Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = cationic lipid nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 12094 KiB  
Article
Engineering Lipid–Polymer Nanoparticles for siRNA Delivery to Cancer Cells
by Arthur Manda, Abdulelah Alhazza, Hasan Uludağ and Hamidreza Montazeri Aliabadi
Pharmaceuticals 2025, 18(6), 864; https://doi.org/10.3390/ph18060864 - 10 Jun 2025
Viewed by 901
Abstract
Background: RNA interference (RNAi) is a powerful tool that can target many proteins without the expensive and time-consuming drug development studies. However, due to the challenges in delivering RNA molecules, the potential impact of RNAi approaches is yet to be fully realized [...] Read more.
Background: RNA interference (RNAi) is a powerful tool that can target many proteins without the expensive and time-consuming drug development studies. However, due to the challenges in delivering RNA molecules, the potential impact of RNAi approaches is yet to be fully realized in clinical settings. Lipid nanoparticles (LNPs) have been the most successful delivery system for nucleic acids, but targeted delivery to a solid tumor still eludes the developed LNPs. We hypothesized that specially designed low-molecular-weight PEIs can partially or completely replace the ionizable lipids for more accommodating vehicles due to the structural flexibility offered by polymers, which could lead to safer and more efficient nucleic acid delivery. Methods: To achieve this, we first optimized the LNP formulations as a point of reference for three outcomes: cellular uptake, cytotoxicity, and silencing efficiency. Using a response surface methodology (Design Expert), we optimized siRNA delivery by varying mole fractions of lipid components. Leveraging the optimal LNP formulation, we integrated specifically designed cationic polymers as partial or complete replacements for the ionizable lipid. This methodological approach, incorporating optimal combined designs and response surface methodologies, refined the LPNPs to an optimal efficiency. Results: Our data revealed that DOPE and Dlin-MC3-DMA contributed to higher efficiency in selected breast cancer cells over DSPC and ALC-0315 as neutral and ionizable lipids, respectively, based on the software analysis and direct comparative experiments. Incorporation of selected polymers enhanced the cellular internalization significantly, which in some formulations resulted in higher efficiency. Conclusions: These findings offer a framework for the rational design of LPNPs, that could enhance the passive targeting and silencing efficiency in cancer treatment and broader applications for RNAi-based strategies. Full article
Show Figures

Graphical abstract

21 pages, 4144 KiB  
Article
Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs
by Siyuan Deng, Han Shao, Hongtao Shang, Lingjin Pang, Xiaomeng Chen, Jingyi Cao, Yi Wang and Zhao Zhao
Vaccines 2025, 13(1), 25; https://doi.org/10.3390/vaccines13010025 - 30 Dec 2024
Cited by 1 | Viewed by 1907
Abstract
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, [...] Read more.
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition–fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion–diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. Results: With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2–3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. Conclusions: The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines. Full article
(This article belongs to the Special Issue Biotechnologies Applied in Vaccine Research)
Show Figures

Figure 1

21 pages, 2739 KiB  
Article
Computationally Optimized Hemagglutinin Proteins Adjuvanted with Infectimune® Generate Broadly Protective Antibody Responses in Mice and Ferrets
by James D. Allen, Xiaojian Zhang, Jessica M. Medina, Matthew H. Thomas, Amanda Lynch, Ron Nelson, Julia Aguirre and Ted M. Ross
Vaccines 2024, 12(12), 1364; https://doi.org/10.3390/vaccines12121364 - 2 Dec 2024
Cited by 4 | Viewed by 1772
Abstract
Background/Objectives: Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance [...] Read more.
Background/Objectives: Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance and sequencing, influenza vaccine antigens can now be optimized using computationally derived methodologies and algorithms to enhance their immunogenicity. Methods: Mice and ferrets that had been previously exposed to historical H1N1 and H3N2 influenza viruses were vaccinated intramuscularly with bivalent mixtures of H1 and H3 recombinant hemagglutinin (rHA) proteins, which were generated using a computationally optimized broadly reactive antigen (COBRA) design methodology. The vaccine antigens were mixed with a cationic lipid nanoparticle adjuvant, Infectimune®, which promotes both humoral and cellular immune responses. Results: Mice and ferrets vaccinated with Infectimune® and COBRA rHAs elicited protective antibody titers against panels of H1N1 and H3N2 influenza viruses isolated over the past 10 years. These animals also had antibodies that neutralized numerous modern H1N1 and H3N2 influenza viruses in vitro. When challenged with the A/Victoria/2570/2019 H1N1 influenza virus, the COBRA rHA vaccinated animals had minimal weight loss, and no detectable virus was present in their respiratory tissues on day 3 post-infection. Conclusions: These results demonstrate that COBRA rHA vaccines formulated with Infectimune® elicit protective antibody responses against influenza strains, which were isolated across periods of time when standard-of-care vaccines were frequently reformulated, thus reducing the need to update vaccines on a nearly annual basis. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Figure 1

