Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = cardiac progenitor cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6644 KiB  
Article
HGF Overexpression in Mesenchymal Stromal Cell-Based Cell Sheets Enhances Autophagy-Dependent Cytoprotection and Proliferation to Guard the Epicardial Mesothelium
by Konstantin Dergilev, Irina Beloglazova, Zoya Tsokolaeva, Ekaterina Azimova, Aleria Dolgodvorova, Yulia Goltseva, Maria Boldyreva, Mikhail Menshikov, Dmitry Penkov and Yelena Parfyonova
Int. J. Mol. Sci. 2025, 26(15), 7298; https://doi.org/10.3390/ijms26157298 - 28 Jul 2025
Viewed by 220
Abstract
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC [...] Read more.
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC activation and subsequent regulation remain poorly understood. We hypothesized that hepatocyte growth factor (HGF), a pleiotropic regulator of various cellular functions, could modulate EMC activity. To verify this hypothesis, we developed HGF-overexpressing mesenchymal stromal cell sheets (HGF-MSC CSs) and evaluated their effects on EMCs in vitro and in vivo. This study has revealed, for the first time, that EMCs express the c-Met (HGF receptor) on their surface and that both recombinant HGF and HGF-MSC CSs secretome cause c-Met phosphorylation, triggering downstream intracellular signaling. Our findings demonstrate that the HGF-MSC CSs secretome promotes cell survival under hypoxic conditions by modulating the level of autophagy. At the same time, HGF-MSC CSs stimulate EMC proliferation, promoting their amplification in the damage zone. These data demonstrate that HGF-MSC CSs can be considered a promising regulator of epicardial cell activity involved in heart repair after ischemic damage. Full article
Show Figures

Figure 1

19 pages, 3596 KiB  
Article
Regulatory T Cells Boost Efficacy of Post-Infarction Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cell Transplants
by Aline Derisio de Lima, Hernán Gonzalez-King Garibotti, Qing-Dong Wang, Cecilia Graneli, Tania Incitti, Valérie Bellamy, Maria Eduarda Anastácio Borges Corrêa, Myriam Assal, Makoto Miyara, Jean-Sébastien Silvestre, Karin Jennbacken and Philippe Menasché
Cells 2025, 14(13), 956; https://doi.org/10.3390/cells14130956 - 23 Jun 2025
Viewed by 596
Abstract
Cell therapy is promising for heart failure treatment, with growing interest in cardiovascular progenitor cells (CPCs) from pluripotent stem cells. A major challenge is managing the immune response, due to their allogeneic source. Regulatory T cells (Treg) offer an alternative to pharmacological immunosuppression [...] Read more.
Cell therapy is promising for heart failure treatment, with growing interest in cardiovascular progenitor cells (CPCs) from pluripotent stem cells. A major challenge is managing the immune response, due to their allogeneic source. Regulatory T cells (Treg) offer an alternative to pharmacological immunosuppression by inducing immune tolerance. This study assesses whether Treg therapy can mitigate the xeno-immune response, improving cardiac outcomes in a mouse model of human CPC intramyocardial transplantation. CPCs stimulated immune responses in allogeneic and xenogeneic settings, causing proliferation in T cell subsets. Tregs showed immunosuppressive effects on T lymphocyte populations when co-cultured with CPCs. Post infarction, CPCs were transplanted intramyocardially into an immune-competent mouse model 3 weeks after myocardial infarction. Human or murine Tregs were intravenously administered on transplantation day and three days later. Control groups received CPCs without Tregs or saline (PBS). CPCs with Tregs improved LV systolic function in three weeks, linked to reduced myocardial fibrosis and enhanced angiogenesis. This was accompanied by decreased splenocyte NK cell populations and pro-inflammatory cytokine levels in cardiac tissue. Treg therapy with CPC transplantation enhances cardiac functional and structural outcomes in mice. Though it does not directly avert graft rejection, it primarily affects NKG2D+ cytotoxic cells, indicating systemic immune modulation and remote heart repair benefits. Full article
(This article belongs to the Special Issue The Potential of Induced Pluripotent Stem Cells)
Show Figures

Figure 1

22 pages, 6029 KiB  
Article
Thymosin Beta-4 Modulates Cardiac Remodeling by Regulating ROCK1 Expression in Adult Mammals
by Klaudia Maar, Jeffrey E. Thatcher, Egor Karpov, Szilard Rendeki, Ferenc Gallyas and Ildiko Bock-Marquette
Int. J. Mol. Sci. 2025, 26(9), 4131; https://doi.org/10.3390/ijms26094131 - 26 Apr 2025
Viewed by 873
Abstract
Although a myocardial infarction occurs roughly every minute in the U.S. alone, medical research has yet to unlock the key to fully enabling post-hypoxic myocardial regeneration. Thymosin beta-4 (TB4), a short, secreted peptide, was shown to possess a beneficial impact regarding myocardial cell [...] Read more.
Although a myocardial infarction occurs roughly every minute in the U.S. alone, medical research has yet to unlock the key to fully enabling post-hypoxic myocardial regeneration. Thymosin beta-4 (TB4), a short, secreted peptide, was shown to possess a beneficial impact regarding myocardial cell survival, coronary re-growth and progenitor cell activation following myocardial infarction in adult mammals. It equally reduces scarring, however, the precise mechanisms through which the peptide assists this phenomenon have not been properly elucidated. Accordingly, the primary aim of our study was to identify novel molecular contributors responsible for the positive impact of TB4 during the remodeling processes of the infarcted heart. We performed miRNA profiling on adult mice hearts following permanent coronary ligation with or without systemic TB4 injection and searched for targets and novel mechanisms through which TB4 may mitigate pathological scarring in the heart. Our results revealed a significant increase in miR139-5p expression and identified ROCK1 as a potential target protein aligned. Real-time PCR, Western blot and immunostaining on adult mouse hearts and human cardiac cells revealed the peptide indirectly or directly modulates ROCK1 protein levels both in vivo and in vitro. We equally discovered TB4 may reverse or inhibit fibroblast/myofibroblast transformation and the potential downstream mechanisms by which TB4 alters cellular responses through ROCK1 are cell type specific. Given the beneficial effects of ROCK1 inhibition in various cardiac pathologies, we propose a potential utilization for TB4 as a ROCK1 inhibitor in the future. Full article
Show Figures

Figure 1

22 pages, 9847 KiB  
Article
MicroRNA-210 Enhances Cell Survival and Paracrine Potential for Cardiac Cell Therapy While Targeting Mitophagy
by Rita Alonaizan, Ujang Purnama, Sophia Malandraki-Miller, Mala Gunadasa-Rohling, Andrew Lewis, Nicola Smart and Carolyn Carr
J. Funct. Biomater. 2025, 16(4), 147; https://doi.org/10.3390/jfb16040147 - 21 Apr 2025
Viewed by 739
Abstract
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key [...] Read more.
The therapeutic potential of presumed cardiac progenitor cells (CPCs) in heart regeneration has garnered significant interest, yet clinical trials have revealed limited efficacy due to challenges in cell survival, retention, and expansion. Priming CPCs to survive the hostile hypoxic environment may be key to enhancing their regenerative capacity. We demonstrate that microRNA-210 (miR-210), known for its role in hypoxic adaptation, significantly improves CPC survival by inhibiting apoptosis through the downregulation of Casp8ap2, a ~40% reduction in caspase activity, and a ~90% decrease in DNA fragmentation. Contrary to the expected induction of Bnip3-dependent mitophagy by hypoxia, miR-210 did not upregulate Bnip3, indicating a distinct anti-apoptotic mechanism. Instead, miR-210 reduced markers of mitophagy and increased mitochondrial biogenesis and oxidative metabolism, suggesting a role in metabolic reprogramming. Furthermore, miR-210 enhanced the secretion of paracrine growth factors from CPCs, with a ~1.6-fold increase in the release of stem cell factor and of insulin growth factor 1, which promoted in vitro endothelial cell proliferation and cardiomyocyte survival. These findings elucidate the multifaceted role of miR-210 in CPC biology and its potential to enhance cell-based therapies for myocardial repair by promoting cell survival, metabolic adaptation, and paracrine signalling. Full article
(This article belongs to the Special Issue Cardiovascular Tissue Engineering: Current Status and Advances)
Show Figures

