. [Google Scholar] [CrossRef] [PubMed]
- Tateishi-Karimata, H.; Sugimoto, N. Chemical biology of non-canonical structures of nucleic acids for therapeutic app.lications. Chem. Commun. 2020, 56, 2379–2390. [Google Scholar] [CrossRef] [PubMed]
- King, J.J.; Irving, K.L.; Evans, C.W.; Chikhale, R.V.; Becker, R.; Morris, C.J.; Peña Martinez, C.D.; Schofield, P.; Christ, D.; Hurley, L.H.; et al. DNA G-Quadruplex and i-Motif Structure Formation Is Interdependent in Human Cells. J. Am. Chem. Soc. 2020, 142, 20600–20604. [Google Scholar] [CrossRef] [PubMed]
- Schaffitzel, C.; Berger, I.; Postberg, J.; Hanes, J.; Lipps, H.J.; Plückthun, A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl. Acad. Sci. USA 2001, 98, 8572–8577. [Google Scholar] [CrossRef]
- Müller, S.; Kumari, S.; Rodriguez, R.; Balasubramanian, S. Small-molecule-mediated G-quadruplex isolation from human cells. Nat. Chem. 2010, 2, 1095–1098. [Google Scholar] [CrossRef]
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer 2021, 20, 40. [Google Scholar] [CrossRef]
- Neidle, S. (Ed.) 9—Design Principles for Quadruplex-binding Small Molecules. In Therapeutic Applications of Quadruplex Nucleic Acids; Academic Press: Boston, MA, USA, 2012; pp. 151–174. [Google Scholar]
- Figueiredo, J.; Mergny, J.-L.; Cruz, C. G-quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci. 2024, 340, 122481. [Google Scholar] [CrossRef] [PubMed]
- Deiana, M.; Chand, K.; Jamroskovic, J.; Das, R.N.; Obi, I.; Chorell, E.; Sabouri, N. A site-specific self-assembled light-up rotor probe for selective recognition and stabilization of c-MYC G-quadruplex DNA. Nanoscale 2020, 12, 12950–12957. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.R.; Varela, C.L.; Pires, A.S.; Tavares-da-Silva, E.J.; Roleira, F.M. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorg. Chem. 2023, 138, 106600. [Google Scholar] [CrossRef] [PubMed]
- Gund, P. Guanidine, trimethylenemethane, and Y-delocalization. Can acyclic compounds have aromatic stability? J. Chem. Educ. 1972, 49, 100. [Google Scholar] [CrossRef]
- Muttathukattil, A.N.; Srinivasan, S.; Halder, A.; Reddy, G. Role of Guanidinium-Carboxylate Ion Interaction in Enzyme Inhibition with Implications for Drug Design. J. Phys. Chem. B 2019, 123, 9302–9311. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.W.; Grayson, D.H.; Rozas, I. Synthesis of Guanidines and Some of Their Biological App.lications. In Guanidines as Reagents and Catalysts I; Selig, P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–51. [Google Scholar]
- Đud, M.; Glasovac, Z.; Margetić, D.; Piantanida, I. Guanidino-aryl derivatives: Protonation and structure tuning for spectrophotometric recognition of ds-DNA and ds-RNA. New J. Chem. 2020, 44, 11537–11545. [Google Scholar] [CrossRef]
- Antol, I.; Glasovac, Z.; Murata, Y.; Hashikawa, Y.; Margetić, D. Consecutive Utilization of Mechanochemical and Microwave Methods for the Synthesis of Boc-2-amino-quinazolin-4(3H)-ones and DFT Study of Mechanism 6π-Diazaelectrocyclization Process. ChemistrySelect 2022, 7, e202200633. [Google Scholar] [CrossRef]
- Shibutani, S.; Gentles, R.G.; Iden, C.R.; Johnson, F. Facile Aerial Oxidation of the DNA-Base Adduct N-(2′-Deoxyguanosin-8-yl)-2-aminofluorene [dG(C8)AF]. J. Am. Chem. Soc. 1990, 112, 5667–5668. [Google Scholar] [CrossRef]
