Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = carbonated eclogites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1713 KiB  
Article
Stability of CO2 Fluid in Eclogitic Mantle Lithosphere: Thermodynamic Calculations
by Yulia G. Vinogradova and Anton Shatskiy
Minerals 2024, 14(4), 403; https://doi.org/10.3390/min14040403 - 15 Apr 2024
Viewed by 1330
Abstract
Findings of solid and liquefied CO2 in diamonds from kimberlites and placers have indicated its presence in the form of a fluid phase in the Earth’s mantle at depths of 150–250 km. However, this is inconsistent with the results of experiments and [...] Read more.
Findings of solid and liquefied CO2 in diamonds from kimberlites and placers have indicated its presence in the form of a fluid phase in the Earth’s mantle at depths of 150–250 km. However, this is inconsistent with the results of experiments and existing thermodynamic calculations. To clarify this, we carried out thermodynamic modeling of garnet–CO2 and bimineral eclogite–CO2 systems using the Perple_X v. 7.1.3 software package, which establishes the most thermodynamically favorable assemblages for a given bulk composition of the system, unlike previous calculations, for which the phase relationships were simply assumed. The key difference between our results and previously known data is the presence of a region of partial carbonation. In this region, the garnet and clinopyroxene of the new compositions, CO2 fluid, carbonates, kyanite, and coesite are in equilibrium. The calculations revealed that unlike endmember systems (pyrope–CO2 and diopside–CO2) in the eclogite–CO2 system, the carbonation and decarbonation lines do not coincide, and the Grt+Cpx+CO2 and Carb+Ky+Coe+Cpx fields are separated by the Grt+Cpx+CO2+Carb+Ky+Coe region, which extends to pressures exceeding 4.3–6.0 GPa at 1050–1200 °C. This should extend the CO2 stability field in the eclogitic mantle to lower temperatures. Yet, owing to the short CO2 supply in the real mantle, the CO2 fluid should be completely spent on the carbonation of eclogite just below the eclogite + CO2 field. Thus, according to the obtained results, the CO2 fluid is stable in the eclogitic mantle in the diamond stability field at temperatures exceeding 1250 °C and pressures of 5–6 GPa. Full article
Show Figures

Graphical abstract

16 pages, 8316 KiB  
Article
The Peritectic Reaction of Olivine as the Mechanism of the Ultrabasic–Basic Evolution of the Diamond-Forming Silicate-Carbonate-(C-O-H) System: Experiments at 6.0 GPa
by Yuriy A. Litvin, Anastasiya V. Kuzyura and Anna V. Spivak
Minerals 2023, 13(8), 1040; https://doi.org/10.3390/min13081040 - 4 Aug 2023
Viewed by 1441
Abstract
Melting phase relations of the diamond-forming olivine (Ol)–jadeite (Jd)–diopside (Di)–(Mg, Fe, Ca, Na)-carbonates (Carb)–(C-O-H-fluid) system are studied in experiments at 6.0 GPa in the polythermal Ol74Carb18.5(C-O-H)7.5-Omp74Carb18.5(C-O-H)7.5 section, where Ol = Fo80 [...] Read more.
Melting phase relations of the diamond-forming olivine (Ol)–jadeite (Jd)–diopside (Di)–(Mg, Fe, Ca, Na)-carbonates (Carb)–(C-O-H-fluid) system are studied in experiments at 6.0 GPa in the polythermal Ol74Carb18.5(C-O-H)7.5-Omp74Carb18.5(C-O-H)7.5 section, where Ol = Fo80Fa20, Omp (omphacite) = Jd62Di38 and Carb = (MgCO3)25(FeCO3)25(CaCO3)25(Na2CO3)25. The peritectic reaction of olivine and jadeite-bearing melts with formation of garnet has been determined as a physico-chemical mechanism of the ultrabasic–basic evolution of the diamond-forming system. During the process, the CO2 component of the supercritical C-O-H-fluid can react with silicate components to form additional carbonates of Mg, Fe, Ca and Na. The solidus temperature of the diamond-forming system is lowered to 1000–1020 °C by the joint effect of the H2O fluid and its carbonate constituents. The experimentally recognized peritectic mechanism of the ultrabasic–basic evolution of the diamond-forming system explains the origin of associated paragenetic inclusions of peridotite and eclogite minerals in diamonds, as well as the xenoliths of diamond-bearing peridotites and eclogites of kimberlitic deposits of diamond. Diamond-forming systems have formed with the use of material from upper mantle native peridotite rocks. In this case, the capacity of the rocks to initiate the peritectic reaction of olivine was transmitted with silicate components to diamond-forming systems. Full article
Show Figures