Figure 1

19 pages, 21364 KiB  
Article
Stem Cells Associated with Adult Skeletal Muscle Can Form Beating Cardiac Tissue In Vitro in Response to Media Containing Heparin, Dexamethasone, Growth Factors and Hydrogen Peroxide
by Leonard M. Eisenberg and Carol A. Eisenberg
Int. J. Mol. Sci. 2025, 26(6), 2683; https://doi.org/10.3390/ijms26062683 - 17 Mar 2025
Viewed by 564
Abstract
Both cardiac and skeletal muscles originate from the mesoderm, although the two tissues develop from distinct primordia within the early embryo. The shared, albeit distinctive muscle phenotype of these two cell types have led many researchers to investigate whether stem cells from adult [...] Read more.
Both cardiac and skeletal muscles originate from the mesoderm, although the two tissues develop from distinct primordia within the early embryo. The shared, albeit distinctive muscle phenotype of these two cell types have led many researchers to investigate whether stem cells from adult skeletal muscle have the capacity to generate cells with a contractile, cardiac phenotype. To date, most of those studies have relied on multistep protocols requiring tissue engineering, co-cultures or transplantation experimentation. In this report, we describe a simple, cell culture method for obtaining contractile, cardiogenic aggregates from skeletal muscle-derived stem cells (MDSCs). Combining in vitro conditions used for promoting the differentiation of cardiac progenitor cells and the long-term maintenance of heart tissue fragments, we have been able to convert MDSCs to myocardial cells that aggregate into beating myospheres. These selective and optimized culture conditions continued to support a contractile cardiogenic phenotype for over four months in vitro. This culture protocol provides a model for future insights into the pathways responsible for the divergence of skeletal and cardiac phenotypes, as well as a source of easily obtained myocardial tissue for subsequent scientific investigations into cardiac function and biology. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4441 KiB  
Article
Human iPSC-Derived Muscle Cells as a New Model for Investigation of EDMD1 Pathogenesis
by Marta Lisowska, Marta Rowińska, Aleksandra Suszyńska, Claudia Bearzi, Izabela Łaczmańska, Julia Hanusek, Amanda Kunik, Volha Dzianisava, Ryszard Rzepecki, Magdalena Machowska and Katarzyna Piekarowicz
Int. J. Mol. Sci. 2025, 26(4), 1539; https://doi.org/10.3390/ijms26041539 - 12 Feb 2025
Cited by 2 | Viewed by 1074
Abstract
Emery–Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene, which encodes the nuclear envelope protein emerin. Despite understanding the genetic basis of the disease, the molecular mechanism underlying muscle and cardiac pathogenesis remains elusive. [...] Read more.
Emery–Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the EMD gene, which encodes the nuclear envelope protein emerin. Despite understanding the genetic basis of the disease, the molecular mechanism underlying muscle and cardiac pathogenesis remains elusive. Progress is restricted by the limited availability of patient-derived samples; therefore, there is an urgent need for human-specific cellular models. In this study, we present the generation and characterization of induced pluripotent stem cell (iPSC) lines derived from EDMD1 patients carrying EMD mutations that lead to truncated or absent emerin, together with iPSCs from healthy donor. The patient-specific iPSCs exhibit stable karyotypes, maintain appropriate morphology, express pluripotency markers, and demonstrate the ability to differentiate into three germ layers. To model EDMD1, these iPSCs were differentiated into myogenic progenitors, myoblasts, and multinucleated myotubes, which represent all stages of myogenesis. Each developmental stage was validated by the presence of stage-specific markers, ensuring the accuracy of the model. We present the first iPSC-based in vitro platform that captures the complexity of EDMD1 pathogenesis during myogenesis. This model can significantly contribute to understanding disease mechanisms and develop the targeted therapeutic strategies for EDMD1. Full article
(This article belongs to the Special Issue Research in iPSC-Based Disease Models)
Show Figures

Figure 1

19 pages, 858 KiB  
Review
Emerging Insights into Sall4’s Role in Cardiac Regenerative Medicine
by Jianchang Yang
Cells 2025, 14(3), 154; https://doi.org/10.3390/cells14030154 - 21 Jan 2025
Viewed by 1285
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4’s emerging roles in modulating cardiac progenitors and cellular reprogramming, [...] Read more.
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4’s emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4’s complex molecular mechanisms and their implications for advancing cardiac regenerative medicine. Full article
Show Figures