- SathishKumar, C.; Ashraf, A.-F.M.; Al-Abdulaziz, A.A.; Shaban, R.M.S.; Surendra, K.R.; Idhayadhulla, A. Green catalyst Cu(II)-enzyme-mediated eco-friendly synthesis of 2-pyrimidinamines as potential larvicides against Culex quinquefasciatus mosquito and toxicity investigation against non-target aquatic species. Bioorg. Chem. 2021, 109, 104697. [Google Scholar]
- Dardonville, C.; Caine, B.A.; Navarro de la Fuente, M.; Martín Herranz, G.; Corrales Mariblanca, B.; Popelier, P.L.A. Substituent effects on the basicity (pKa) of aryl guanidines and 2-(arylimino)imidazolidines: Correlations of pH-metric and UV-metric values with predictions from gas-phase ab initio bond lengths. New J. Chem. 2017, 41, 11016–11028. [Google Scholar] [CrossRef]
- Cantor, C.R. Techniques for the Study of Biological Structure and Function; Schimmel, P.R., Ed.; W.H. Freeman: San Francisco, CA, USA, 1980; pp. 399–404. [Google Scholar]
- Seeman, N.C.; Rosenberg, J.M.; Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 1976, 73, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Neidle, S. (Ed.) 5—Principles of Small Molecule-DNA Recognition. In Principles of Nucleic Acid Structure; Academic Press: New York, NY, USA, 2008; pp. 132–203. [Google Scholar]
- Neidle, S. DNA minor-groove recognition by small molecules. Nat. Prod. Rep. 2001, 18, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Gentile, M.; Talotta, F.; Tremblay, J.C.; González, L.; Monari, A. The predominant binding mode of Palmatine to DNA. bioRxiv 2024, 613446. [Google Scholar] [CrossRef]
- Mergny, J.L.; Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 2003, 13, 515–537. [Google Scholar] [CrossRef]
- Berman, H.M.; Young, P.R. The Interaction of Intercalating Drugs with Nucleic Acids. Annu. Rev. Biophys. Bioeng. 1981, 10, 87–114. [Google Scholar] [CrossRef]
- Tikhomirova, A.A.; Tcyrulnikov, N.A.; Wilson, R.M. Synthesis, characterization, DNA binding and cleaving properties of photochemically activated phenanthrene dihydrodioxin. J. Photochem. Photobiol. A Chem. 2019, 380, 111803. [Google Scholar] [CrossRef]
- Sarthak, J.; Kritika, L.; Sayali, M.; Venkata, K.R.; Nagula, S. The Syntheses and Medicinal Attributes of Phenanthrenes as Anticancer Agents: A Quinquennial Update. Curr. Med. Chem. 2022, 29, 3530–3556. [Google Scholar] [CrossRef]
- Banks, T.M.; Clay, S.F.; Glover, S.A.; Schumacher, R.R. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: Evidence for naphthalene as a DNA intercalator. Org. Biomol. Chem. 2016, 14, 3699–3714. [Google Scholar] [CrossRef]
- Glover, S.A.; Schumacher, R.R. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation: The role of fluorene and fluorenone substituents as DNA intercalators. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 863–864, 503299. [Google Scholar] [CrossRef]
- Thangaraj, S.E.; Antony, E.J.; Yousuf, S.; Selvakumar, P.M.; Dhanaraj, P.; Enoch, I.V.M.V. Binding interaction of a fluoranthene–thiol on gold nanoparticles with β-cyclodextrin and DNA. J. Exp. Nanosci. 2017, 12, 62–71. [Google Scholar] [CrossRef]
- McGhee, J.D.; von Hippel, P.H. Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 1974, 86, 469–489. [Google Scholar] [CrossRef]
- Scatchard, G. The Attractions of Proteins for Small Molecules and Ions. Ann. N. Y. Acad. Sci. 1949, 51, 660–672. [Google Scholar] [CrossRef]
- Chang, Y.-M.; Chen, C.K.M.; Hou, M.-H. Conformational Changes in DNA upon Ligand Binding Monitored by Circular Dichroism. Int. J. Mol. Sci. 2012, 13, 3394–3413. [Google Scholar] [CrossRef]
