Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = carboxymethyl-dextran

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5943 KB  
Article
Stabilizing Water-in-Water Emulsions Using Oil Droplets
by Jean-Paul Douliez and Laure Béven
Molecules 2025, 30(15), 3120; https://doi.org/10.3390/molecules30153120 - 25 Jul 2025
Viewed by 1244
Abstract
The production of water-in-water emulsion droplets, the coalescence of which is prevented by adding oil-in-water micrometric droplets, is reported. Hexadecane (O) and cetyl trimethyl ammonium bromide (CTAB) were added to a W/W emulsion made of dextran (Dex)-enriched droplets in a Polyethyleglycol (PEG)-enriched continuous [...] Read more.
The production of water-in-water emulsion droplets, the coalescence of which is prevented by adding oil-in-water micrometric droplets, is reported. Hexadecane (O) and cetyl trimethyl ammonium bromide (CTAB) were added to a W/W emulsion made of dextran (Dex)-enriched droplets in a Polyethyleglycol (PEG)-enriched continuous phase, and the mixture was further sonicated. Using Nile red to label the oil droplets enabled the observation of their presence at the surface of Dex droplets (5 µm), allowing for stabilizing them, preventing coalescence of the W/W emulsion, and mimicking W/O/W double emulsions. The addition of sulfate derivative of Dextran (DexSulf) allowed for stable droplets of a slightly larger diameter. By contrast, the addition of carboxymethyl Dextran (CMDex) destabilized the initial aqueous double-like emulsion, yielding sequestration of the oil droplets within the Dex-rich phase. Interestingly, addition of DexSulf to that unstable emulsion re-yielded stable droplets. Similar findings (destabilization) were obtained when adding sodium dodecyl sulfate (SDS) to the initial double-like emulsion, which reformed stable droplets when adding positively charged Dextran (DEAEDex) derivatives. The use of fluorescently (FITC) labeled derivatives of Dextran (Dex, CMDex, DEAEDex, and DexSulf) allowed us to follow their position within, out of, or at the interface of droplets in the above-mentioned mixtures. These findings are expected to be of interest in the field of materials chemistry. Full article
Show Figures

Figure 1

21 pages, 3587 KB  
Article
Carboxymethyl Dextran-Based Biosensor for Simultaneous Determination of IDO-1 and IFN-Gamma in Biological Material
by Zuzanna Zielinska, Anna Sankiewicz, Natalia Kalinowska, Beata Zelazowska-Rutkowska, Tomasz Guszcz, Leszek Ambroziak, Miroslaw Kondratiuk and Ewa Gorodkiewicz
Biosensors 2025, 15(7), 444; https://doi.org/10.3390/bios15070444 - 10 Jul 2025
Cited by 1 | Viewed by 689
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO-1) and interferon-gamma (IFN-γ) are proteins that play a significant role in inflammatory conditions and tumor development. The detection of IDO1 and IFN-γ is crucial for understanding their interplay in immune responses. This study introduced a novel method for the [...] Read more.
Indoleamine 2,3-dioxygenase 1 (IDO-1) and interferon-gamma (IFN-γ) are proteins that play a significant role in inflammatory conditions and tumor development. The detection of IDO1 and IFN-γ is crucial for understanding their interplay in immune responses. This study introduced a novel method for the simultaneous quantitative determination of IDO-1 and IFN-γ in different biological samples/materials. The method is based on an optical biosensor, with surface plasmon resonance detection carried out by the imaging version of the sensor (SPRi). Biotinylated antibodies immobilized on the surfaces of the linker and carboxymethylated dextran served as the recognition elements for the developed biosensor. Relevant studies were conducted to optimize the activities of the biosensor by employing appropriate reagent concentrations. Validation was performed for each protein separately; low detection and quantification limits were obtained (for IDO-1 LOD = 0.27 ng/mL, LOQ = 0.81 ng/mL; for IFN-γ LOD = 1.76 pg/mL and LOQ = 5.29 pg/mL). The sensor operating ranges were 0.001–10 ng/mL for IDO-1 and 0.1–1000 pg/mL for IFN-γ. The constructed biosensor demonstrated its sensitivity and precision when the appropriate analytical parameters were determined, based on the proposed method. It can also selectively capture IDO-1 and IFN-γ from a large sample matrix. The biosensor efficiency was confirmed by the determination of IDO-1 and IFN-γ in simultaneous measurements of the plasma and urine samples of patients diagnosed with bladder cancer and the control group. The outcomes were compared to those obtained using a certified ELISA test, demonstrating convergence between the two methodologies. The preliminary findings demonstrate the biosensor’s efficacy and suitability for comprehensive analyses of the examined biological samples. Full article
(This article belongs to the Special Issue Micro/Nanofluidic System-Based Biosensors)
Show Figures

Figure 1

21 pages, 3418 KB  
Article
A New Method for Accelerated Aging of Nanoparticles to Assess the Colloidal Stability of Albumin-Coated Magnetic Nanoparticles
by Boris Nikolaev, Ludmila Yakovleva, Viacheslav Fedorov, Natalia Yudintceva, Daria Tarasova, Elizaveta Perepelitsa, Anastasia Dmitrieva, Maksim Sulatsky, Sivaprakash Srinivasan, Shirish H. Sonawane, Anusha Srivastava, Sharad Gupta, Avinash Sonawane, Stephanie E. Combs and Maxim Shevtsov
Nanomaterials 2025, 15(7), 475; https://doi.org/10.3390/nano15070475 - 21 Mar 2025
Cited by 1 | Viewed by 2248
Abstract
The colloidal long-storage stability of nanosized drugs is a crucial factor for pharmacology, as they require much time for robust estimation. The application of bioavailable magnetic nanosuspensions in theranostics is limited by incomplete information about their colloidal stability in the internal media of [...] Read more.
The colloidal long-storage stability of nanosized drugs is a crucial factor for pharmacology, as they require much time for robust estimation. The application of bioavailable magnetic nanosuspensions in theranostics is limited by incomplete information about their colloidal stability in the internal media of human organisms. A method for the accelerated temperature stress “aging” of magnetic nanosized suspensions is proposed for the rapid assessment and prediction of the colloidal stability over time of nanosized iron oxide suspensions stabilized by albumin HSA. Colloidal stability is assessed using dynamic light scattering (DLS), fluorescence spectroscopy, electrophoresis, and ion monitoring methods during short- and long-term storage. Rapid assessment is achieved by short high-temperature (70 °C) processing of carboxymethyl-dextran-coated nanosol in the presence of albumin. The role of albumin in the sustained stability of superparamagnetic iron oxide particles (SPIONs) was studied under conditions mimicking blood plasma (pH = 7.4) and endolysosomal cell compartments (pH = 5.5). According to the fluorescence quenching and DLS data, colloidal stability is ensured by the formation of an HSA corona on carboxymethyl-dextran-coated SPIONs and their process of clustering. In the presence of albumin, the colloidal stability of nanoparticles is shown to increase from 80 to 121 days at a storage temperature of 8 °C The prognostic shelf life of magnetic nanosol is estimated by calculating the Van’t Hoff’s relation for the rate of chemical reactions. The validity of using the Van’t Hoff’s rule is confirmed by the agreement of the calculated activation energy at 8 °C and 70 °C. The developed method of the accelerated aging of nanoparticles can not only be employed for the estimation of the shelf life of magnetic nanoparticles coated with HSA in vitro but also for assessing the stability of SPIONs applied in vivo. Full article
Show Figures

Graphical abstract

23 pages, 3296 KB  
Article
A Biopolymeric Dextran-Chitosan Delivery System for Controlled Release of Antioxidant and Anti-Inflammatory Compounds: Lignin and Curcumin
by Paula Cucu, Violeta Melinte, Anca Roxana Petrovici, Narcis Anghel, Irina Apostol, Mihai Mares, Natalia Simionescu and Iuliana Spiridon
Molecules 2025, 30(6), 1276; https://doi.org/10.3390/molecules30061276 - 12 Mar 2025
Viewed by 1294
Abstract
Biopolymeric drug delivery systems enhance the bioavailability and therapeutic efficacy of poorly soluble bioactive compounds. In this study, chitosan (Chi), dextran (Dex), carboxymethyl dextran (mDex), lignin (L), and curcumin (Cu) were combined to develop materials with controlled release, antioxidant, and anti-inflammatory properties. The [...] Read more.
Biopolymeric drug delivery systems enhance the bioavailability and therapeutic efficacy of poorly soluble bioactive compounds. In this study, chitosan (Chi), dextran (Dex), carboxymethyl dextran (mDex), lignin (L), and curcumin (Cu) were combined to develop materials with controlled release, antioxidant, and anti-inflammatory properties. The mechanical evaluation showed that Chi-mDex-L-Cu exhibited the highest diametral tensile strength (2.40 MPa), a 1233% increase compared to Chi-mDex-L, due to strong hydrogen bonding interactions between curcumin and matrix components. Curcumin release kinetics, modeled using the Weibull equation, demonstrated that Chi-mDex-L-Cu presented the slowest release rate, reducing the cumulative release by 55.66% as compared to Chi-L-Cu, ensuring prolonged bioactivity. Despite its controlled release, Chi-mDex-L-Cu retained 60% antioxidant and 70% anti-inflammatory activity, making it a promising sustained-release system. The biocompatibility assessment confirmed cell viability above 85%, with Chi-mDex-L-Cu showing a slight (~10%) reduction at higher concentrations while remaining non-cytotoxic. These findings suggest that Chi-mDex-L-Cu is a strong candidate for biomedical applications requiring prolonged therapeutic effects, such as osteoarthritis treatment. Full article
Show Figures

Graphical abstract

18 pages, 7853 KB  
Article
Magnetically Controlled Transport of Nanoparticles in Solid Tumor Tissues and Porous Media Using a Tumor-on-a-Chip Format
by Tatiana Zimina, Nikita Sitkov, Ksenia Brusina, Viacheslav Fedorov, Natalia Mikhailova, Dmitriy Testov, Kamil Gareev, Konstantin Samochernykh, Stephanie Combs and Maxim Shevtsov
Nanomaterials 2024, 14(24), 2030; https://doi.org/10.3390/nano14242030 - 17 Dec 2024
Cited by 1 | Viewed by 1320
Abstract
This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue [...] Read more.
This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min. CD-SPIONs were demonstrated to migrate in agar gel with the mean pore size equal to or slightly higher than the particle size. The migration velocity was inversely proportional to the size of particles. No compression of the gel was observed under the magnetic field gradient of 40 T/m. In the brain tissue, particles of sizes 220, 350, 820 nm were not penetrating the tissue, while the compression of tissue was observed. The particles of 95 nm size penetrated the tissue at the edge of the sample, and no compression was observed. For all particles, movement through capillary vessels was observed. Full article
Show Figures

Figure 1

18 pages, 6465 KB  
Article
Inhibition of Carbon Steel Corrosion Using Dextran Derivatives in Circulating Cooling Water
by Ping Xu and Xingrun Chen
Water 2024, 16(8), 1182; https://doi.org/10.3390/w16081182 - 21 Apr 2024
Cited by 1 | Viewed by 2012
Abstract
Developing environmentally friendly and biodegradable corrosion inhibitors is an important research direction due to the toxicity and non-degradability of conventional carbon steel corrosion inhibitors added to circulating cooling water environments. Polysaccharides in EPSs (Exopolysaccharides) can be used as green corrosion inhibitors, but a [...] Read more.
Developing environmentally friendly and biodegradable corrosion inhibitors is an important research direction due to the toxicity and non-degradability of conventional carbon steel corrosion inhibitors added to circulating cooling water environments. Polysaccharides in EPSs (Exopolysaccharides) can be used as green corrosion inhibitors, but a low inhibition rate limits their practical application. Chemical modification is widely used to modify the functionality of polysaccharides by altering their physicochemical properties and structures, thereby enhancing or supplementing their functional characteristics. In this study, we employed chloroacetic acid as an esterifying agent to chemically modify Dextran and successfully synthesized a modified polysaccharide derivative with a substitution degree of 0.326. This derivative efficiently inhibited the corrosion of carbon steel in circulating cooling water environments. The carboxymethylated dextran (CM-Dextran) formed after synthesis could adsorb onto metal surfaces to form a protective film, thereby inhibiting metal surface dissolution reactions and exhibiting anodic corrosion inhibition properties. The experimental results showed that the corrosion inhibition efficiency of CM-Dextran after modification increased by up to 57.4%, with a maximum inhibition efficiency of 82.52% at a concentration of 4 mg/mL. This study provides new insights and opportunities for the development of environmentally friendly corrosion inhibitors derived from polysaccharides. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