Figure 1

16 pages, 7562 KiB  
Article
Heart Morphogenesis Requires Smyd1b for Proper Incorporation of the Second Heart Field in Zebrafish
by Kendal Prill, Pamela Windsor Reid and Dave Pilgrim
Genes 2025, 16(1), 52; https://doi.org/10.3390/genes16010052 - 4 Jan 2025
Viewed by 1068
Abstract
Background/Objectives: Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. Smyd1, a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. [...] Read more.
Background/Objectives: Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. Smyd1, a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of Hand2 expression in mammals. This study examines the role of Smyd1b in zebrafish cardiac morphogenesis to elucidate its function and the mechanisms underlying congenital heart defects. Methods: Smyd1b (still heart) mutant embryos were analyzed for cardiac defects, and changes in gene expression related to heart development using live imaging, in situ hybridization, quantitative PCR and immunofluorescent comparisons and analysis. Results: Smyd1b mutants displayed severe cardiac defects, including failure to loop, severe edema, and an expansion of cardiac jelly linked to increased has2 expression. Additionally, the expression of key cardiac transcription factors, such as gata4, gata5, and nkx2.5, was notably reduced, indicating disrupted transcriptional regulation. The migration of cardiac progenitors was impaired and the absence of Islet-1-positive cells in the mutant hearts suggests a failed contribution of SHF progenitor cells. Conclusions: These findings underscore the essential role of Smyd1b in regulating cardiac morphogenesis and the development of the second heart field. This study highlights the potential of Smyd1b as a key factor in understanding the genetic and molecular mechanisms underlying congenital heart defects and cardiac development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 516 KiB  
Review
Partial Cell Fate Transitions to Promote Cardiac Regeneration
by Jianchang Yang
Cells 2024, 13(23), 2002; https://doi.org/10.3390/cells13232002 - 4 Dec 2024
Cited by 1 | Viewed by 1694
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency [...] Read more.
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety. Full article
Show Figures

Figure 1

25 pages, 5062 KiB  
Article
Genome-Wide Expression Profiling and Phenotypic Analysis of Downstream Targets Identify the Fox Transcription Factor Jumeau as a Master Regulator of Cardiac Progenitor Cell Division
by M. Rezaul Hasan, Andrew J. Kump, Evelyn C. Stepaniak, Manoj Panta, Kuncha Shashidhar, Rajnandani Katariya, Mofazzal K. Sabbir, Kristopher R. Schwab, Mark H. Inlow, Ye Chen and Shaad M. Ahmad
Int. J. Mol. Sci. 2024, 25(23), 12933; https://doi.org/10.3390/ijms252312933 - 1 Dec 2024
Viewed by 2273
Abstract
Forkhead box (Fox) transcription factors (TFs) mediate multiple conserved cardiogenic processes in both mammals and Drosophila. Our prior work identified the roles of two Drosophila Fox genes, jumeau (jumu) and Checkpoint suppressor 1-like (CHES-1-like), in cardiac progenitor cell [...] Read more.
Forkhead box (Fox) transcription factors (TFs) mediate multiple conserved cardiogenic processes in both mammals and Drosophila. Our prior work identified the roles of two Drosophila Fox genes, jumeau (jumu) and Checkpoint suppressor 1-like (CHES-1-like), in cardiac progenitor cell specification and division, and in the proper positioning of cardiac cell subtypes. Fox TF binding sites are also significantly enriched in the enhancers of genes expressed in the heart, suggesting that these genes may play a core regulatory role in one or more of these cardiogenic processes. We identified downstream targets of Jumu by comparing transcriptional expression profiles of flow cytometry-sorted mesodermal cells from wild-type embryos and embryos completely lacking the jumu gene and found that genes with functional annotation and ontological features suggesting roles in cell division were overrepresented among Jumu targets. Phenotypic analysis of a subset of these targets identified 21 jumu-regulated genes that mediate cardiac progenitor cell division, one of which, Retinal Homeobox (Rx), was characterized in more detail. Finally, the observation that many of these 21 genes and/or their orthologs exhibit genetic or physical interactions among themselves indicates that Jumu is a master regulator acting as a hub of a cardiac progenitor cell division-mediating network. Full article
Show Figures

Figure 1

39 pages, 4675 KiB  
Review
Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction
by Erika Fiorino, Daniela Rossin, Roberto Vanni, Matteo Aubry, Claudia Giachino and Raffaella Rastaldo
Int. J. Mol. Sci. 2024, 25(21), 11747; https://doi.org/10.3390/ijms252111747 - 1 Nov 2024
Cited by 4 | Viewed by 2784
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart’s inability to regenerate [...] Read more.
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart’s inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration—including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways—could help identify new critical intervention points for therapeutic applications. Full article
Show Figures

