Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = carrier center frequency error

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10504 KiB  
Article
Experimental Validation of a GNSS Receiver Antenna Absolute Field Calibration System
by Antonio Tupek, Mladen Zrinjski, Krunoslav Špoljar and Karlo Stipetić
Remote Sens. 2025, 17(1), 64; https://doi.org/10.3390/rs17010064 - 27 Dec 2024
Viewed by 828
Abstract
Carrier-phase measurements are essential in precise Global Navigation Satellite System (GNSS) positioning applications. The quality of those observations, as well as the final positioning result, is influenced by an extensive list of GNSS error sources, one of which is the receiver antenna phase [...] Read more.
Carrier-phase measurements are essential in precise Global Navigation Satellite System (GNSS) positioning applications. The quality of those observations, as well as the final positioning result, is influenced by an extensive list of GNSS error sources, one of which is the receiver antenna phase center (PC) model. It has been well established that the antenna PC exhibits variability depending on the frequency, direction, and intensity of the incoming GNSS signal. To mitigate the corresponding range errors, phase center corrections (PCCs) are determined through a specialized procedure known as receiver antenna calibration and subsequently applied in data processing. In 2023, the Laboratory for Measurements and Measuring Technique (LMMT) of the Faculty of Geodesy, University of Zagreb, Croatia, initiated the development of a new robotic GNSS receiver antenna calibration system. The system implements absolute field calibration and PCC modeling through triple-difference (TD) carrier-phase observations and spherical harmonics (SH) expansion. This study presents and documents dual-frequency (L1 and L2) Global Positioning System (GPS) calibration results for several distinct receiver antennas. Furthermore, the main goals of this contribution are to evaluate the accuracy of dual-frequency GPS calibration results on the pattern level with respect to independent calibrations obtained from Geo++ GmbH and to extensively experimentally validate LMMT calibration results in the spatial (coordinate) domain, i.e., to investigate how the application of LMMT PPC models reflects on geodetic-grade GNSS positioning. Our experimental research results showed a submillimeter calibration accuracy, i.e., 0.36 mm for GPS L1 and 0.54 mm for the GPS L2 frequency. Furthermore, our field results confirmed that the application of LMMT PCC models significantly increases baseline accuracy and GNSS network solution accuracy when compared to type-mean PCC models of the International GNSS Service (IGS). Full article
Show Figures

Figure 1

17 pages, 10751 KiB  
Article
Research on Frequency Discrimination Method Using Multiplicative-Integral and Linear Transformation Network
by Pengcheng Wang, Sen Yan and Xiuhua Li
Electronics 2024, 13(9), 1742; https://doi.org/10.3390/electronics13091742 - 1 May 2024
Viewed by 1587
Abstract
In this paper, a frequency discrimination method using a multiplicative-integral and linear transformation network is proposed. In this method, two preset differential frequency signals and frequency modulation signals are transformed by multiplication and integration, and then the instantaneous frequency parameters of the frequency [...] Read more.
In this paper, a frequency discrimination method using a multiplicative-integral and linear transformation network is proposed. In this method, two preset differential frequency signals and frequency modulation signals are transformed by multiplication and integration, and then the instantaneous frequency parameters of the frequency modulation signal are accurately analyzed by the linear transformation network to restore the original modulation signal. Compared with the phase discriminator, the simulation results show that this method has a higher frequency discrimination bandwidth. In addition, this method has better anti-noise performance, and the frequency discrimination distortion caused by noise with a different Signal-to-Noise Ratio is reduced by 33.80% on average compared with the phase discriminator. What is more, the carrier center frequency error has little influence on the frequency discrimination quality of this method, which solves the problem that most common frequency discriminators are seriously affected by the carrier center frequency error. This method requires a low accuracy of carrier center frequency, which makes it extremely suitable for digital frequency discrimination technology and can meet the needs of various frequency discrimination occasions. Full article
Show Figures