26 pages, 6769 KiB  
Review
Effect of Lipid Nanoparticle Physico-Chemical Properties and Composition on Their Interaction with the Immune System
by Laura Catenacci, Rachele Rossi, Francesca Sechi, Daniela Buonocore, Milena Sorrenti, Sara Perteghella, Marco Peviani and Maria Cristina Bonferoni
Pharmaceutics 2024, 16(12), 1521; https://doi.org/10.3390/pharmaceutics16121521 - 26 Nov 2024
Cited by 15 | Viewed by 5229
Abstract
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive [...] Read more.
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles. This recognition can trigger the activation of inflammatory pathways and the production of cytokines and chemokines, leading to potential adverse effects such as fever, inflammation, and pain at the injection site. On the other hand, the adaptive immune response to LNPs appears to be primarily directed against the protein encoded by the mRNA cargo, with little evidence of an ongoing adaptive immune response to the components of the LNP itself. Understanding the relationship between LNPs and the immune system is critical for the development of safe and effective nucleic acid-based delivery systems. In fact, targeting the immune system is essential to develop effective vaccines, as well as therapies against cancer or infections. There is a lack of research in the literature that has systematically studied the factors that influence the interaction between LNPs and the immune system and further research is needed to better elucidate the mechanisms underlying the immune response to LNPs. In this review, we discuss LNPs’ composition, physico-chemical properties, such as size, shape, and surface charge, and the protein corona formation which can affect the reactivity of the immune system, thus providing a guide for the research on new formulations that could gain a favorable efficacy/safety profile. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 6119 KiB  
Article
Cationic Lipid Derived from a Basic Amino Acid: Design and Synthesis
by Diana M. Bravo-Estupiñan, Mariela Montaño-Samaniego, Rodrigo A. Mora-Rodríguez and Miguel Ibáñez-Hernández
Appl. Sci. 2024, 14(23), 10892; https://doi.org/10.3390/app142310892 - 25 Nov 2024
Cited by 1 | Viewed by 1441
Abstract
One of the major challenges in gene therapy is the efficient and safe introduction of nucleic acids into eukaryotic cells. This process requires overcoming various biological barriers and navigating complex pathways to reach target cells and achieve their biological function. To address this [...] Read more.
One of the major challenges in gene therapy is the efficient and safe introduction of nucleic acids into eukaryotic cells. This process requires overcoming various biological barriers and navigating complex pathways to reach target cells and achieve their biological function. To address this obstacle, numerous transfection methods have been developed, including physical techniques and the use of genetic vectors, both viral and non-viral. However, to date, no transfection method is 100% safe and efficient. Within the spectrum of non-viral genetic vectors, cationic liposomes formed by cationic lipids stand out for their ability to protect and deliver therapeutic NA. These liposomes offer greater biocompatibility and lower immunogenicity compared to viral vectors, although they still do not match the efficiency of viral delivery systems. Consequently, ongoing research focuses on synthesizing a wide variety of cationic lipids in the search for compounds that provide high transfection efficiency with minimal cytotoxicity. This study aimed to design and synthesize a novel cationic lipid (CholCadLys) derived from natural cellular molecules for transferring genetic material to eukaryotic cells. The lipid was synthesized using cholesteryl chloroformate for the hydrophobic region, cadaverine as a linker, and lysine for the polar region, connected by carbamate and amide bonds, respectively. Identification was confirmed through thin-layer chromatography, purification through preparative chromatography, and characterization via infrared spectroscopy and mass spectrometry. The synthesis yielded a 60% success rate, with stable nanoliposomes averaging 76 nm in diameter. Liposomes were formed using this CL and commercial neutral lipids, characterized by transmission electron microscopy and Nanoparticle Tracking Analysis. These liposomes, combined with plasmid DNA, formed lipoplexes used to transfect Hek-293 FT cells, achieving up to 40% transfection efficiency without cytotoxicity in the mixture of CholCadLys and CholCad. This novel CL demonstrates potential as an efficient, safe, and cost-effective gene transfer system, facilitating further development in gene therapy. Full article
Show Figures