17 pages, 6071 KB  
Article
Oral Delivery of Astaxanthin via Carboxymethyl Chitosan-Modified Nanoparticles for Ulcerative Colitis Treatment
by Wen Zhang, Xinping Zhang, Xinyi Lv, Ao Qu, Wenjing Liang, Limin Wang, Pei Zhao and Zijian Wu
Molecules 2024, 29(6), 1291; https://doi.org/10.3390/molecules29061291 - 14 Mar 2024
Cited by 8 | Viewed by 3305
Abstract
The oral delivery strategy of natural anti-oxidant and anti-inflammatory agents has attracted great attention to improve the effectiveness of ulcerative colitis (UC) treatment. Herein, we developed a novel orally deliverable nanoparticle, carboxymethyl chitosan (CMC)-modified astaxanthin (AXT)-loaded nanoparticles (CMC-AXT-NPs), for UC treatment. The CMC-AXT-NPs [...] Read more.
The oral delivery strategy of natural anti-oxidant and anti-inflammatory agents has attracted great attention to improve the effectiveness of ulcerative colitis (UC) treatment. Herein, we developed a novel orally deliverable nanoparticle, carboxymethyl chitosan (CMC)-modified astaxanthin (AXT)-loaded nanoparticles (CMC-AXT-NPs), for UC treatment. The CMC-AXT-NPs were evaluated by appearance, morphology, particle size, ζ-potential, and encapsulation efficiency (EE). The results showed that CMC-AXT-NPs were nearly spherical in shape with a particle size of 34.5 nm and ζ-potential of −30.8 mV, and the EE of CMC-AXT-NPs was as high as 95.03%. The CMC-AXT-NPs exhibited preferable storage stability over time and well-controlled drug-release properties in simulated intestinal fluid. Additionally, in vitro studies revealed that CMC-AXT-NPs remarkably inhibited cytotoxicity induced by LPS and demonstrated superior antioxidant and anti-inflammatory abilities in Raw264.7 cells. Furthermore, CMC-AXT-NPs effectively alleviated clinical symptoms of colitis induced by dextran sulfate sodium salt (DSS), including maintaining body weight, inhibiting colon shortening, and reducing fecal bleeding. Importantly, CMC-AXT-NPs suppressed the expression of pro-inflammatory cytokines like TNF-α, IL-6, and IL-1β and ameliorated DSS-induced oxidative damage. Our results demonstrated the potential of CMC-modified nanoparticles as an oral delivery system and suggested these novel AXT nanoparticles could be a promising strategy for UC treatment. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