Figure 1

14 pages, 534 KiB  
Article
Newborn Screening for Inborn Errors of Metabolism by Next-Generation Sequencing Combined with Tandem Mass Spectrometry
by Chengfang Tang, Lixin Li, Ting Chen, Yulin Li, Bo Zhu, Yinhong Zhang, Yifan Yin, Xiulian Liu, Cidan Huang, Jingkun Miao, Baosheng Zhu, Xiaohua Wang, Hui Zou, Lianshu Han, Jizhen Feng and Yonglan Huang
Int. J. Neonatal Screen. 2024, 10(2), 28; https://doi.org/10.3390/ijns10020028 - 29 Mar 2024
Cited by 2 | Viewed by 3272
Abstract
The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from [...] Read more.
The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses. Full article
Show Figures

Figure 1

20 pages, 1243 KiB  
Article
A Secure Optical Body Area Network Based on Free Space Optics and Time-Delayed 2D-Spectral/Spatial Optical CDMA
by Firdos Kanwal, Khurram Karim Qureshi, Waqas A. Imtiaz, Anwar Ul Haq and Jawad Mirza
Appl. Sci. 2023, 13(16), 9347; https://doi.org/10.3390/app13169347 - 17 Aug 2023
Cited by 7 | Viewed by 1526
Abstract
Free space optics (FSO)-based optical body area networks (OBANs) are receiving massive attention as an opportunity to address the limitations of their radio frequency (RF)-based counterparts. This boom in research interests is primarily due to multitude of benefits, including high capacity, immunity to [...] Read more.
Free space optics (FSO)-based optical body area networks (OBANs) are receiving massive attention as an opportunity to address the limitations of their radio frequency (RF)-based counterparts. This boom in research interests is primarily due to multitude of benefits, including high capacity, immunity to electromagnetic interference (EMI), rapid installation, cost efficiency, and license-free use of spectrum. Securing the transmission of patient health data against interception in OBANs using insecure FSO channels is a challenging task. Therefore, we propose a low-cost, flexible, and secure OBAN based on FSO technology and a time-delayed two dimensional (2D) spectral/spatial optical code-division multiple access (OCDMA) system. The proposed architecture consists of eight sensors attached to the bodies of patients. The sensors operate at a rate of 50 kbps. Electrical data generated from each sensor are used to modulate an optical carrier and then encoded using 2D-spectral/spatial double weight–zero cross correlation (DW-ZCC) code. The 2D encoded optical signals are then time delayed to eliminate the multiple parallel FSO channels between the transmitter and medical center. The combined optical signal consists of eight 2D-encoded time-delayed optical signals transmitted towards a remote medical center over an FSO channel with a range of 1 km. The received signal is decoded and the data from each sensor are recovered after photodetection at the medical center for further analysis. The overall performance of the sensors is analyzed using bit-error rate (BER) and quality factor (Q-factor) plots for different weather conditions and lengths of the FSO channel, considering the log-normal channel model. The capital expenditure (CAPEX) of the proposed architecture is analyzed and compared with the conventional 2D-spectral/spatial FSO system to determine the overall impact of introducing time delay units on the cost of implementation. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