Figure 1

13 pages, 3663 KiB  
Article
Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B
by Brijesh Lohchania, Porkizhi Arjunan, Gokulnath Mahalingam, Abinaya Dandapani, Pankaj Taneja and Srujan Marepally
Pharmaceutics 2024, 16(11), 1427; https://doi.org/10.3390/pharmaceutics16111427 - 9 Nov 2024
Viewed by 1723
Abstract
Background/Objectives: Hemophilia B is a hereditary bleeding disorder due to the production of liver malfunctional factor IX (FIX). Gene therapy with viral vectors offers a cure. However, applications are limited due to pre-existing antibodies, eligibility for children under 12 years [...] Read more.
Background/Objectives: Hemophilia B is a hereditary bleeding disorder due to the production of liver malfunctional factor IX (FIX). Gene therapy with viral vectors offers a cure. However, applications are limited due to pre-existing antibodies, eligibility for children under 12 years of age, hepatotoxicity, and excessive costs. Lipid nanoparticles are a potential alternative owing to their biocompatibility, scalability, and non-immunogenicity. However, their therapeutic applications are still elusive due to the poor transfection efficiencies in delivering plasmid DNA into primary cells and target organs in vivo. To develop efficient liver-targeted lipid nanoparticles, we explored galactosylated lipids to target asialoglycoprotein receptors (ASGPRs) abundantly expressed on hepatocytes. Methods: We developed 12 novel liposomal formulations varying the galactose lipid Gal-LNC 5, cationic lipid MeOH16, DOPE, and cholesterol. We evaluated their physicochemical properties, toxicity profiles, and transfection efficiencies in hepatic cell lines. Among the formulations, Gal-LNC 5 could efficiently transfect the reporter plasmid eGFP in hepatic cell lines and specifically distribute into the liver in vivo. Toward developing functional factor IX, we cloned Padua mutant FIX-L in a CpG-free backbone to enhance the expression and duration. Results: We demonstrated superior expression of FIX with our galactosylated lipid nanoparticle system. Conclusions: The current research presents a specialized lipid nanoparticle system viz. Gal-LNC which is a specialized lipid nanoparticle system for liver-targeted gene therapy in hemophilia B patients that has potential for clinical use. The Gal-LNC successfully delivers a CpG-free Padua FIX gene to liver cells, producing therapeutically relevant levels of FIX protein. Among its benefits are the ideal qualities of stability, targeting the liver specifically, and maximizing efficiency of transfection. Optimization of liver-targeting lipid nanoparticle systems and function FIX plasmids will pave the way for novel lipid nanoparticle-based gene therapy products for hemophilia B and other monogenic liver disorders. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