Figure 1

23 pages, 11291 KiB  
Article
Experimental Modeling of Decarbonation Reactions, Resulting in the Formation of CO2 Fluid and Garnets of Model Carbonated Eclogites under Lithospheric Mantle P,T-Parameters
by Yuliya V. Bataleva, Ivan D. Novoselov, Aleksei N. Kruk, Olga V. Furman and Yuri N. Palyanov
Minerals 2023, 13(7), 859; https://doi.org/10.3390/min13070859 - 25 Jun 2023
Viewed by 2158
Abstract
First experimental modeling of decarbonation reactions resulting in the formation of CO2-fluid and Mg, Fe, Ca, and Mn garnets, with composition corresponding to the garnets of carbonated eclogites of types I and II (ECI and ECII), was carried out at a [...] Read more.
First experimental modeling of decarbonation reactions resulting in the formation of CO2-fluid and Mg, Fe, Ca, and Mn garnets, with composition corresponding to the garnets of carbonated eclogites of types I and II (ECI and ECII), was carried out at a wide range of lithospheric mantle pressures and temperatures. Experimental studies were performed on a multi-anvil high-pressure apparatus of a “split sphere” type (BARS), in (Mg, Fe, Ca, Mn)CO3-Al2O3-SiO2 systems (with compositional variations according to those in ECI and ECII), in the pressure interval of 3.0–7.5 GPa and temperatures of 1050–1450 °C (t = 10–60 h). A specially designed high-pressure cell with a hematite buffering container—preventing the diffusion of hydrogen into the platinum capsule—was used, in order to control the fluid composition. Using the mass spectrometry method, it was proven that in all experiments, the fluid composition was pure CO2. The resulting ECI garnet compositions were Prp48Alm35Grs15Sps02–Prp44Alm40Grs14Sps02, and compositions of the ECII garnet were Prp57Alm34Grs08Sps01–Prp68Alm23Grs08Sps01. We established that the composition of the synthesized garnets corresponds strongly to natural garnets of carbonated eclogites of types I and II, as well as to garnets from xenoliths of diamondiferous eclogites from the Robert Victor kimberlite pipe; according to the Raman characteristics, the best match was found with garnets from inclusions in diamonds of eclogitic paragenesis. In this study, we demonstrated that the lower temperature boundary of the stability of natural garnets from carbonated eclogites in the presence of a CO2 fluid is 1000 (±20) °C at depths of ~90 km, 1150–1250 (±20) °C at 190 km, and 1400 (±20) °C at depths of about 225 km. The results make a significant contribution to the reconstruction of the fluid regime and processes of CO2/carbonate-related mantle metasomatism in the lithospheric mantle. Full article
Show Figures