25 pages, 6498 KiB  
Article
Carrier Characteristic Bias Estimation between GNSS Signals and Its Calibration in High-Precision Joint Positioning
by Yao Guo, Yongnan Rao, Xue Wang, Decai Zou, Huihui Shi and Ning Ji
Remote Sens. 2023, 15(4), 1051; https://doi.org/10.3390/rs15041051 - 15 Feb 2023
Viewed by 2137
Abstract
A distinctive feature of modern Global Navigation Satellite System (GNSS) signals is that they transmit multiple signal components at the same carrier frequencies. The idea of joints across the signal channels from the same carrier frequency and even across different frequencies has been [...] Read more.
A distinctive feature of modern Global Navigation Satellite System (GNSS) signals is that they transmit multiple signal components at the same carrier frequencies. The idea of joints across the signal channels from the same carrier frequency and even across different frequencies has been presented in many studies for tracking purposes. Carrier joint tracking is required on the premise that the frequency and phase relationship between signals are nominal values, and the bias of carrier characteristics between signals is drowned in noise as the signal reaches the ground, which requires high-gain receiving equipment to restore the original signal. The space signal-quality monitoring and evaluation system built by the National Timing Center of the Chinese Academy of Sciences is based on a 40 m dish antenna, which can automatically track a single satellite and achieve a high-fidelity reception of navigation signals to a certain extent, realizing fine signal quality monitoring (SQM) of GNSS satellites. Based on this platform, we discuss four types of time distributions of the combined signals among different signal components and provide a method to estimate the carrier characteristic bias between GNSS signals. We derived the correction method of carrier characteristic bias in the joint reception by the joint tracking mathematical model. Under the conditions of narrow correlation and unobstructed case, the carrier characteristic deviation does not vary significantly with the correlator interval and the satellite elevation angle. Based on the results of stability analysis, it is recommended that the receivers should update the carrier frequency bias correction number of the intra-frequency signal and carrier phase bias correction number of the intra-frequency signal monthly. The carrier phase deviation correction number of the inter-frequency signal is performed daily. The measured data from satellites show that the phase accumulation error of the joint tracking carrier loop can be eliminated to achieve long-term stable tracking after frequency bias correction. After the carrier phase bias correction, the joint positioning accuracy of the B2a and B2b signals was improved by 0.81%, and those of the B1C, L1C, E1C, and B2a signals were improved by 0.35%, 0.04%, 0.20%, and 0.11%, respectively. The positioning accuracy improvement effect of inter-frequency signals was greater than that of intra-frequency signals after carrier phase correction. Full article
(This article belongs to the Special Issue Advancement of GNSS Signal Processing and Navigation)
Show Figures

Figure 1

21 pages, 12906 KiB  
Article
Coastal High-Temporal Sea-Surface Altimetry Using the Posterior Error Estimations of Ionosphere-Free PPP and Information Fusion for Multi-GNSS Retrievals
by Wei Zhou, Shaofeng Bian, Yi Liu, Liangke Huang, Lilong Liu, Cheng Chen, Houpu Li and Guojun Zhai
Remote Sens. 2022, 14(21), 5599; https://doi.org/10.3390/rs14215599 - 6 Nov 2022
Cited by 3 | Viewed by 2010
Abstract
Ocean tidal variation is a key parameter for ensuring coastal safety, monitoring marine climate, and maintaining elevation datum. Recently, the ground-based global navigation satellite system reflectometry (GNSS-R) technique has been applied for regional tidal measurements, which is somewhat restricted in terms of temporal [...] Read more.
Ocean tidal variation is a key parameter for ensuring coastal safety, monitoring marine climate, and maintaining elevation datum. Recently, the ground-based global navigation satellite system reflectometry (GNSS-R) technique has been applied for regional tidal measurements, which is somewhat restricted in terms of temporal and spatial resolutions. A convenient method to improve temporal resolution of measurements is to combine multi-GNSS observations. This paper proposes a new sea-surface altimetry method using the posterior errors (PE) of dual-frequency carrier-phase signals derived from the ionosphere-free Precise Point Positioning (IF-PPP). Considering that the number of initial retrievals is obviously unsuitable for minute-level tidal measurements, both the time sliding window based on the Lomb–Scargle periodogram and a weighted cubic spline smoothing function are significant processing steps for estimating the reflector heights between the sea surface and antenna center. Measurements from two coastal GNSS stations with different tidal amplitudes are used to test the proposed method and compare it with the tide gauge and the signal-to-noise ratio (SNR) methods, respectively. The experimental results show that the multi-GNSS PE combination method can be used to estimate a minute-level sea level time series, and its root-mean-squared errors (RMSE) are about 12.5 cm. In terms of correlation, for all results, the corresponding coefficients exceed 0.97. Moreover, this combined PE method demonstrates a significant advantage in increasing temporal resolution, which is beneficial for application on high-frequency sea-level monitoring. Full article
Show Figures

Figure 1

14 pages, 3892 KiB  
Article
A Bit-Interleaved Sigma-Delta-Over-Fiber Fronthaul Network for Frequency-Synchronous Distributed Antenna Systems
by Chia-Yi Wu, Haolin Li, Joris Van Kerrebrouck, Caro Meysmans, Piet Demeester and Guy Torfs
Appl. Sci. 2021, 11(23), 11471; https://doi.org/10.3390/app112311471 - 3 Dec 2021
Cited by 5 | Viewed by 2642
Abstract
Cell-free massive multiple-input multiple-output (MIMO) has attracted wide attention as wireless spectral efficiency has become a 6G key performance indicator. The distributed scheme improves the spectral efficiency and user fairness, but the fronthaul network must evolve to enable it. This work demonstrates a [...] Read more.
Cell-free massive multiple-input multiple-output (MIMO) has attracted wide attention as wireless spectral efficiency has become a 6G key performance indicator. The distributed scheme improves the spectral efficiency and user fairness, but the fronthaul network must evolve to enable it. This work demonstrates a fronthaul network for distributed antenna systems enabled by the bit-interleaved sigma-delta-over-fiber (BISDoF) concept: multiple sigma-delta modulated baseband signals are time-interleaved into one non-return-to-zero (NRZ) signal, which is converted to the optical domain by a commercial QSFP and transmitted over fiber. The BISDoF concept improves the optical bit-rate efficiency while keeping the remote unit complexity sufficiently low. The implementation successfully deals with an essential challenge—precise frequency synchronization of different remote units. Moreover, owing to the straightforward data paths, all transceivers inherently transmit or receive with fixed timing offsets which can be easily calibrated. The error vector magnitudes of both the downlink and uplink data paths are less than 2.8% (–31 dB) when transmitting 40.96 MHz-bandwidth OFDM signals (256-QAM) centered around 3.6 GHz. (Optical path: 100 m multi-mode fibers; wireless path: electrical back-to-back.) Without providing an extra reference clock, the two remote units were observed to have the same carrier frequency; the standard deviation of the relative jitter was 9.43 ps. Full article
(This article belongs to the Special Issue 5G and Beyond Fiber-Wireless Network Communications)
Show Figures

Figure 1

11 pages, 4456 KiB  
Article
Analysis of FBMC Waveform for 5G Network Based Smart Hospitals
by Balamurali Ramakrishnan, Arun Kumar, Sumit Chakravarty, Mehedi Masud and Mohammed Baz
Appl. Sci. 2021, 11(19), 8895; https://doi.org/10.3390/app11198895 - 24 Sep 2021
Cited by 32 | Viewed by 3233
Abstract
Nowadays, many prevalent frameworks for medical care have been projected, studied, and implemented. The load and challenges of traditional hospitals are increasing daily, leading to inefficient service in the health system. Smart hospitals based on advanced techniques play a crucial part in advancing [...] Read more.
Nowadays, many prevalent frameworks for medical care have been projected, studied, and implemented. The load and challenges of traditional hospitals are increasing daily, leading to inefficient service in the health system. Smart hospitals based on advanced techniques play a crucial part in advancing the health services of rural people. It spares the time and money involved in travel, and patient medical reports can be shared instantly with the experts regardless of geographical constraints. Currently, the role of technology in hospitals is limited due to various restrictions, such as the obtainability of a high spectrum, low latency, and high-speed network. In this paper, we focused on the implementation of an advanced waveform with high spectral performance. Filer Bank Multi-Carrier (FBMC) is considered a strong contender for the upcoming 5G-centered smart hospitals due to its high data rate, no leakage of the spectrum, and less sensitivity to frequency error. In addition, a comparison of the spectral utilization of orthogonal frequency division multiplexing (OFDM) and FBMC in terms of bit error rate (BER), peak power (PP), power spectral density (PSD), noise-PSD, capacity and magnitude, and phase response is illustrated. Numerical results show that the FBMC achieved a throughput gain of 1 dB and its spectral performance is better than the OFDM; hence, it is a better choice for the proposed application compared to the current standard OFDM. Full article
(This article belongs to the Special Issue Edge Intelligence for beyond 5G Networks)
Show Figures