31 pages, 3958 KiB  
Review
Emerging Cationic Nanovaccines
by Ana Maria Carmona-Ribeiro and Yunys Pérez-Betancourt
Pharmaceutics 2024, 16(11), 1362; https://doi.org/10.3390/pharmaceutics16111362 - 25 Oct 2024
Cited by 1 | Viewed by 2003
Abstract
Cationic vaccines of nanometric sizes can directly perform the delivery of antigen(s) and immunomodulator(s) to dendritic cells in the lymph nodes. The positively charged nanovaccines are taken up by antigen-presenting cells (APCs) of the lymphatic system often originating the cellular immunological defense required [...] Read more.
Cationic vaccines of nanometric sizes can directly perform the delivery of antigen(s) and immunomodulator(s) to dendritic cells in the lymph nodes. The positively charged nanovaccines are taken up by antigen-presenting cells (APCs) of the lymphatic system often originating the cellular immunological defense required to fight intracellular microbial infections and the proliferation of cancers. Cationic molecules imparting the positive charges to nanovaccines exhibit a dose-dependent toxicity which needs to be systematically addressed. Against the coronavirus, mRNA cationic nanovaccines evolved rapidly. Nowadays cationic nanovaccines have been formulated against several infections with the advantage of cationic compounds granting protection of nucleic acids in vivo against biodegradation by nucleases. Up to the threshold concentration of cationic molecules for nanovaccine delivery, cationic nanovaccines perform well eliciting the desired Th 1 improved immune response in the absence of cytotoxicity. A second strategy in the literature involves dilution of cationic components in biocompatible polymeric matrixes. Polymeric nanoparticles incorporating cationic molecules at reduced concentrations for the cationic component often result in an absence of toxic effects. The progress in vaccinology against cancer involves in situ designs for cationic nanovaccines. The lysis of transformed cancer cells releases several tumoral antigens, which in the presence of cationic nanoadjuvants can be systemically presented for the prevention of metastatic cancer. In addition, these local cationic nanovaccines allow immunotherapeutic tumor treatment. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Immunotherapies)
Show Figures

Figure 1

19 pages, 3026 KiB  
Article
Stable Polymer-Lipid Hybrid Nanoparticles Based on mcl-Polyhydroxyalkanoate and Cationic Liposomes for mRNA Delivery
by Sergey M. Shishlyannikov, Ilya N. Zubkov, Vera V. Vysochinskaya, Nina V. Gavrilova, Olga A. Dobrovolskaya, Ekaterina A. Elpaeva, Mikhail A. Maslov and Andrey Vasin
Pharmaceutics 2024, 16(10), 1305; https://doi.org/10.3390/pharmaceutics16101305 - 7 Oct 2024
Cited by 3 | Viewed by 2290
Abstract
Background/Objectives: The development of polymer–lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core–shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in [...] Read more.
Background/Objectives: The development of polymer–lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core–shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs’ preparation. Methods: In this study, we first obtained stable cationic hybrid PLNs using a cationic liposome (CL) composed of a polycationic lipid 2X3 (1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and the hydrophobic polymer mcl-PHA, which was produced by the soil bacterium Pseudomonas helmantisensis P1. Results: The new polymer-lipid carriers effectively encapsulated and delivered model mRNA-eGFP (enhanced green fluorescent protein mRNA) to BHK-21 cells. We then evaluated the role of mcl-PHA in increasing the stability of cationic PLNs in ionic solutions using dynamic light scattering data, electrophoretic mobility, and transmission electron microscopy techniques. Conclusions: The results showed that increasing the concentration of PBS (phosphate buffered saline) led to a decrease in the stability of the CLs. At high concentrations of PBS, the CLs aggregate. In contrast, the presence of isotonic PBS did not result in the aggregation of PLNs, and the particles remained stable for 120 h when stored at +4 °C. The obtained results show that PLNs hold promise for further in vivo studies on nucleic acid delivery. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Figure 1

20 pages, 11717 KiB  
Review
Solid Lipid Nanoparticles, an Alternative for the Treatment of Triple-Negative Breast Cancer
by Monserrat Llaguno-Munive, Maria Ines Vazquez-Lopez and Patricia Garcia-Lopez
Int. J. Mol. Sci. 2024, 25(19), 10712; https://doi.org/10.3390/ijms251910712 - 5 Oct 2024
Cited by 7 | Viewed by 3326
Abstract
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer [...] Read more.
Within the field of nanomedicine, which is revolutionizing cancer treatment, solid lipid nanoparticles (SLNs) have shown advantages over conventional chemotherapy when tested on cancer cells in preclinical studies. SLNs have proven to be an innovative strategy for the treatment of triple-negative breast cancer cells, providing greater efficiency than existing treatments in various studies. The encapsulation of antineoplastic drugs in SLNs has facilitated a sustained, controlled, and targeted release, which enhances therapeutic efficiency and reduces adverse effects. Moreover, the surface of SLNs can be modified to increase efficiency. For instance, the coating of these particles with polyethylene glycol (PEG) decreases their opsonization, resulting in a longer life in the circulatory system. The creation of positively charged cationic SLNs (cSLNs), achieved by the utilization of surfactants or ionic lipids with positively charged structural groups, increases their affinity for cell membranes and plasma proteins. Hyaluronic acid has been added to SLNs so that the distinct pH of tumor cells would stimulate the release of the drug and/or genetic material. The current review summarizes the recent research on SLNs, focusing on the encapsulation and transport of therapeutic agents with a cytotoxic effect on triple-negative breast cancer. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research, 2nd Edition)
Show Figures

Figure 1

22 pages, 3925 KiB  
Article
Chitosan siRNA Nanoparticles Produce Significant Non-Toxic Functional Gene Silencing in Kidney Cortices
by Mohamad-Gabriel Alameh, Ashkan Tavakoli Naeini, Garima Dwivedi, Frederic Lesage, Michael D. Buschmann and Marc Lavertu
Polymers 2024, 16(17), 2547; https://doi.org/10.3390/polym16172547 - 9 Sep 2024
Viewed by 2077
Abstract
Chitosan shows effective nucleic acid delivery. To understand the influence of chitosan’s molecular weight, dose, payload, and hyaluronic acid coating on in vivo toxicity, immune stimulation, biodistribution and efficacy, precisely characterized chitosans were formulated with unmodified or chemically modified siRNA to control for [...] Read more.
Chitosan shows effective nucleic acid delivery. To understand the influence of chitosan’s molecular weight, dose, payload, and hyaluronic acid coating on in vivo toxicity, immune stimulation, biodistribution and efficacy, precisely characterized chitosans were formulated with unmodified or chemically modified siRNA to control for innate immune stimulation. The hemocompatibility, cytokine induction, hematological and serological responses were assessed. Body weight, clinical signs, in vivo biodistribution and functional target knockdown were monitored. Hemolysis was found to be dose- and MW-dependent with the HA coating abrogating hemolysis. Compared to cationic lipid nanoparticles, uncoated and HA-coated chitosan nanoparticles did not induce immune stimulation or hematologic toxicity. Liver and kidney biomarkers remained unchanged with chitosan formulations, while high doses of cationic lipid nanoparticles led to increased transaminase levels and a decrease in body weight. Uncoated and HA-coated nanoparticles accumulated in kidneys with functional knockdown for uncoated chitosan formulations reaching 60%, suggesting potential applications in the treatment of kidney diseases. Full article
Show Figures

Graphical abstract

22 pages, 1254 KiB  
Review
Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems
by Zhongyan Wu, Weilu Sun and Hailong Qi
Vaccines 2024, 12(8), 873; https://doi.org/10.3390/vaccines12080873 - 1 Aug 2024
Cited by 11 | Viewed by 8681
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host’s own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond [...] Read more.
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host’s own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Graphical abstract

21 pages, 3002 KiB  
Article
One-Step Formation Method of Plasmid DNA-Loaded, Extracellular Vesicles-Mimicking Lipid Nanoparticles Based on Nucleic Acids Dilution-Induced Assembly
by Kazuya Okami, Shintaro Fumoto, Mana Yamashita, Moe Nakashima, Hirotaka Miyamoto, Shigeru Kawakami and Koyo Nishida
Cells 2024, 13(14), 1183; https://doi.org/10.3390/cells13141183 - 11 Jul 2024
Cited by 2 | Viewed by 2387
Abstract
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered [...] Read more.
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered upon dilution, requires dispersion in an alcohol phase without precipitation. We then investigated several alcohols and discovered that propylene glycol combined with sodium chloride enabled the dispersion of plasmid DNA and protamine sulfate in the alcohol phase. The streamlined characteristics of the NADIA method enable the preparation of extracellular vesicles-mimicking lipid nanoparticles (ELNPs). Among the mixing methods using a micropipette, a syringe pump, and a microfluidic device, the lattermost was the best for decreasing batch-to-batch differences in size, polydispersity index, and transfection efficiency in HepG2 cells. Although ELNPs possessed negative ζ-potentials and did not have surface antigens, their transfection efficiency was comparable to that of cationic lipoplexes. We observed that lipid raft-mediated endocytosis and macropinocytosis contributed to the transfection of ELNPs. Our strategy may overcome the hurdles linked to supply and quality owing to the low abundance and heterogeneity in cell-based extracellular vesicles production, making it a reliable and scalable method for the pharmaceutical manufacture of such complex formulations. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

20 pages, 2000 KiB  
Article
Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues
by Artem G. Fedorovskiy, Denis N. Antropov, Anton S. Dome, Pavel A. Puchkov, Daria M. Makarova, Maria V. Konopleva, Anastasiya M. Matveeva, Eugenia A. Panova, Elena V. Shmendel, Mikhail A. Maslov, Sergey E. Dmitriev, Grigory A. Stepanov and Oleg V. Markov
Pharmaceutics 2024, 16(5), 684; https://doi.org/10.3390/pharmaceutics16050684 - 19 May 2024
Cited by 2 | Viewed by 4329
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale [...] Read more.
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies. Full article
Show Figures

Figure 1

17 pages, 6173 KiB  
Article
Process Optimization of Scaled-Up Production and Biosafety Evaluation of the Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nano-Vaccine
by Hengye Yang, Yuan Gao, Meijuan Liu, Juan Ma and Qun Lu
J. Funct. Biomater. 2024, 15(5), 127; https://doi.org/10.3390/jfb15050127 - 14 May 2024
Cited by 3 | Viewed by 1689
Abstract
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic [...] Read more.
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic acid) (PLA) and cationic lipid didodecyl-dimethyl-ammonium bromide (DDAB), develop the scale-up process, and evaluate the stability and biosafety of it. The optimum preparation conditions of DDAB/PLA NPs on a small scale were as follows: DDAB amount of 30 mg, aqueous phase volume of 90 mL, stirring rate at 550 rpm, and solidifying time of 12 h. Under the optimum conditions, the size of the NPs was about 170 nm. In scale-up preparation experiments, the vacuum rotary evaporation of 6 h and the Tangential flow ultrafiltration (TFU) method were the optimum conditions. The results suggested that DDAB/PLA NPs exhibited a uniform particle size distribution, with an average size of 150.3 ± 10.4 nm and a narrow polydispersity index (PDI) of 0.090 ± 0.13, coupled with a high antigen loading capacity of 85.4 ± 4.0%. In addition, the DDAB/PLA NPs can be stored stably for 30 days and do not have side effects caused by residual solvents. For biosafety, the acute toxicity experiments showed good tolerance of the vaccine formulation even at a high adjuvant dose. The local irritation experiment demonstrated the reversibility of muscular irritation, and the repeated toxicity experiment revealed no significant necrosis or severe lesions in mice injected with the high-dose vaccine formulation. Overall, the DDAB/PLA NPs exhibit potential for clinical translation as a safe candidate vaccine adjuvant. Full article
(This article belongs to the Special Issue Nanoparticles and Nanocompounds for Cancer Therapy)
Show Figures

Figure 1

20 pages, 3557 KiB  
Article
Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids
by Enrica Chiesa, Alessandro Caimi, Marco Bellotti, Alessia Giglio, Bice Conti, Rossella Dorati, Ferdinando Auricchio and Ida Genta
Pharmaceutics 2024, 16(4), 507; https://doi.org/10.3390/pharmaceutics16040507 - 7 Apr 2024
Cited by 5 | Viewed by 2283
Abstract
Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, [...] Read more.
Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid–fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3–10–20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids). Full article
(This article belongs to the Special Issue Recent Advances in Nanotechnology Therapeutics)
Show Figures

Graphical abstract

Back to TopTop