Figure 1

32 pages, 12193 KiB  
Article
The Dynamics of Transformation of Lithospheric Mantle Rocks Beneath the Siberian Craton
by Yury Perepechko, Victor Sharapov, Anatoly Tomilenko, Konstantin Chudnenko, Konstantin Sorokin and Igor Ashchepkov
Minerals 2023, 13(3), 423; https://doi.org/10.3390/min13030423 - 16 Mar 2023
Viewed by 1941
Abstract
The problem of heat–mass transfer in the permeable areas above the asthenosphere zones was numerically studied based on an examination of the inclusion content in the minerals (olivine and clinopyroxenes) of igneous and metamorphic rocks of the lithospheric mantle and the Earth’s crust; [...] Read more.
The problem of heat–mass transfer in the permeable areas above the asthenosphere zones was numerically studied based on an examination of the inclusion content in the minerals (olivine and clinopyroxenes) of igneous and metamorphic rocks of the lithospheric mantle and the Earth’s crust; evaluations of thermodynamic conditions of the inclusion formation; and experimental modeling of the influence of hot reduced gases on rocks in the mantle beneath the Siberian craton. The flow of fluids of a certain composition from the upper-mantle magma chambers leads to the formation of zonal metasomatic columns in the ultrabasic mantle lithosphere in the permeable zones of deep faults (starting from the lithosphere base at 6–7 GPa). When petrogenic components enter from the magma pocket, depleted ultrabasic lithospheric mantle rocks change to substrates, which can be considered as the deep counterparts of crustal rodingites. Other fluid compositions result in strong calcination and pronounced salinization of the metasomatized substrates or an increase in the garnet content of the primary ultrabasic matrix. A region of alkaline rocks forms above these areas, which changes to pyroxenes, amphiboles, and biotites. The heat–mass transfer modeling for the two-velocity hydrodynamic model shows that gas–fluid and melt percolation lead to an increase in the thermal front velocity under convective heating and a pressure drop in flow. It is also shown that grospidites are considered to be eclogites, are found in the permeable zones of the lithospheric mantle columns serving as conduits for the melt/fluids and represent the products of the carbonated metasomatic columns. The carbonization caused by proto-kimberlite melts may essentially decrease the diamond grade of kimberlites due to carbon oxidation. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 8597 KiB  
Article
The System KCl–CaCO3–MgCO3 at 3 GPa
by Anton Shatskiy, Ivan V. Podborodnikov, Anton V. Arefiev and Konstantin D. Litasov
Minerals 2023, 13(2), 248; https://doi.org/10.3390/min13020248 - 9 Feb 2023
Cited by 1 | Viewed by 1797
Abstract
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry [...] Read more.
Inclusions in mantle minerals and xenoliths from kimberlites worldwide derived from depths exceeding 100 km vary in composition from alkali-rich saline to carbonatitic. Despite the wide distribution of these melts and their geochemical importance as metasomatic agents that altered the mineralogy and geochemistry of mantle rocks, the P-T range of stability of these melts remains largely undefined. Here we report new experimental data on phase relations in the system KCl–CaCO3–MgCO3 at 3 GPa obtained using a multianvil press. We found that the KCl–CaCO3 and KCl–MgCO3 binaries have the eutectic type of T-X diagrams. The KCl-calcite eutectic is situated at K2# 56 and 1000 °C, while the KCl-magnesite eutectic is located at K2# 79 and 1100 °C, where K2# = 2KCl/(2KCl + CaCO3 + MgCO3) × 100 mol%. Just below solidus, the KCl–CaCO3–MgCO3 system is divided into two partial ternaries: KCl + magnesite + dolomite and KCl + calcite–dolomite solid solutions. Both ternaries start to melt near 1000 °C. The minimum on the liquidus/solidus surface corresponds to the KCl + Ca0.73Mg0.27CO3 dolomite eutectic situated at K2#/Ca# 39/73, where Ca# = 100∙Ca/(Ca + Mg) × 100 mol%. At bulk Ca# ≤ 68, the melting is controlled by a ternary peritectic: KCl + dolomite = magnesite + liquid with K2#/Ca# 40/68. Based on our present and previous data, the KCl + dolomite melting reaction, expected to control solidus of KCl-bearing carbonated eclogite, passes through 1000 °C at 3 GPa and 1200 °C at 6 GPa and crossovers a 43-mW/m2 geotherm at a depth of 120 km and 37-mW/m2 geotherm at a depth of 190 km. Full article
Show Figures