Figure 1

15 pages, 5080 KiB  
Article
Impact of Attitude Model, Phase Wind-Up and Phase Center Variation on Precise Orbit and Clock Offset Determination of GRACE-FO and CentiSpace-1
by Junjun Yuan, Shanshi Zhou, Xiaogong Hu, Long Yang, Jianfeng Cao, Kai Li and Min Liao
Remote Sens. 2021, 13(13), 2636; https://doi.org/10.3390/rs13132636 - 5 Jul 2021
Cited by 15 | Viewed by 3588
Abstract
Currently, low Earth orbit (LEO) satellites are attracting great attention in the navigation enhancement field because of their stronger navigation signal and faster elevation variation than medium Earth orbit (MEO) satellites. To meet the need for real-time and precise positioning, navigation and timing [...] Read more.
Currently, low Earth orbit (LEO) satellites are attracting great attention in the navigation enhancement field because of their stronger navigation signal and faster elevation variation than medium Earth orbit (MEO) satellites. To meet the need for real-time and precise positioning, navigation and timing (PNT) services, the first and most difficult task is correcting errors in the process of precise LEO orbit and clock offset determination as much as possible. Launched in 29 September 2018, the CentiSpace-1 (CS01) satellite is the first experimental satellite of LEO-based navigation enhancement system constellations developed by Beijing Future Navigation Technology Co. Ltd. To analyze the impact of the attitude model, carrier phase wind-up (PWU) and phase center variation (PCV) on precise LEO orbit and clock offset in an LEO-based navigation system that needs extremely high precision, we not only select the CS01 satellite as a testing spacecraft, but also the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO). First, the dual-frequency global positioning system (GPS) data are collected and the data quality is assessed by analyzing the performance of tracking GPS satellites, multipath errors and signal to noise ratio (SNR) variation. The analysis results show that the data quality of GRACE-FO is slightly better than CS01. With residual analysis and overlapping comparison, a further orbit quality improvement is possible when we further correct the errors of the attitude model, PWU and PCV in this paper. The final three-dimensional (3D) root mean square (RMS) of the overlapping orbit for GRACE-FO and CS01 is 2.08 cm and 1.72 cm, respectively. Meanwhile, errors of the attitude model, PWU and PCV can be absorbed partly in the clock offset and these errors can generate one nonnegligible effect, which can reach 0.02~0.05 ns. The experiment results indicate that processing the errors of the attitude model, PWU and PCV carefully can improve the consistency of precise LEO orbit and clock offset and raise the performance of an LEO-based navigation enhancement system. Full article
Show Figures