18 pages, 7528 KB  
Article
A Comparative Study on the Effects of Different Sources of Carboxymethyl Poria Polysaccharides on the Repair of DSS-Induced Colitis in Mice
by Zhijie Tan, Qiaoyi Zhang, Rou Zhao, Ting Huang, Yun Tian and Yuanshan Lin
Int. J. Mol. Sci. 2023, 24(10), 9034; https://doi.org/10.3390/ijms24109034 - 20 May 2023
Cited by 20 | Viewed by 2986
Abstract
Carboxymethyl poria polysaccharide plays important anti-tumor, antioxidant, and anti-inflammatory roles. Therefore, this study aimed to compare the healing impacts of two different sources of carboxymethyl poria polysaccharides [Carboxymethylat Poria Polysaccharides I (CMP I) and Carboxymethylat Poria Polysaccharides II (CMP II)] on ulcerative colitis [...] Read more.
Carboxymethyl poria polysaccharide plays important anti-tumor, antioxidant, and anti-inflammatory roles. Therefore, this study aimed to compare the healing impacts of two different sources of carboxymethyl poria polysaccharides [Carboxymethylat Poria Polysaccharides I (CMP I) and Carboxymethylat Poria Polysaccharides II (CMP II)] on ulcerative colitis in mice caused by dextran sulfate sodium (DSS). All the mice were arbitrarily split into five groups (n = 6): (a) control (CTRL), (b) DSS, (c) SAZ (sulfasalazine), (d) CMP I, and (e) CMP II. The experiment lasted for 21 days, and the body weight and final colon length were monitored. A histological analysis of the mouse colon tissue was carried out using H&E staining to assess the degree of inflammatory infiltration. The levels of inflammatory cytokines [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4)] and enzymes [superoxide dismutase (SOD) and myeloperoxidase (MPO)] in the serum were examined using ELISA. Additionally, 16S ribosomal RNA sequencing was used to analyze the microorganisms in the colon. The results indicated that both CMP I and CMP II alleviated weight loss, colonic shortening, and inflammatory factor infestation in colonic tissues caused by DSS (p < 0.05). Furthermore, the ELISA results revealed that both CMP I and CMP II reduced the expression of IL-1β, IL-6, TNF-α, and MPO, and elevated the expression of IL-4 and SOD in the sera of the mice (p < 0.05). Moreover, 16S rRNA sequencing showed that CMP I and CMP II increased the plenitude of microorganisms in the mouse colon relative to that in the DSS group. The results also indicated that the therapeutic effect of CMP I on DSS-induced colitis in the mice was superior to that of CMP II. This study demonstrated that carboxymethyl poria polysaccharide from Poria cocos had therapeutic effects on DSS-induced colitis in mice, with CMP I being more effective than CMP II. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 5003 KB  
Article
Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Carboxymethylated Dextran Modified Gold Nanoparticles Surface for High Mobility Group Box 1 (HMGB1) Analysis
by Chang-Yue Chiang, Chien-Hsing Chen and Chin-Wei Wu
Biosensors 2023, 13(5), 522; https://doi.org/10.3390/bios13050522 - 6 May 2023
Cited by 14 | Viewed by 4315
Abstract
Rapid, sensitive, and reliable detection of high mobility group box 1 (HMGB1) is essential for medical and diagnostic applications due to its important role as a biomarker of chronic inflammation. Here, we report a facile method for the detection of HMGB1 using carboxymethyl [...] Read more.
Rapid, sensitive, and reliable detection of high mobility group box 1 (HMGB1) is essential for medical and diagnostic applications due to its important role as a biomarker of chronic inflammation. Here, we report a facile method for the detection of HMGB1 using carboxymethyl dextran (CM-dextran) as a bridge molecule modified on the surface of gold nanoparticles combined with a fiber optic localized surface plasmon resonance (FOLSPR) biosensor. Under optimal conditions, the results showed that the FOLSPR sensor detected HMGB1 with a wide linear range (10−10 to 10−6 g/mL), fast response (less than 10 min), and a low detection limit of 43.4 pg/mL (1.7 pM) and high correlation coefficient values (>0.9928). Furthermore, the accurate quantification and reliable validation of kinetic binding events measured by the currently working biosensors are comparable to surface plasmon resonance sensing systems, providing new insights into direct biomarker detection for clinical applications. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis)
Show Figures

Figure 1

17 pages, 375 KB  
Review
Dextran Formulations as Effective Delivery Systems of Therapeutic Agents
by Anca Roxana Petrovici, Mariana Pinteala and Natalia Simionescu
Molecules 2023, 28(3), 1086; https://doi.org/10.3390/molecules28031086 - 21 Jan 2023
Cited by 64 | Viewed by 6574
Abstract
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo [...] Read more.
Dextran is by far one of the most interesting non-toxic, bio-compatible macromolecules, an exopolysaccharide biosynthesized by lactic acid bacteria. It has been extensively used as a major component in many types of drug-delivery systems (DDS), which can be submitted to the next in-vivo testing stages, and may be proposed for clinical trials or pharmaceutical use approval. An important aspect to consider in order to maintain high DDS’ biocompatibility is the use of dextran obtained by fermentation processes and with a minimum chemical modification degree. By performing chemical modifications, artefacts can appear in the dextran spatial structure that can lead to decreased biocompatibility or even cytotoxicity. The present review aims to systematize DDS depending on the dextran type used and the biologically active compounds transported, in order to obtain desired therapeutic effects. So far, pure dextran and modified dextran such as acetalated, oxidised, carboxymethyl, diethylaminoethyl-dextran and dextran sulphate sodium, were used to develop several DDSs: microspheres, microparticles, nanoparticles, nanodroplets, liposomes, micelles and nanomicelles, hydrogels, films, nanowires, bio-conjugates, medical adhesives and others. The DDS are critically presented by structures, biocompatibility, drugs loaded and therapeutic points of view in order to highlight future therapeutic perspectives. Full article
(This article belongs to the Special Issue New Trends in Polymer-Based Materials)
21 pages, 3585 KB  
Article
Carboxymethyl-Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Drug Delivery: Influence of the Coating Thickness on the Particle Properties
by Chiara Turrina, Davide Milani, Anna Klassen, Diana M. Rojas-González, Jennifer Cookman, Matthias Opel, Barbara Sartori, Petra Mela, Sonja Berensmeier and Sebastian P. Schwaminger
Int. J. Mol. Sci. 2022, 23(23), 14743; https://doi.org/10.3390/ijms232314743 - 25 Nov 2022
Cited by 20 | Viewed by 5197
Abstract
Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug [...] Read more.
Carboxymethyl-dextran (CMD)-coated iron oxide nanoparticles (IONs) are of great interest in nanomedicine, especially for applications in drug delivery. To develop a magnetically controlled drug delivery system, many factors must be considered, including the composition, surface properties, size and agglomeration, magnetization, cytocompatibility, and drug activity. This study reveals how the CMD coating thickness can influence these particle properties. ION@CMD are synthesized by co-precipitation. A higher quantity of CMD leads to a thicker coating and a reduced superparamagnetic core size with decreasing magnetization. Above 12.5–25.0 g L−1 of CMD, the particles are colloidally stable. All the particles show hydrodynamic diameters < 100 nm and a good cell viability in contact with smooth muscle cells, fulfilling two of the most critical characteristics of drug delivery systems. New insights into the significant impact of agglomeration on the magnetophoretic behavior are shown. Remarkable drug loadings (62%) with the antimicrobial peptide lasioglossin and an excellent efficiency (82.3%) were obtained by covalent coupling with the EDC/NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) method in comparison with the adsorption method (24% drug loading, 28% efficiency). The systems showed high antimicrobial activity with a minimal inhibitory concentration of 1.13 µM (adsorption) and 1.70 µM (covalent). This system successfully combines an antimicrobial peptide with a magnetically controllable drug carrier. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems for Cancer Therapy)
Show Figures

Figure 1

16 pages, 3450 KB  
Article
Magnetoliposomes Containing Multicore Nanoparticles and a New Antitumor Thienopyridine Compound with Potential Application in Chemo/Thermotherapy
by Fábio A. C. Lopes, André V. F. Fernandes, Juliana M. Rodrigues, Maria-João R. P. Queiroz, Bernardo G. Almeida, Ana Pires, André M. Pereira, João P. Araújo, Elisabete M. S. Castanheira, Ana Rita O. Rodrigues and Paulo J. G. Coutinho
Biomedicines 2022, 10(7), 1547; https://doi.org/10.3390/biomedicines10071547 - 29 Jun 2022
Cited by 11 | Viewed by 3496
Abstract
Multicore magnetic nanoparticles of manganese ferrite were prepared using carboxymethyl dextran as an agglutinating compound or by an innovative method using melamine as a cross-coupling agent. The nanoparticles prepared using melamine exhibited a flower-shape structure, a saturation magnetization of 6.16 emu/g and good [...] Read more.
Multicore magnetic nanoparticles of manganese ferrite were prepared using carboxymethyl dextran as an agglutinating compound or by an innovative method using melamine as a cross-coupling agent. The nanoparticles prepared using melamine exhibited a flower-shape structure, a saturation magnetization of 6.16 emu/g and good capabilities for magnetic hyperthermia, with a specific absorption rate (SAR) of 0.14 W/g. Magnetoliposome-like structures containing the multicore nanoparticles were prepared, and their bilayer structure was confirmed by FRET (Förster Resonance Energy Transfer) assays. The nanosystems exhibited sizes in the range of 250–400 nm and a low polydispersity index. A new antitumor thienopyridine derivative, 7-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]thieno[3,2-b]pyridine, active against HeLa (cervical carcinoma), MCF-7 (breast adenocarcinoma), NCI-H460 (non-small-cell lung carcinoma) and HepG2 (hepatocellular carcinoma) cell lines, was loaded in these nanocarriers, obtaining a high encapsulation efficiency of 98 ± 2.6%. The results indicate that the new magnetoliposomes can be suitable for dual cancer therapy (combined magnetic hyperthermia and chemotherapy). Full article
(This article belongs to the Special Issue State-of-the-Art Nanomedicine and Nanobiotechnology in Europe)
Show Figures