Figure 1

22 pages, 7975 KiB  
Article
Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C
by Anton Shatskiy, Altyna Bekhtenova, Anton V. Arefiev and Konstantin D. Litasov
Minerals 2023, 13(1), 82; https://doi.org/10.3390/min13010082 - 5 Jan 2023
Cited by 5 | Viewed by 2201
Abstract
Melting phase relations in the eclogite-carbonate system were studied at 6 GPa and 900–1500 °C. Starting mixtures were prepared by blending natural bimineral eclogite group A (Ecl) with eutectic Na-Ca-Mg-Fe (N2) and K-Ca-Mg-Fe (K4) carbonate mixtures (systems Ecl-N2 and Ecl-K4). In the Ecl-N2 [...] Read more.
Melting phase relations in the eclogite-carbonate system were studied at 6 GPa and 900–1500 °C. Starting mixtures were prepared by blending natural bimineral eclogite group A (Ecl) with eutectic Na-Ca-Mg-Fe (N2) and K-Ca-Mg-Fe (K4) carbonate mixtures (systems Ecl-N2 and Ecl-K4). In the Ecl-N2 system, the subsolidus assemblage is represented by garnet, omphacite, eitelite, and a minor amount of Na2Ca4(CO3)5. In the Ecl-K4 system, the subsolidus assemblage includes garnet, clinopyroxene, K2Mg(CO3)2, and magnesite. The solidus of both systems is located at 950 °C and is controlled by the following melting reaction: Ca3Al2Si3O12 (Grt) + 2(Na or K)2Mg(CO3)2 (Eit) = Ca2MgSi3O12 (Grt) + [2(Na or K)2CO3∙CaCO3∙MgCO3] (L). The silica content (in wt%) in the melt increases with temperature from < 1 at 950 °C to 3–7 at 1300 °C, and 7–12 at 1500 °C. Thus, no gradual transition from carbonate to kimberlite-like (20–32 wt% SiO2) carbonate-silicate melt occurs even as temperature increases to mantle adiabat. This supports the hypothesis that the high silica content of kimberlite is the result of decarbonation at low pressure. As temperature increases from 950 to 1500 °C, the melt Ca# ranges from 58–60 to 42–46. The infiltration of such a melt into the peridotite mantle should lower its Ca# and causes refertilization from harzburgite to lherzolite and wehrlitization. Full article
Show Figures

Figure 1

36 pages, 6206 KiB  
Article
Electron Probe Microanalysis and Microscopy of Polishing-Exposed Solid-Phase Mineral Inclusions in Fuxian Kimberlite Diamonds
by Donggao Zhao
Minerals 2022, 12(7), 844; https://doi.org/10.3390/min12070844 - 30 Jun 2022
Cited by 2 | Viewed by 3924
Abstract
Solid-phase mineral inclusions in diamond (1–3 mm in diameter) from the No. 50 kimberlite diatreme of Liaoning Province, China, were exposed by polishing. A variety of silicate, carbonate and sulfide inclusions were recovered in the diamond. The common solid-phase inclusions are olivine, chromite, [...] Read more.
Solid-phase mineral inclusions in diamond (1–3 mm in diameter) from the No. 50 kimberlite diatreme of Liaoning Province, China, were exposed by polishing. A variety of silicate, carbonate and sulfide inclusions were recovered in the diamond. The common solid-phase inclusions are olivine, chromite, garnet and orthopyroxene; the rare phases include Ca carbonate, magnesite, dolomite, norsethite, pyrrhotite, pentlandite, troilite, a member of the linnaeite group, an unknown hydrous magnesium silicate and an Fe-rich phase. Abundance and composition of the solid-phase inclusions in diamond indicate that they belong to the peridotitic suite and are mainly harzburgitic. No eclogitic mineral inclusions were found in the diamond. The slightly lower Mg # of the olivine inclusions (peak at 93) than that of harzburgitic olivine inclusions worldwide (Mg # peak at 94), the higher Ni content (0.25–0.45 wt. %) of the olivine inclusions than those of olivine inclusions worldwide (0.30–0.40 wt. %), the higher Ti contents (up to 0.79 wt. %) in some chromite inclusions in diamond than those in chromite inclusions worldwide, the existence of carbonate inclusions in diamond, and the possible presence of hydrous silicate phases in diamond all indicate a metasomatic enrichment event in the source region of diamond beneath the North China craton, suggesting that the diamond probably formed by solid-state growth under metasomatic conditions with the presence of a fluid. Solid-state growth of diamond is also supported by abundant graphite inclusions in the diamond. Sulfide inclusions in diamond often coexist with chromite and olivine or are rich in Ni content, indicating that the sulfide inclusions belong to the peridotitic suite. From the chemical compositions, most sulfide inclusions in diamond from the No. 50 kimberlite were probably trapped as monosulfide crystals, although some may have been entrapped as melts. Full article
(This article belongs to the Special Issue Electron Microbeam and X-ray Techniques: Advances and Applications)
Show Figures