Graphical abstract

27 pages, 8516 KiB  
Article
Multiple Narrowband Interferences Characterization, Detection and Mitigation Using Simplified Welch Algorithm and Notch Filtering
by Mohammad Hossein Same, Gabriel Gleeton, Gabriel Gandubert, Preslav Ivanov and Rene Jr Landry
Appl. Sci. 2021, 11(3), 1331; https://doi.org/10.3390/app11031331 - 2 Feb 2021
Cited by 12 | Viewed by 3620
Abstract
By increasing the demand for radio frequency (RF) and access of hackers and spoofers to low price hardware and software defined radios (SDR), radio frequency interference (RFI) became a more frequent and serious problem. In order to increase the security of satellite communication [...] Read more.
By increasing the demand for radio frequency (RF) and access of hackers and spoofers to low price hardware and software defined radios (SDR), radio frequency interference (RFI) became a more frequent and serious problem. In order to increase the security of satellite communication (Satcom) and guarantee the quality of service (QoS) of end users, it is crucial to detect the RFI in the desired bandwidth and protect the receiver with a proper mitigation mechanism. Digital narrowband signals are so sensitive into the interference and because of their special power spectrum shape, it is hard to detect and eliminate the RFI from their bandwidth. Thus, a proper detector requires a high precision and smooth estimation of input signal power spectral density (PSD). By utilizing the presented power spectrum by the simplified Welch method, this article proposes a solid and effective algorithm that can find all necessary interference parameters in the frequency domain while targeting practical implantation for the embedded system with minimum complexity. The proposed detector can detect several multi narrowband interferences and estimate their center frequency, bandwidth, power, start, and end of each interference individually. To remove multiple interferences, a chain of several infinite impulse response (IIR) notch filters with multiplexers is proposed. To minimize damage to the original signal, the bandwidth of each notch is adjusted in a way that maximizes the received signal to noise ratio (SNR) by the receiver. Multiple carrier wave interferences (MCWI) is utilized as a jamming attack to the Digital Video Broadcasting-Satellite-Second Generation (DVB-S2) receiver and performance of a new detector and mitigation system is investigated and validated in both simulation and practical tests. Based on the obtained results, the proposed detector can detect a weak power interference down to −25 dB and track a hopping frequency interference with center frequency variation speed up to 3 kHz. Bit error ratio (BER) performance shows 3 dB improvement by utilizing new adaptive mitigation scenario compared to non-adaptive one. Finally, the protected DVB-S2 can receive the data with SNR close to the normal situation while it is under the attack of the MCWI jammer. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 4363 KiB  
Article
Research of Eliminating the Day-Boundary Discontinuities in GNSS Carrier Phase Time Transfer through Network Processing
by Xiangbo Zhang, Ji Guo, Yonghui Hu, Dangli Zhao and Zaimin He
Sensors 2020, 20(9), 2622; https://doi.org/10.3390/s20092622 - 4 May 2020
Cited by 9 | Viewed by 2746
Abstract
Time and frequency transfer through global navigation satellite system (GNSS) precise point positioning (PPP) based on carrier-phase measurements has been widely used for clock comparisons in national timing laboratories. However, the time jumps up to one nanosecond at the day boundary epochs of [...] Read more.
Time and frequency transfer through global navigation satellite system (GNSS) precise point positioning (PPP) based on carrier-phase measurements has been widely used for clock comparisons in national timing laboratories. However, the time jumps up to one nanosecond at the day boundary epochs of adjacent daily batches lead to discontinuities in the time transfer results. Therefore, it is a major obstacle to achieve continuous carrier phase time transfer. The day-boundary discontinuities have been studied for many years, and they are believed to be caused by the long-term pseudorange noise during estimation of the clock offset in the daily batches and are nearly in accordance with a Gaussian curve. Several methods of eliminating the day-boundary discontinuity were proposed during the past fifteen years, such as shift and overlapping, longer batch processing, clock handover, and ambiguity stacking. Some errors and new noise limit the use of such methods in the long-term clock stability comparison. One of the effective methods is phase ambiguity fixing resolution in zero-differenced PPP, which is based on the precise products of wide-lane satellite bias (WSB) provided by the new international GNSS Service (IGS) Analysis Center of Centre National d’Etudes Spatiales (CNES) and Collecte Localisation Satellites (CLS). However, it is not suitable for new GNSS, such as the Beidou Satellite System (BDS), GALILEO, and QZSS. For overcoming the drawbacks above, Multi-GNSS Experiment (MGEX) observation data of 10 whole days from MJD 58624 to 58633have been network processed by batch least square resolution. These observations come from several ground receivers located in different national timing laboratories. Code and carrier phase ionosphere-free measurements of GPS and BDS satellites are used, and the time transfer results from network processing are compared with PPP results provided by Bureau International des Poids et Mesures (BIPM) and used for international atomic time (TAI) computation (TAIPPP) and universal time coordination (UTC). It is shown that the time offsets of three different time links are almost continuous and the day-boundary discontinuities are sharply eliminated by network processing, although a little extent of day-boundary discontinuities still exist in the results of UTC(USNO)-UTC(PTB). The accuracy of time transfer has been significantly improved, and the frequency stability of UTC(NTSC)-UTC(PTB) can be up to 6.8 × 10−15 on average time of more than one day. Thus, it is suitable for continuous multi-GNSS time transfer, especially for long-term clock stability comparison. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 922 KiB  
Article
ID Insertion and Data Tracking with Frequency Offset for Physical Wireless Parameter Conversion Sensor Networks
by Osamu Takyu, Keiichiro Shirai, Mai Ohta and Takeo Fujii
Sensors 2019, 19(4), 767; https://doi.org/10.3390/s19040767 - 13 Feb 2019
Cited by 1 | Viewed by 2895
Abstract
As the applications of the internet of things are becoming widely diversified, wireless sensor networks require real-time data reception, accommodation of access from several sensors, and low power consumption. In physical wireless parameter conversion sensor networks (PhyC-SN), all the sensors use frequency shift [...] Read more.
As the applications of the internet of things are becoming widely diversified, wireless sensor networks require real-time data reception, accommodation of access from several sensors, and low power consumption. In physical wireless parameter conversion sensor networks (PhyC-SN), all the sensors use frequency shift keying as the modulation scheme and then access the channel to the fusion center, simultaneously. As a result, the fusion center can recognize the statistical tendency of all the sensing results at a time from the frequency spectrum of the received signal. However, the information source, i.e., the sensor, cannot be specified from the received signal because no ID-indicating sensor is inserted to the signal. The data-tracking technique for tracing the time continuity of the sensing results is available for decomposing the sequence of the sensing results per sensor but the error tracking, which is a wrong recognition between the sensing results and the sensor, occurs owing to the similarity of the sensing results. This paper proposes the sensing result separation technique using a fractional carrier frequency offset (CFO) for PhyC-SN. In the proposed scheme, the particular fractional CFO is assigned to each user and it is useful for the ID specifying sensor. The fractional CFO causes inter-carrier interference (ICI). The ICI cancellation of the narrowband wireless communications is proposed. The two types of data-tracking techniques are proposed and are selectively used by the fusion center. Since the proposed data-tracking technique is multi-dimensional, high accuracy of data tracking is achieved even under the similar tendency of the sensing results. Based on computer simulation, we elucidate the advantage of the proposed sensing results separation. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