Figure 1

13 pages, 2823 KB  
Article
Real Time SPR Assessment of the Structural Changes of Adaptive Dynamic Constitutional Frameworks as a New Route for Sensing
by Sorin David, Mihaela Gheorghiu, Sanaa Daakour, Raluca-Elena Munteanu, Cristina Polonschii, Szilveszter Gáspár, Mihail Barboiu and Eugen Gheorghiu
Materials 2022, 15(2), 483; https://doi.org/10.3390/ma15020483 - 9 Jan 2022
Cited by 4 | Viewed by 3183
Abstract
Cross linked gold-dynamic constitutional frameworks (DCFs) are functional materials of potential relevance for biosensing applications, given their adaptivity and high responsivity against various external stimuli (such as pH, temperature) or specific interactions with biomolecules (enzymes or DNA) via internal constitutional dynamics. However, characterization [...] Read more.
Cross linked gold-dynamic constitutional frameworks (DCFs) are functional materials of potential relevance for biosensing applications, given their adaptivity and high responsivity against various external stimuli (such as pH, temperature) or specific interactions with biomolecules (enzymes or DNA) via internal constitutional dynamics. However, characterization and assessment of their dynamic conformational changes in response to external stimuli has never been reported. This study proves the capability of Surface Plasmon Resonance (SPR) assays to analyse the adaptive structural modulation of a functional matrix encompassing 3D gold-dynamic constitutional frameworks (Au-DCFs) when exposed to pH variations, as external stimuli. We analyse Au-DCFs formed from Au nanoparticles, (AuNP) connected through constitutionally dynamic polymers, dynamers, with multiple functionalities. For increased generality of this proof-of-concept assay, Au-DCFs, involving DCFs designed from 1,3,5-benzene-tricarbaldehyde (BTA) connecting centres and polyethylene glycol (PEG) connectors, are covalently attached to standard SPR sensing chips (Au nanolayers, carboxyl terminated or with carboxymethyl dextran, CMD top-layer) and analysed using state-of-the art SPR instrumentation. The SPR effects of the distance from the Au-DCFs matrix to the Au nanolayer of the sensing chip, as well as of Au-DCFs thickness were investigated. This study reveals the SPR response, augmented by the AuNP, to the conformational change, i.e., shrinkage, of the dynamer and AuNP matrix when decreasing the pH, and provides an unexplored insight into the sensing applicability of SPR real-time analysis of adaptive functional materials. Full article
(This article belongs to the Special Issue Advanced Designs of Materials, Devices and Techniques for Biosensing)
Show Figures

Figure 1

19 pages, 17054 KB  
Article
Nanoporous Microsponge Particles (NMP) of Polysaccharides as Universal Carriers for Biomolecules Delivery
by Maria Federica Caso, Felicia Carotenuto, Paolo Di Nardo, Alberto Migliore, Ana Aguilera, Cruz Matilde Lopez, Mariano Venanzi, Francesca Cavalieri and Antonio Rinaldi
Nanomaterials 2020, 10(6), 1075; https://doi.org/10.3390/nano10061075 - 31 May 2020
Cited by 10 | Viewed by 3937
Abstract
Different polysaccharides—namely dextran, carboxymethyl dextran, alginate, and hyaluronic acid—were compared for the synthesis of nanoporous microsponges particles (NMPs) obtained from a one-pot self-precipitation/cross-linking process. The morphologies and sizes of the NMPs were evaluated comparatively with respect to polymer-to-polymer and cross-linker solvents (water-based vs. [...] Read more.
Different polysaccharides—namely dextran, carboxymethyl dextran, alginate, and hyaluronic acid—were compared for the synthesis of nanoporous microsponges particles (NMPs) obtained from a one-pot self-precipitation/cross-linking process. The morphologies and sizes of the NMPs were evaluated comparatively with respect to polymer-to-polymer and cross-linker solvents (water-based vs. DMSO). We found that the radial distribution of the polymer in the near-spherical NMPs was found to peak either at the core or in the corona of the particle, depending both on the specific polymer or the solvent used for the formation of NMPs. The NMP porosity and the swelling capability were evaluated via scanning electron microscopy (SEM). The degradation study indicated that after 10 h incubation with a reducing agent, approximately 80% of the NMPs were disassembled into soluble polysaccharide chains. The adsorption and release capacity of each type of NMP were evaluated using fluorescently labeled bovine serum albumin and lysozyme as model proteins, highlighting a release time typically much longer than the corresponding adsorption time. The dependence of the adsorption-release performance on pH was demonstrated as well. Confocal microscopy images allowed us to probe the different distribution of labeled proteins inside the NMP. The safety and non-cytotoxicity of NMPs were evaluated after incubation with fibroblast 3T3 cells and showed that all types of NMPs did not adversely affect the cell viability for concentrations up to 2.25 μg/mL and an exposure time up to 120 h. Confocal microscopy imaging revealed also the effective interaction between NMPs and fibroblast 3T3 cells. Overall, this study describes a rapid, versatile, and facile approach for preparing a universal non-toxic, nanoporous carrier for protein delivery under physiological conditions. Full article
(This article belongs to the Special Issue Functional Glyconanomaterials)
Show Figures

Figure 1

11 pages, 253 KB  
Article
Magnetic Nanoparticles Behavior in Biological Solutions; The Impact of Clustering Tendency on Sedimentation Velocity and Cell Uptake
by Mohammad Dabaghi and Ingrid Hilger
Materials 2020, 13(7), 1644; https://doi.org/10.3390/ma13071644 - 2 Apr 2020
Cited by 12 | Viewed by 2637
Abstract
Magnetic nanoparticles (MNPs) are prone to exhibit physicochemical changes caused by their interaction with biological solutions. However, such interactions have been less considered in cancer therapy studies. The behavior of four iron oxide MNP formulations with different surface coatings, namely, chitosan (CS), polyvinyl [...] Read more.
Magnetic nanoparticles (MNPs) are prone to exhibit physicochemical changes caused by their interaction with biological solutions. However, such interactions have been less considered in cancer therapy studies. The behavior of four iron oxide MNP formulations with different surface coatings, namely, chitosan (CS), polyvinyl alcohol (PVA), carboxymethyldextran (CMX), and polydimethylamine (PEA), was investigated, after their exposure to four different cell culture media (DMEM/F12 and MEM, among others) and six different cancer cell lines (HT29, HT1080, T24, MDA-MB-231, BxPC-3, and LS174T). The sedimentation (Vs) and diffusion (Vd) velocities of MNPs in different culture media were calculated. Atomic absorption spectroscopy (AAS) and dynamic light scattering (DLS) were used to quantify cell uptake efficiency and physicochemical properties, respectively. Apart from PVA-coated MNPs, CMX-, CS-, and PEA-coated MNPs clustered and increased notably in size when dispensed in culture media. The different MNP formulations led either to a low (PVA-coated MNPs), medium (CS- and CMX-coated MNPs), or high (PEA-coated MNPs) clustering in the different culture media. Clustering correlated with the Vs and Vd of the MNPs and their subsequent interaction with cells. In particular, the CMX-coated MNPs with higher Vs and lower Vd internalized more readily than the PVA-coated MNPs into the different cell lines. Hence, our results highlight key considerations to include when validating nanoparticles for future biomedical applications. Full article
Back to TopTop