- Eriksson, M.; Nordén, B. Linear and circular dichroism of drug-nucleic acid complexes. Methods Enzymol. 2001, 340, 68–98. [Google Scholar] [CrossRef]
- Berova, N.; Nakanishi, K.; Woody, R. Circular Dichroism: Principles and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Rodger, A.; Nordén, B. Circular Dichroism and Linear Dichroism; Oxford University Press: New York, NY, USA, 1997; Volume 1. [Google Scholar]
- Garbett, N.C.; Ragazzon, P.A.; Chaires, J.B. Circular dichroism to determine binding mode and affinity of ligand–DNA interactions. Nat. Protoc. 2007, 2, 3166–3172. [Google Scholar] [CrossRef] [PubMed]
- Šmidlehner, T.; Piantanida, I.; Pescitelli, G. Polarization spectroscopy methods in the determination of interactions of small molecules with nucleic acids—Tutorial. Beilstein J. Org. Chem. 2018, 14, 84–105. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Huang, G.; Mo, C.; Li, J.; Yan, L.; Zhang, Q. Insights into the intercalative binding of benzo[b]fluoranthene with herring sperm DNA in vitro and its app.lication. J. Mol. Liq. 2023, 378, 121628. [Google Scholar] [CrossRef]
- Dumas, L.; Herviou, P.; Dassi, E.; Cammas, A.; Millevoi, S. G-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends Biochem. Sci. 2021, 46, 270–283. [Google Scholar] [CrossRef]
- Wang, Y.; Patel, D.J. Solution structure of the human telomeric repeat d[AGA3(T2AGA3)3] G-tetraplex. Structure 1993, 1, 263–282. [Google Scholar] [CrossRef]
- Wang, P.; Ren, L.; He, H.; Liang, F.; Zhou, X.; Tan, Z. A Phenol Quaternary Ammonium Porphyrin as a Potent Telomerase Inhibitor by Selective Interaction with Quadruplex DNA. ChemBioChem 2006, 7, 1155–1159. [Google Scholar] [CrossRef]
- Bončina, M.; Podlipnik, Č.; Piantanida, I.; Eilmes, J.; Teulade-Fichou, M.-P.; Vesnaver, G.; Lah, J. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes. Nucleic Acids Res. 2015, 43, 10376–10386. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.P.; Wasserman, M. G-Quadruplex ligands: Potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol. Biochem. Parasitol. 2016, 207, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbühler, A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data—I: Mathematical considerations. Talanta 1985, 32, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbühler, A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data—II132, 95: Specfit: Two user-friendly programs in basic and standard fortran 77. Talanta 1985, 32, 257–264. [Google Scholar] [CrossRef]
- Maeder, M.; Zuberbuehler, A.D. Nonlinear least-squares fitting of multivariate absorption data. Anal. Chem. 1990, 62, 2220–2224. [Google Scholar] [CrossRef]
- Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 2008, 130, 6722–6724. [Google Scholar] [CrossRef]
- Ramos, C.I.V.; Almeida, S.P.; Lourenço, L.M.O.; Pereira, P.M.R.; Fernandes, R.; Faustino, M.A.F.; Tomé, J.P.C.; Carvalho, J.; Cruz, C.; Neves, M.G.P.M.S. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules 2019, 24, 733. [Google Scholar] [CrossRef]
- Saczewski, F.; Balewski, Ł. Biological activities of guanidine compounds. Expert Opin. Ther. Pat. 2009, 19, 1417–1448. [Google Scholar] [CrossRef]
- Song, X.-D.; Kong, X.; He, S.-F.; Chen, J.-X.; Sun, J.; Chen, B.-B.; Zhao, J.-W.; Mao, Z.-W. Cyclometalated iridium(III)-guanidinium complexes as mitochondria-targeted anticancer agents. Eur. J. Med. Chem. 2017, 138, 246–254. [Google Scholar] [CrossRef]
- Previtali, V.; Mihigo, H.B.; Amet, R.; McElligott, A.M.; Zisterer, D.M.; Rozas, I. Exploring the Anti-Cancer Mechanism of Novel 3,4′-Substituted Diaryl Guanidinium Derivatives. Pharmaceuticals 2020, 13, 485. [Google Scholar] [CrossRef]
- Chaires, J.B.; Dattagupta, N.; Crothers, D.M. Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: Equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 1982, 21, 3933–3940. [Google Scholar] [CrossRef] [PubMed]
- Bresloff, J.L.; Crothers, D.M. Equilibrium studies of ethidium-polynucleotide interactions. Biochemistry 1981, 20, 3547–3553. [Google Scholar] [CrossRef]
- Chalikian, T.V.; Völker, J.; Plum, G.E.; Breslauer, K.J. A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA 1999, 96, 7853–7858. [Google Scholar] [CrossRef] [PubMed]
- Miljanić, S.; Ratkaj, M.; Matković, M.; Piantanida, I.; Gratteri, P.; Bazzicalupi, C. Assessment of human telomeric G-quadruplex structures using surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2017, 409, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, A.; Chen, D.; Dai, J.; Bialis, T.; Jones, R.A.; Yang, D. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res. 2006, 34, 2723–2735. [Google Scholar] [CrossRef]
- Babinský, M.; Fiala, R.; Kejnovská, I.; Bednářová, K.; Marek, R.; Sagi, J.; Sklenář, V.; Vorlíčková, M. Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. Nucleic Acids Res. 2014, 42, 14031–14041. [Google Scholar] [CrossRef] [PubMed]
- Mickisch, G.; Fajta, S.; Keilhauer, G.; Schlick, E.; Tschada, R.; Alken, P. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol. Res. 1990, 18, 131–136. [Google Scholar] [CrossRef]
- Pernar, M.; Kokan, Z.; Kralj, J.; Glasovac, Z.; Tumir, L.-M.; Piantanida, I.; Eljuga, D.; Turel, I.; Brozovic, A.; Kirin, S.I. Organometallic ruthenium(II)-arene complexes with triphenylphosphine amino acid bioconjugates: Synthesis, characterization and biological properties. Bioorg. Chem. 2019, 87, 432–446. [Google Scholar] [CrossRef]
ΔTm a/°C | |||
---|---|---|---|
ct-DNA | poly rA-poly rU | poly dAdT-poly dAdT | |
GA1 | +1.1 | +1.3 | +0.9 |
GA2 | 0 | +0.9 | 0 |
GA3 | +0.5 | −1.0 | 0 |
GA4 | +1.8 | 0 | 0 |
log Ks a | ||||
---|---|---|---|---|
ct-DNA | poly dAdT-poly dAdT | poly dGdC-poly dGdC | poly rA-poly rU | |
GA1 | 5.56 | 6.27 | 5.34 | 5–6 c |
GA2 | 5.46 | 5–6 c | 5–6 c | 5–6 c |
GA3 | 5–6 c | 5–6 c | d | 4–5 c |
GA4 | 5–6 c | 4.17 | d | d |
Compound | log K1; logK2 b |
---|---|
GA1 | 5.61 ± 0.02 |
GA2 | 5.26 ± 0.13 |
GA3 | 5.78 ± 0.08 |
GA4 | 5.36 ± 0.07 |
PoGU23 | 7.23 ± 0.49; 5.07 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margetić, D.; Jadrijević-Mladar, P.; Brozovic, A.; Tumir, L.-M. Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity. Molecules 2025, 30, 3682. https://doi.org/10.3390/molecules30183682
Margetić D, Jadrijević-Mladar P, Brozovic A, Tumir L-M. Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity. Molecules. 2025; 30(18):3682. https://doi.org/10.3390/molecules30183682
Chicago/Turabian StyleMargetić, Davor, Petra Jadrijević-Mladar, Anamaria Brozovic, and Lidija-Marija Tumir. 2025. "Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity" Molecules 30, no. 18: 3682. https://doi.org/10.3390/molecules30183682
APA StyleMargetić, D., Jadrijević-Mladar, P., Brozovic, A., & Tumir, L.-M. (2025). Guanidino-Aryl Derivatives: Binding to DNA, RNA and G-Quadruplex Structure and Antimetabolic Activity. Molecules, 30(18), 3682. https://doi.org/10.3390/molecules30183682