12 pages, 1149 KiB  
Article
Performance Analysis of Diversity-Controlled Multi-User Superposition Transmission for 5G Wireless Networks
by Jeong Seon Yeom, Eunmi Chu, Bang Chul Jung and Hu Jin
Sensors 2018, 18(2), 536; https://doi.org/10.3390/s18020536 - 10 Feb 2018
Cited by 9 | Viewed by 4665
Abstract
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys [...] Read more.
In this paper, we propose a novel low-complexity multi-user superposition transmission (MUST) technique for 5G downlink networks, which allows multiple cell-edge users to be multiplexed with a single cell-center user. We call the proposed technique diversity-controlled MUST technique since the cell-center user enjoys the frequency diversity effect via signal repetition over multiple orthogonal frequency division multiplexing (OFDM) sub-carriers. We assume that a base station is equipped with a single antenna but users are equipped with multiple antennas. In addition, we assume that the quadrature phase shift keying (QPSK) modulation is used for users. We mathematically analyze the bit error rate (BER) of both cell-edge users and cell-center users, which is the first theoretical result in the literature to the best of our knowledge. The mathematical analysis is validated through extensive link-level simulations. Full article
(This article belongs to the Special Issue Non-Orthogonal Multi-User Transmissions for 5G Networks)
Show Figures

Figure 1

Back to TopTop