Figure 1

34 pages, 13276 KiB  
Article
Late Cenozoic Uguumur and Bod-Uul Volcanic Centers in Northern Mongolia: Mineralogy, Geochemistry, and Magma Sources
by Alexander Perepelov, Mikhail Kuzmin, Svetlana Tsypukova, Yuri Shcherbakov, Sergey Dril, Alexey Didenko, Enkhbat Dalai-Erdene, Mikhail Puzankov and Alexander Zhgilev
Minerals 2020, 10(7), 612; https://doi.org/10.3390/min10070612 - 8 Jul 2020
Cited by 9 | Viewed by 3914
Abstract
The paper presents new data on mineralogy, geochemistry, and Sr-Nd-Pb isotope systematics of Late Cenozoic eruption products of Uguumur and Bod-Uul volcanoes in the Tesiingol field of Northern Mongolia, with implications for the magma generation conditions, magma sources, and geodynamic causes of volcanism. [...] Read more.
The paper presents new data on mineralogy, geochemistry, and Sr-Nd-Pb isotope systematics of Late Cenozoic eruption products of Uguumur and Bod-Uul volcanoes in the Tesiingol field of Northern Mongolia, with implications for the magma generation conditions, magma sources, and geodynamic causes of volcanism. The lavas and pyroclastics of the two volcanic centers are composed of basanite, phonotephrite, basaltic trachyandesite, and trachyandesite, which enclose spinel and garnet peridotite and garnet-bearing pyroxenite xenoliths; megacrysts of Na-sanidine, Ca-Na pyroxene, ilmenite, and almandine-grossular-pyrope garnets; and carbonate phases. The rocks are enriched in LILE and HFSE, show strongly fractioned REE spectra, and are relatively depleted in U and Th. The low contents of U and Th in Late Cenozoic volcanics from Northern and Central Mongolia represent the composition of a magma source. The presence of carbonate phases in subliquidus minerals and mantle rocks indicates that carbon-bearing fluids were important agents in metasomatism of subcontinental lithospheric mantle. The silicate-carbonate melts were apparently released from eclogitizied slabs during the Paleo-Asian and Mongol-Okhotsk subduction. The parent alkali-basaltic magma may be derived as a result from partial melting of Grt-bearing pyroxenite or eclogite-like material or carobantized peridotite. The sources of alkali-basaltic magmas from the Northern and Central Mongolia plot different isotope trends corresponding to two different provinces. The isotope signatures of megacrysts are similar to those of studied volcanic centers rocks. The P-T conditions inferred for the crystallization of pyroxene and garnet megacrysts correspond to a depth range from the Grt-Sp phase transition to the lower crust. Late Cenozoic volcanism in Northern and Central Mongolia may be a response to stress propagation and gravity instability in the mantle associated with the India-Asia collision. Full article
Show Figures

Figure 1

17 pages, 5026 KiB  
Article
Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe
by Nikolai Gubanov, Dmitry Zedgenizov, Igor Sharygin and Alexey Ragozin
Minerals 2019, 9(12), 734; https://doi.org/10.3390/min9120734 - 28 Nov 2019
Cited by 20 | Viewed by 3893
Abstract
Microinclusions of high-density fluids (HDFs) were studied in coated diamonds from the Udachnaya kimberlite pipe (Siberian craton, Russia). The presence of C-centers in the coats testifies to their formation shortly before kimberlite eruption, whereas the cores have much longer mantle residence in chemically [...] Read more.
Microinclusions of high-density fluids (HDFs) were studied in coated diamonds from the Udachnaya kimberlite pipe (Siberian craton, Russia). The presence of C-centers in the coats testifies to their formation shortly before kimberlite eruption, whereas the cores have much longer mantle residence in chemically different mantle substrates, i.e., peridotite-type (P-type) and eclogite-type (E-type). The carbon isotope composition indicates an isotopically homogeneous carbon source for coats and a heterogeneous source for cores. Microinclusions in the coats belong to two groups: high-Mg carbonatitic and low-Mg carbonatitic to silicic. A relationship was found between high-Mg carbonatitic HDFs and peridotitic host rocks and between low-Mg carbonatitic to silicic and eclogites. The composition of high-Mg carbonatitic HDFs with a “planed” trace-element pattern can evolve to low-Mg carbonatitic to silicic during percolation through different mantle rocks. The compositional variations of microinclusions in the coats reflect this evolution. Full article
Show Figures

Figure 1

Back to TopTop