Figure 1

13 pages, 2539 KiB  
Article
Differential Effects of Four Canonical Notch-Activating Ligands on c-Kit+ Cardiac Progenitor Cells
by Matthew Robeson, Steven L. Goudy and Michael E. Davis
Int. J. Mol. Sci. 2024, 25(20), 11182; https://doi.org/10.3390/ijms252011182 - 17 Oct 2024
Viewed by 1304
Abstract
Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as [...] Read more.
Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as an external stimulus. Neonatal c-kit+ CPCs were stimulated using four different chimeric Notch-activating ligands tethered to Dynabeads, and the resulting changes were assessed using TaqMan gene expression arrays, with subsequent analysis by principal component analysis (PCA). Additionally, functional outcomes were measured using an endothelial cell tube formation assay and MSC migration assay to assess the paracrine capacity to stimulate new vessel formation and recruit other reparative cell types to the site of injury. Gene expression data showed that stimulation with Jagged-1 is associated with the greatest pro-angiogenic gene response, including the expression of VEGF and basement membrane proteins, while the other canonical ligands, Jagged-2, Dll-1, and Dll-4, are more associated with regulatory and epigenetic changes. The functional assay showed differential responses to the four ligands in terms of angiogenesis, while none of the ligands produced a robust change in migration. These data demonstrate how the four Notch-activating ligands differentially regulate CPC gene expression and function. Full article
(This article belongs to the Special Issue Notch Signaling Pathways)
Show Figures

Figure 1

34 pages, 13933 KiB  
Article
LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency
by Michael V. Zaragoza, Thuy-Anh Bui, Halida P. Widyastuti, Mehrsa Mehrabi, Zixuan Cang, Yutong Sha, Anna Grosberg and Qing Nie
Cells 2024, 13(17), 1479; https://doi.org/10.3390/cells13171479 - 3 Sep 2024
Cited by 2 | Viewed by 3456
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins [...] Read more.
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Graphical abstract

30 pages, 3625 KiB  
Article
Development of a Bmi1+ Cardiac Mouse Progenitor Immortalized Model to Unravel the Relationship with Its Protective Vascular Endothelial Niche
by Guillermo Albericio, Marina Higuera, Paula Araque, Cristina Sánchez, Diego Herrero, Miguel A. García-Brenes, Laura Formentini, José Luis Torán, Carmen Mora and Antonio Bernad
Int. J. Mol. Sci. 2024, 25(16), 8815; https://doi.org/10.3390/ijms25168815 - 13 Aug 2024
Viewed by 1409
Abstract
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident [...] Read more.
The adult mammalian heart has been demonstrated to be endowed with low but real turnover capacity, especially for cardiomyocytes, the key functional cell type. The source, however, of that turnover capacity remains controversial. In this regard, we have defined and characterized a resident multipotent cardiac mouse progenitor population, Bmi1+DR (for Bmi1+ Damage-Responsive cells). Bmi1+DR is one of the cell types with the lowest ROS (Reactive Oxygen Species) levels in the adult heart, being particularly characterized by their close relationship with cardiac vessels, most probably involved in the regulation of proliferation/maintenance of Bmi1+DR. This was proposed to work as their endothelial niche. Due to the scarcity of Bmi1+DR cells in the adult mouse heart, we have generated an immortalization/dis-immortalization model using Simian Vacuolating Virus 40-Large Antigen T (SV40-T) to facilitate their in vitro characterization. We have obtained a heterogeneous population of immortalized Bmi1+DR cells (Bmi1+DRIMM) that was validated attending to different criteria, also showing a comparable sensitivity to strong oxidative damage. Then, we concluded that the Bmi1-DRIMM population is an appropriate model for primary Bmi1+DR in vitro studies. The co-culture of Bmi1+DRIMM cells with endothelial cells protects them against oxidative damage, showing a moderate depletion in non-canonical autophagy and also contributing with a modest metabolic regulation. Full article
(This article belongs to the Special Issue Stem Cells and Cardiovascular Diseases—More than Just about Cells)
Show Figures

Figure 1

28 pages, 2598 KiB  
Review
Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I
by Marek Zubrzycki, Rene Schramm, Angelika Costard-Jäckle, Jochen Grohmann, Jan F. Gummert and Maria Zubrzycka
Int. J. Mol. Sci. 2024, 25(13), 7117; https://doi.org/10.3390/ijms25137117 - 28 Jun 2024
Cited by 10 | Viewed by 6062
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves [...] Read more.
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop