Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = catamaran unmanned surface vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 20333 KiB  
Article
Computational Fluid Dynamics Prediction of the Sea-Keeping Behavior of High-Speed Unmanned Surface Vehicles Under the Coastal Intersecting Waves
by Xiaobin Hong, Guihong Zheng, Ruimou Cai, Yuanming Chen and Guoquan Xiao
J. Mar. Sci. Eng. 2025, 13(1), 83; https://doi.org/10.3390/jmse13010083 - 5 Jan 2025
Viewed by 1260
Abstract
To better study the sea-keeping response behavior of unmanned surface vehicles (USVs) in coastal intersecting waves, a prediction is conducted using the CFD method in this paper, in which a USV with the shape of a small-scale catamaran and designed target for high-speed [...] Read more.
To better study the sea-keeping response behavior of unmanned surface vehicles (USVs) in coastal intersecting waves, a prediction is conducted using the CFD method in this paper, in which a USV with the shape of a small-scale catamaran and designed target for high-speed navigating is considered. The CFD method is proved to be good enough at ship response prediction and can be utilized in abundant forms of towing experiment simulations, including planar motion mechanism experiments. The regular and irregular wave generation of numerical CFD can also virtualize the actual wave tank work, making it equally scientific but more efficient than the real test. This research regards the changing trend of encounter characteristics of USVs meeting two trains of waves with different inclination angles and wavelengths by monitoring wave profiles, pitch, heave, acceleration, slamming force, and pressure on specific locations of the USV hull. This paper first introduces the modeling method of intersecting waves in a virtual tank and verifies the wave profiles by comparing them with a theoretical solution. Further, the paper focuses on the sea-keeping motion of USVs and analyzes the complicated influences of encounter parameters. Eventually, this paper analyzes the changing pattern of the motion in encounter frequency and investigates the severity during the sea-keeping period through acceleration analysis. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 17721 KiB  
Article
Comparison of Collision Avoidance Algorithms for Unmanned Surface Vehicle Through Free-Running Test: Collision Risk Index, Artificial Potential Field, and Safety Zone
by Jung-Hyeon Kim, Hyun-Jae Jo, Su-Rim Kim, Si-Woong Choi, Jong-Yong Park and Nakwan Kim
J. Mar. Sci. Eng. 2024, 12(12), 2255; https://doi.org/10.3390/jmse12122255 - 9 Dec 2024
Viewed by 1479
Abstract
This paper details the development of a collision avoidance algorithm for unmanned surface vehicles (USVs) and its validation using free-running tests. The USV, designed as a catamaran, incorporates a variety of sensors for its guidance, navigation, and control system. It performs turning maneuvers [...] Read more.
This paper details the development of a collision avoidance algorithm for unmanned surface vehicles (USVs) and its validation using free-running tests. The USV, designed as a catamaran, incorporates a variety of sensors for its guidance, navigation, and control system. It performs turning maneuvers using thrusters positioned on the port and starboard sides. The robot operating system is used to streamline communication, transmitting data such as position, orientation, and situational information from diverse sensors. Using the collision risk index (CRI) method, the algorithm calculates risk based on the distance to obstacles and the angle to the desired waypoint, directing the USV on a path with minimized risk. Noise within the data captured by the two-dimensional light detection and ranging system is filtered out using the k-dimensional tree and Euclidean distance methods, ensuring single obstacles are distinctly identified. To assess the efficacy of the CRI-based collision avoidance algorithm, it was benchmarked against other algorithms rooted in the artificial potential field and safety zone methods within an artificial tank setting. The results highlight the CRI method’s superior time efficiency and optimality in comparison to its counterparts. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles: Navigation, Control and Sensing)
Show Figures

Figure 1

26 pages, 20516 KiB  
Article
Motion Control System for USV Target Point Convergence
by Jian Zhou, Hui Zhang, Kai Liu, Linhan Ma, Yanxia Yang and Zhanchao Fan
Sensors 2024, 24(20), 6589; https://doi.org/10.3390/s24206589 - 12 Oct 2024
Cited by 1 | Viewed by 1383
Abstract
The goal of this paper is to establish a motion control system for unmanned surface vehicles (USVs) that enables point-to-point tracking and dynamic positioning. This includes the heading control and path following control of USVs. A hardware and software platform for USVs using [...] Read more.
The goal of this paper is to establish a motion control system for unmanned surface vehicles (USVs) that enables point-to-point tracking and dynamic positioning. This includes the heading control and path following control of USVs. A hardware and software platform for USVs using microcontrollers is designed. This paper presents the construction of a kinematics and dynamics model for an unmanned catamaran. The motion process is divided into two segments. In the target point tracking segment, the heading coordinate system and the ship coordinate system are established. Based on these, a control method using differential steering to track the desired yaw angle is designed to improve the tracking efficiency. And the accuracy of heading keeping and path following is improved by combining the cascade PID controller. In the dynamic positioning segment, a self-adjusting mechanism is designed, thereby enhancing the flexibility of thrust distribution and improving the accuracy of the USV’s positioning retention in wind and wave environments. Finally, experimental validation is carried out to verify the effectiveness of the design proposed in this paper by issuing control commands and saving the return data through the upper computer, and then analyzing the return data with MATLAB (R2022b, MathWorks, Natick, MA, USA). Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

19 pages, 3733 KiB  
Article
CORAL—Catamaran for Underwater Exploration: Development of a Multipurpose Unmanned Surface Vessel for Environmental Studies
by Luca Cocchi, Filippo Muccini, Marina Locritani, Leonardo Spinelli and Michele Cocco
Sensors 2024, 24(14), 4544; https://doi.org/10.3390/s24144544 - 13 Jul 2024
Viewed by 4075
Abstract
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely [...] Read more.
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely autonomous, semi-autonomous, or remotely assisted by the operator, thus accommodating various investigative scenarios. CORAL is characterized by compact dimensions, a very low draft and a total electric propulsion system. The vehicle is equipped with a single echo-sounder, a 450 kHz Side Scan Sonar, an Inertial Navigation System assisted by a GPS receiver and a pair of high-definition cameras for recording both above and below the water surface. Here, we present results from two investigations: the first conducted in the tourist harbour in Pozzuoli Gulf and the second in the Riomaggiore-Manarola marine area within the Cinque Terre territory (Italy). Both surveys yielded promising results regarding the potentiality of CORAL to collect fine-scale submarine elements such as anthropic objects, sedimentary features, and seagrass meadow spots. These capabilities characterize the CORAL system as a highly efficient investigation tool for depicting shallow bedforms, reconstructing coastal dynamics and erosion processes and monitoring the evolution of biological habitats. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

25 pages, 21008 KiB  
Article
Hydrodynamic Performance of a Catamaran in Shallow Waters
by Kayhan Ulgen and Manhar R. Dhanak
J. Mar. Sci. Eng. 2022, 10(9), 1169; https://doi.org/10.3390/jmse10091169 - 23 Aug 2022
Cited by 8 | Viewed by 3023
Abstract
The effects of limited water depth on the hydrodynamic performance of a catamaran with the full-scale dimensions and geometry of a WAM-V 16 unmanned surface vehicle operating in shallow waters are investigated using an incompressible URANS-VOF solver in OpenFOAM®. Simulations of [...] Read more.
The effects of limited water depth on the hydrodynamic performance of a catamaran with the full-scale dimensions and geometry of a WAM-V 16 unmanned surface vehicle operating in shallow waters are investigated using an incompressible URANS-VOF solver in OpenFOAM®. Simulations of the flow associated with the passage of the catamaran in shallow waters have been conducted for a range of vehicle speed and several shallow to intermediate water depths under free trim and sinkage conditions. The effects of water depth on the resistance and the dynamic motion of the catamaran are characterized. The total resistance coefficient of the catamaran is shown to increase by as much as over 40% at transcritical Froude numbers, close to the critical depth-dependent Froude number (Frh=1.0). The wave system associated with the flow is examined and its relationship to observed impacts on resistance, trim and sinkage are discussed. The effect of limited water depth on Kelvin’s wake angle is characterized in terms of both length and depth Froude numbers and is shown to be in good agreement with theory. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 8636 KiB  
Article
Algorithm of Berthing and Maneuvering for Catamaran Unmanned Surface Vehicle Based on Ship Maneuverability
by Gongxing Wu, Mingyuan Zhao, Yu Cong, ZhiWen Hu and Guofu Li
J. Mar. Sci. Eng. 2021, 9(3), 289; https://doi.org/10.3390/jmse9030289 - 6 Mar 2021
Cited by 13 | Viewed by 4062
Abstract
In the complex port environment, ship berthing manipulation is one of the most difficult operations. In this study, an algorithm of berthing and maneuvering was designed for a catamaran unmanned surface vehicle (USV), which is used for port patrol and protection. Considering the [...] Read more.
In the complex port environment, ship berthing manipulation is one of the most difficult operations. In this study, an algorithm of berthing and maneuvering was designed for a catamaran unmanned surface vehicle (USV), which is used for port patrol and protection. Considering the influence of wind, waves, and currents, the mathematical model of the maneuvering movement for the twin-hull and twin-propeller USV was established. Based on the Visual Studio development platform, the USV’s berthing manipulation simulation software was designed. Through the turning simulation experiment of the catamaran USV under different differential rotation speeds of the twin propellers, the relationship between the ship’s turning radius and the propeller speed difference was obtained. A simulation experiment of decelerating and stopping ships at different speeds was carried out, which can provide a reference for speed control when berthing. A berthing maneuvering algorithm based on ship maneuverability was proposed. USV’s berthing algorithm includes three stages: approach process, turning process, and berthing process. In the approach process, the appropriate approach speed was select according to the rotation angle. In the turning process, the right and left propeller speed differences were select. In the berthing process, the berthing speed was controlled according to the berthing distance. In the port environment, a berthing simulation experiment for catamaran USV was carried out. The simulation results show that based on the berthing and maneuvering algorithm, the efficiency and safety of catamaran USV berthing can be improved. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 13332 KiB  
Article
Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle
by Hyunjoon Cho, Sang-Ki Jeong, Dae-Hyeong Ji, Ngoc-Huy Tran, Mai The Vu and Hyeung-Sik Choi
Sensors 2020, 20(9), 2633; https://doi.org/10.3390/s20092633 - 5 May 2020
Cited by 44 | Viewed by 10345
Abstract
In this paper, in order to overcome certain limitations of previously commercialized platforms, a new integrated unmanned surface vehicle (USV) and unmanned underwater vehicle (UUV) platform connected via underwater cable capable of acquiring real-time underwater data and long-time operation are studied. A catamaran-type [...] Read more.
In this paper, in order to overcome certain limitations of previously commercialized platforms, a new integrated unmanned surface vehicle (USV) and unmanned underwater vehicle (UUV) platform connected via underwater cable capable of acquiring real-time underwater data and long-time operation are studied. A catamaran-type USV was designed to overcome the limitations of an ocean environment and to play the role as the hub of power supply and communication for the integrated platform. Meanwhile, the UUV was designed as torpedo-shaped to minimize hydrodynamic resistance and its hardware design was focused on processing and sending the underwater camera and sonar data. The underwater cable driven by a winch system was installed to supply power from the USV to the UUV and to transmit acquired data form underwater sonar sensor or camera. Different from other previously studied cooperation system of USVs and autonomous underwater vehicles (AUVs), the merit of the proposed system is real-time motion coordination control between the USV and UUV while transmitting large amount of data using the tether cable. The main focus of the study is coordination of the UUV with respect to the global positioning system (GPS) attached at USV and verification of its performance throughout field tests. Waypoint tracking control algorithm was designed and implemented on USV and relative heading, distance control for USV–UUV coordination was implemented to UUV. To ensure the integrity of the coordination control of the integrated platform, a study on accurate measurement system of the relative position between the USV and the UUV by using the GPS and the ultrashort baseline (USBL) device was performed. Individual tests were conducted to verify the performance of USBL and AHRS, which provide the position and heading data of UUV among the sensors mounted on the actual platform, and the effectiveness of the obtained sensor data is presented. Using the accurate measurement system, a number of field tests were conducted to verify the performance of the integrated platform. Full article
(This article belongs to the Special Issue Autonomous Underwater Vehicle Navigation)
Show Figures

Figure 1

11 pages, 8705 KiB  
Article
Design and Verification of Heading and Velocity Coupled Nonlinear Controller for Unmanned Surface Vehicle
by Jiucai Jin, Jie Zhang and Deqing Liu
Sensors 2018, 18(10), 3427; https://doi.org/10.3390/s18103427 - 12 Oct 2018
Cited by 23 | Viewed by 3163
Abstract
Unmanned Surface Vehicle (USV) is a novel multifunctional platform for ocean observation, and its heading and velocity control are essential and important for autonomous operation. A coupled heading and velocity controller is designed using backstepping technology for an USV called ‘USBV’ (Unmanned Surface [...] Read more.
Unmanned Surface Vehicle (USV) is a novel multifunctional platform for ocean observation, and its heading and velocity control are essential and important for autonomous operation. A coupled heading and velocity controller is designed using backstepping technology for an USV called ‘USBV’ (Unmanned Surface Bathymetry Vehicle). The USBV is an underactuated catamaran, where the heading and velocity are controlled together by two thrusters at the stern. The three degrees-of-freedom equations are used for USBV’s modeling, which is identified using experiment data. The identified model, with two inputs, induces heading and velocity tracking, which are coupled. Based on the model, a nonlinear controller for heading and velocity are acquired using backstepping technology. The stability of the controller is proved by Lyapunov theory under some assumptions. The verification is presented by lake and sea experiments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop