Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = carbon black polymer composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6921 KiB  
Review
The Advances in Polymer-Based Electrothermal Composites: A Review
by Xiaoli Wu, Ting Yin, Wenyan Liu, Libo Wan and Yijun Liao
Polymers 2025, 17(15), 2047; https://doi.org/10.3390/polym17152047 - 27 Jul 2025
Viewed by 305
Abstract
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, [...] Read more.
Polymer-based electrothermal composites (PECs) have been increasingly attracting attention in recent years owing to their flexibility, low density, and high electrothermal efficiency. However, although a large number of reviews have focused on flexible and transparent film heaters as well as polymer-based conductive composites, comprehensive reviews of polymer-based electrothermal composites remain limited. Herein, we provide a comprehensive review of recent advancements in polymer-based electrothermal materials. This review begins with an introduction to the electrothermal theoretical basis and the research progress of PECs incorporating various conductive fillers, such as graphene, carbon nanotubes (CNTs), carbon black (CB), MXenes, and metal nanowires. Furthermore, a critical discussion is provided to emphasize the factors influencing the electrothermal conversion efficiency of these composites. Meanwhile, the development of multi-functional electrothermal materials has been also summarized. Finally, the application progress, future prospects, limitations, and potential directions for PEC are discussed. This review aims to serve as a practical guide for engineers and researchers engaged in the development of polymer-based electrothermal composites. Full article
Show Figures

Figure 1

20 pages, 3366 KiB  
Article
Design, Fabrication and Validation of Chemical Sensors for Detecting Hydrocarbons to Facilitate Oil Spillage Remediation
by Perpetual Eze-Idehen and Krishna Persaud
Chemosensors 2025, 13(4), 140; https://doi.org/10.3390/chemosensors13040140 - 11 Apr 2025
Viewed by 705
Abstract
To address the environmental hazards posed by oil spills and the limitations of conventional hydrocarbon monitoring techniques, a cost-effective and user-friendly gas sensor system was developed for the real-time detection and quantification of hydrocarbon contaminants in soil. This system utilizes carbon black (CB)-filled [...] Read more.
To address the environmental hazards posed by oil spills and the limitations of conventional hydrocarbon monitoring techniques, a cost-effective and user-friendly gas sensor system was developed for the real-time detection and quantification of hydrocarbon contaminants in soil. This system utilizes carbon black (CB)-filled poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) (PVC) nanocomposites to create chemoresistive sensors. The CB-PMMA and CB-PVC composites were synthesized and deposited as thin films onto interdigitated electrodes, with their morphologies characterized using scanning electron microscopy. The composites, optimized at a composition of 10% w/w CB and 90% w/w polymer, exhibited a sensitive response to hydrocarbon vapors across a tested range from C20 (99 ppmV) to C8 (8750 ppmV). The sensor’s response mechanism is primarily attributed to the swelling-induced resistance change of the amorphous polymer matrix in hydrocarbon vapors. These findings demonstrate the potential use of CB–polymer composites as field-deployable gas sensors, providing a rapid and efficient alternative to traditional gas chromatography methods for monitoring soil remediation efforts and mitigating the environmental impact of oil contamination. Full article
Show Figures

Figure 1

20 pages, 5836 KiB  
Article
Biodegradable Polymer Composites Based on Polypropylene and Hybrid Fillers for Applications in the Automotive Industry
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Delia Pătroi, Beatrice Gabriela Sbârcea, Virgil Emanuel Marinescu and Doina Constantinescu
Processes 2025, 13(4), 1078; https://doi.org/10.3390/pr13041078 - 3 Apr 2025
Viewed by 787
Abstract
This study focuses on the development and characterization of biodegradable polymer composites consisting of a polypropylene (PP) matrix, carbon black pigment, and hybrid fillers. The fillers incorporated into these composites consisted of a blend of fibers and particles derived from natural, biodegradable materials, [...] Read more.
This study focuses on the development and characterization of biodegradable polymer composites consisting of a polypropylene (PP) matrix, carbon black pigment, and hybrid fillers. The fillers incorporated into these composites consisted of a blend of fibers and particles derived from natural, biodegradable materials, such as flax fibers (FFs) and wood flour (WF) particles. The compositions of polymer material were expressed as PP/FF/WF weight ratios of 100/0/0, 70/5/25, and 70/10/20. The polymer materials were prepared using conventional plastic processing methods like extrusion to produce composite mixtures, followed by melt injection to manufacture the samples needed for characterization. The structural characterization of the polymer materials was conducted using optical microscopy and X-ray diffraction (XRD) analyses, while thermal, mechanical, and dielectric properties were also evaluated. Additionally, their biodegradation behavior under mold exposure was assessed over six months. The results were analyzed comparatively, and the optimal composition was identified as the polymer composite containing the highest flax fiber content, namely PP + 10 wt.% flax fiber + 20 wt.% wood flour. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

23 pages, 5590 KiB  
Article
Pushing the Limits of Thermal Resistance in Nanocomposites: A Comparative Study of Carbon Black and Nanotube Modifications
by Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt, Bernhard Schartel and Philipp Höfer
Nanomaterials 2025, 15(7), 546; https://doi.org/10.3390/nano15070546 - 3 Apr 2025
Cited by 1 | Viewed by 583
Abstract
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural [...] Read more.
Enhancing the thermal resistance of carbon fiber-reinforced polymers (CFRPs) with flame retardants or coatings often leads to increased weight and reduced mechanical integrity. To address these challenges, this study introduces an innovative approach for developing nanocomposites using carbon-based nanoparticles, while preserving the structural lightweight properties. For this, carbon black particles (CBPs) up to 10% and carbon nanotubes (CNTs) up to 1.5% were incorporated into the RTM6/G939 composite material. The obtained samples were then analyzed for their properties and heat resistance under one-sided thermal loading at a heat flux of 50 kW/m2. Results demonstrate that integrating these particles improves heat conduction without compromising the material’s inherent advantages. As a result, thermo-induced damage and the resulting loss of mechanical strength are delayed by 17% with CBPs and 7% with CNTs compared to the unmodified material. Thereby, the thermal behavior can be accurately modeled by a straightforward approach, using calibrated, effective measurements of the nanoparticles in the polymer matrix rather than relying on theoretical assumptions. This approach thus provides a promising methode to characterize and improve thermal resistance without significant trade-offs. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

18 pages, 7917 KiB  
Article
Synthesis of Turbostratic Graphene Derived from Biomass Waste Using Long Pulse Joule Heating Technique
by Sukasem Watcharamaisakul, Nisa Janphuang, Warisara Chueangam, Kriettisak Srisom, Anuchit Rueangwittayanon, Ukit Rittihong, Sarayut Tunmee, Narong Chanlek, Peerapol Pornsetmetakul, Warodom Wirojsirasak, Nantida Watanarojanaporn, Kampon Ruethaivanich and Pattanaphong Janphuang
Nanomaterials 2025, 15(6), 468; https://doi.org/10.3390/nano15060468 - 20 Mar 2025
Viewed by 1614
Abstract
This study addresses the challenge of the scalable, cost-effective synthesis of high-quality turbostratic graphene from low-cost carbon sources, including biomass waste such as sugarcane leaves, bagasse, corncobs, and palm bunches, using the Direct Current Long Pulse Joule Heating (DC-LPJH) technique. By optimizing the [...] Read more.
This study addresses the challenge of the scalable, cost-effective synthesis of high-quality turbostratic graphene from low-cost carbon sources, including biomass waste such as sugarcane leaves, bagasse, corncobs, and palm bunches, using the Direct Current Long Pulse Joule Heating (DC-LPJH) technique. By optimizing the carbonization process and blending biomass-derived carbon with carbon black and turbostratic graphene, the gram-scale production of turbostratic graphene was achieved in just a few seconds. The synthesis process involved applying an 18 kJ electrical energy pulse for 1.5 s, resulting in temperatures of approximately 3000 K that facilitated the transformation of the carbon atoms into well-ordered turbostratic graphene. Structural and morphological characterization via Raman spectroscopy revealed low-intensity or absent D bands, with a high I2D/IG ratio (~0.8–1.2), indicating monolayer turbostratic graphene formation. X-ray photoelectron spectroscopy (XPS) identified sp2-hybridized carbon and oxygenated functional groups, while NEXAFS spectroscopy confirmed the presence of graphitic features and both sp2 and sp3 bonding states. Energy consumption calculations for the DC-LPJH process demonstrated approximately 10 kJ per gram, demonstrating the potential for cost-effective production. This work presents an efficient approach for producing high-quality turbostratic graphene from low-cost carbon sources, with applications in enhancing the properties of composites, polymers, and building materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
A Study on the Effect of Conductive Particles on the Performance of Road-Suitable Barium Titanate/Polyvinylidene Fluoride Composite Materials
by Zhenhua Zhao, Rui Li, Chen Zhao and Jianzhong Pei
Materials 2025, 18(5), 1185; https://doi.org/10.3390/ma18051185 - 6 Mar 2025
Cited by 1 | Viewed by 872
Abstract
The design of piezoelectric roads is one of the future directions of smart roads. In order to ensure the environmentally friendly and long-lasting use of piezoelectric road materials, lead-free piezoelectric ceramics (barium titanate), polymer piezoelectric materials (polyvinylidene fluoride), and conductive particles (conductive carbon [...] Read more.
The design of piezoelectric roads is one of the future directions of smart roads. In order to ensure the environmentally friendly and long-lasting use of piezoelectric road materials, lead-free piezoelectric ceramics (barium titanate), polymer piezoelectric materials (polyvinylidene fluoride), and conductive particles (conductive carbon black and graphene) were used to prepare composite piezoelectric materials. The electrical performance was studied by the conductivity, dielectric properties, and piezoelectric properties of the composite materials. Then, the mechanical properties of the composite material were investigated by load compression tests. Finally, the microstructure of the composite materials was studied. The results showed that as the amount of conductive particles increased, the electrical performance was improved. However, further addition of conductive particles led to a decline in the electrical performance. The addition of conductive particles had a minimal effect on the mechanical properties of composite materials. The composite material met road use requirements. The overall structure of the composite materials was compact, with a clear wrapping effect of the polymer, and good interface compatibility. The addition of conductive carbon black and graphene had no significant impact on the structure of the composite materials. Full article
Show Figures

Figure 1

13 pages, 2458 KiB  
Article
Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads
by Ji-Yoon Ahn, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim and Sung-Hoon Park
Micromachines 2025, 16(1), 108; https://doi.org/10.3390/mi16010108 - 19 Jan 2025
Cited by 1 | Viewed by 1204
Abstract
Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive [...] Read more.
Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy. In this study, we present a novel hybrid composite combining carbon nanotubes (CNTs) with NTC properties and carbon black (CB) with PTC properties to achieve a near-zero temperature coefficient of resistance (TCR) at an optimal ratio. This innovation enhances the safety and reliability of carbon-based polymer composites for wearable heating applications. Furthermore, a thermochromic pigment layer is integrated into the hybrid composite, enabling visual temperature indication across three distinct zones. This bilayer structure not only addresses the TCR challenge but also provides real-time, user-friendly temperature monitoring. The resulting composite demonstrates consistent performance and high precision under diverse heating conditions, making it ideal for wearable thermotherapy pads. This study highlights a significant advancement in developing multifunctional, temperature-responsive materials, offering a promising solution for safer and more controllable wearable devices. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in 'Materials and Processing' 2024)
Show Figures

Figure 1

17 pages, 3242 KiB  
Article
A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids
by Usama Umer, Mustufa Haider Abidi, Zeyad Almutairi and Mohamed K. Aboudaif
Polymers 2025, 17(2), 128; https://doi.org/10.3390/polym17020128 - 7 Jan 2025
Viewed by 1127
Abstract
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB [...] Read more.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted. Some critical microstructures such as volume percentage and size of nanoparticles, and interphase characteristics surrounding the CB are micromechanically captured. Next, the electrical conductivity of randomly oriented SiC-containing composites in which the nanocomposite and whisker are considered as the matrix and reinforcement phases, respectively, is estimated. Influences of whisker aspect ratio and volume fraction on the effective electrical conductivity of the SiC/CB-containing polymer composites are explored. Some comparison studies are performed to validate the accuracy of the model. It is observed before the percolation threshold that the addition of nanoparticles with a uniform dispersion can improve the electrical conductivity of the polymer composites containing SiC/CB hybrids. Moreover, the results show that the electrical conductivity is more enhanced by the decrease in nanoparticle size. Interestingly, the composite percolation threshold is significantly reduced when SiC whiskers with a higher aspect ratio are added. This work will be favorable for the design of electro-conductive polymer composites with high performances. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 2937 KiB  
Article
Mechanochemical Functionalization of Oxidized Carbon Black with PLA
by Aida Kiani, Mattia Naddeo, Federica Santulli, Valentina Volpe, Mina Mazzeo and Maria Rosaria Acocella
Molecules 2025, 30(1), 94; https://doi.org/10.3390/molecules30010094 - 29 Dec 2024
Viewed by 1221
Abstract
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid [...] Read more.
The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification. At the same time, the influence of f-CB as a nanofiller of residual PLA waste was evaluated using differential scanning calorimetry (DSC) and gel permeation chromatography (GPC), demonstrating its stabilization effect during melt extrusion by preserving the molecular weight of the starting polymer. On the other hand, the dynamic mechanical analysis (DMA) revealed that the addition of f-CB did not negatively affect the mechanical properties of the resulting composite. In conclusion, mechanochemistry was used as a sustainable and unique strategy for the upcycling of waste PLA into a PLA-based composite stabilized by CB functionalized with the waste PLA itself. Full article
Show Figures

Figure 1

13 pages, 1073 KiB  
Article
Extrusion and Injection Molding of Polyethylene Loaded with Recycled Textiles: Mechanical Performance and Thermal Conductivity
by Mateo Gasselin, Adib Kalantar, Sofi Karlsson, Peter Leisner, Mikael Skrifvars and Pooria Khalili
J. Compos. Sci. 2024, 8(10), 399; https://doi.org/10.3390/jcs8100399 - 2 Oct 2024
Viewed by 1654
Abstract
The aim of this project was to assess the thermal conductivity of polyethylene (PE) filled with carbon black (CB), specifically for geothermal pipes. The project explored the potential modification of PE’s thermal conductivity by incorporating recycled textile fibers. Different types of shredded recycled [...] Read more.
The aim of this project was to assess the thermal conductivity of polyethylene (PE) filled with carbon black (CB), specifically for geothermal pipes. The project explored the potential modification of PE’s thermal conductivity by incorporating recycled textile fibers. Different types of shredded recycled fibers were tested, including two types of polyamide fibers with varying contaminations and one type of polyester fiber. Following several preparation steps, various composite materials were manufactured and compared to bulk PE using various testing methods: Differential Scanning Calorimetry analysis (DSC), mechanical testing (flexural and tensile), and laser flash analysis (LFA). The results revealed alterations in the mechanical properties of the composite materials in comparison to PE filled with CB. The LFA tests demonstrated the effectiveness in reducing polymer thermal diffusivity at higher temperatures, particularly when the material was loaded with recycled polyester fillers. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

13 pages, 4832 KiB  
Article
Enhancing Flame-Retardant Properties of Polyurethane Composites Using N-β-(Aminoethyl)-γ-aminopropyl Trimethoxysilane and Carbon Black Co-Modified Ammonium Polyphosphate
by Lisha Fu, Wanjun Hao, Baoluo Xu, Kexi Zhang, Jianhua Bi, Jingxing Wu and Zhong Wang
Coatings 2024, 14(9), 1126; https://doi.org/10.3390/coatings14091126 - 2 Sep 2024
Viewed by 1380
Abstract
The search for a straightforward method to obtain efficient, affordable, and long-lasting flame retardants with both desirable flame-retardant and mechanical properties for polyurethane (PU) composites remains a significant challenge. In this study, the surface of ammonium polyphosphate (APP) was modified using N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane [...] Read more.
The search for a straightforward method to obtain efficient, affordable, and long-lasting flame retardants with both desirable flame-retardant and mechanical properties for polyurethane (PU) composites remains a significant challenge. In this study, the surface of ammonium polyphosphate (APP) was modified using N-β-(aminoethyl)-γ-aminopropyl trimethoxysilane (KH792) via an ion-exchange reaction, and the modified APP was coated with nanoscale carbon black (CB) to obtain CBAPP. CBAPP demonstrated good compatibility within the PU matrix and notably increased the tensile strength of the PU composites. Furthermore, CBAPP significantly enhanced the flame-retardant properties of the PU composites. The CBAPP/PU composite with a CBAPP mass fraction of 20% achieved a limiting oxygen index of 41.5% and a UL-94 class of V-0. According to the results of this study, our modification approach can be applied to develop other high-performance flame-retardant polymer-based composites, representing a significant contribution to the field of fire safety materials. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints
by Yevheniia Buinova, Anastasiia Kobyliukh, Yevgen Mamunya, Oleksii Maruzhenko, Mykola Korab, Barbara Trzebicka, Urszula Szeluga and Marcin Godzierz
Materials 2024, 17(15), 3776; https://doi.org/10.3390/ma17153776 - 1 Aug 2024
Viewed by 1194
Abstract
The development of easy and direct real-time monitoring of welded joint quality instead of surface damage analysis is crucial to improve the quality of industrial products. This work presents the results of high-density polyethylene (HDPE)-based composites with various carbon black (CB) content (from [...] Read more.
The development of easy and direct real-time monitoring of welded joint quality instead of surface damage analysis is crucial to improve the quality of industrial products. This work presents the results of high-density polyethylene (HDPE)-based composites with various carbon black (CB) content (from 20 to 30 vol.%) for use as a heating element and strain sensor in electrofusion-welded polymer joints. The pyroresistive heating process was used to determine the effect of generated Joule heat during welding on the structure and sensor properties of polymer–carbon composites. It is shown that the generation of Joule heat depends on the nanocarbon content and affects the crystallinity of the polymer matrix. The partial disruption of the conductive path of carbon black particles was observed and, as a result, a decrease in electrical conductivity for composites with lower CB content after welding was found. For the highest CB amount, conductivity increased, which is caused by smaller particle-to-particle distance for filler paths. Therefore, the best balance between pyroresistive and sensor properties was found. Full article
Show Figures

Figure 1

15 pages, 17776 KiB  
Article
Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis
by Kornelia Kozłowska, Mateusz Cieślik, Adrian Koterwa, Krzysztof Formela, Jacek Ryl and Paweł Niedziałkowski
Materials 2024, 17(12), 2833; https://doi.org/10.3390/ma17122833 - 10 Jun 2024
Cited by 1 | Viewed by 1225
Abstract
3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In [...] Read more.
3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic acid) filled with carbon black (CB-PLA) using microwave radiation. A microwave synthesizer used in chemical laboratories (CEM, Matthews, NC, USA) was used for this purpose, establishing that the appropriate activation time for CB-PLA electrodes is 15 min at 70 °C with a microwave power of 100 W. However, the usefulness of an 80 W kitchen microwave oven is also presented for the first time and discussed as a more sustainable approach to CB-PLA electrode activation. It has been established that 10 min in a kitchen microwave oven is adequate to activate the electrode. The electrochemical properties of the microwave-activated electrodes were determined by electrochemical techniques, and their topography was characterized using scanning electron microscopy (SEM), Raman spectroscopy, and contact-angle measurements. This study confirms that during microwave activation, PLAs decompose to uncover the conductive carbon-black filler. We deliver a proof-of-concept of the utility of kitchen microwave-oven activation of a 3D-printed, free-standing electrochemical cell (FSEC) in paracetamol electroanalysis in aqueous electrolyte solution. We established satisfactory limits of linearity for paracetamol detection using voltammetry, ranging from 1.9 μM to 1 mM, with a detection limit (LOD) of 1.31 μM. Full article
Show Figures

Figure 1

12 pages, 2192 KiB  
Article
Effects of Nanofillers and Synergistic Action of Carbon Black/Nanoclay Hybrid Fillers in Chlorobutyl Rubber
by Tomy Muringayil Joseph, Hanna J. Maria, Martin George Thomas, Józef T. Haponiuk and Sabu Thomas
J. Compos. Sci. 2024, 8(6), 209; https://doi.org/10.3390/jcs8060209 - 3 Jun 2024
Cited by 2 | Viewed by 1930
Abstract
Nanocomposites based on chlorobutyl rubber (CIIR) have been made using a variety of nanofillers such as carbon black (CB), nanoclay (NC), graphene oxide (GO), and carbon black/nanoclay hybrid filler systems. The hybrid combinations of CB/nanoclay are being employed in the research to examine [...] Read more.
Nanocomposites based on chlorobutyl rubber (CIIR) have been made using a variety of nanofillers such as carbon black (CB), nanoclay (NC), graphene oxide (GO), and carbon black/nanoclay hybrid filler systems. The hybrid combinations of CB/nanoclay are being employed in the research to examine the additive impacts on the final characteristics of nanocomposites. Atomic force microscopy (AFM), together with resistivity values and mechanical property measurements, have been used to characterise the structural composition of CIIR-based nanocomposites. AFM results indicate that the addition of nanoclay into CIIR increased the surface roughness of the material, which made the material more adhesive. The study found a significant decrease in resistivity in CIIR–nanoclay-based composites and hybrid compositions with nanoclay and CB. The higher resistivity in CB composites, compared to CB/nanoclay, suggests that nanoclay enhances the conductive network of carbon black. However, GO-incorporated composites failed to create conductive networks, which this may have been due to the agglomeration. The study also found that the modulus values at 100%, 200%, and 300% elongation are the highest for clay and CB/clay systems. The findings show that nanocomposites, particularly clay and clay/CB hybrid nanocomposites, may produce polymer nanocomposites with high electrical conductivity. Mechanical properties correlated well with the reinforcement provided by nanoclay. Hybrid nanocomposites with clay/CB had increased mechanical properties because of their enhanced compatibility and higher filler–rubber interaction. Nano-dispersed clay helps prevent fracture growth and enhances mechanical properties even more so than CB. Full article
(This article belongs to the Special Issue Characterization of Polymer Nanocomposites)
Show Figures

Graphical abstract

14 pages, 1741 KiB  
Review
Recycling Functional Fillers from Waste Tires for Tailored Polystyrene Composites: Mechanical, Fire Retarding, Electromagnetic Field Shielding, and Acoustic Insulation Properties—A Short Review
by Jinlong Zhang, Hang Liu, Shyam S. Sablani and Qinglin Wu
Materials 2024, 17(11), 2675; https://doi.org/10.3390/ma17112675 - 1 Jun 2024
Cited by 5 | Viewed by 2284
Abstract
Polymer waste is currently a big and challenging issue throughout the world. Waste tires represent an important source of polymer waste. Therefore, it is highly desirable to recycle functional fillers from waste tires to develop composite materials for advanced applications. The primary theme [...] Read more.
Polymer waste is currently a big and challenging issue throughout the world. Waste tires represent an important source of polymer waste. Therefore, it is highly desirable to recycle functional fillers from waste tires to develop composite materials for advanced applications. The primary theme of this review involves an overview of developing polystyrene (PS) composites using materials from recycled tires as fillers; waste tire recycling in terms of ground tire rubbers, carbon black, and textile fibers; surface treatments of the fillers to optimize various composite properties; and the mechanical, fire retarding, acoustic, and electromagnetic field (EMI) shielding performances of PS composite materials. The development of composite materials from polystyrene and recycled waste tires provides a novel avenue to achieve reductions in carbon emission goals and closed-loop plastic recycling, which is of significance in the development of circular economics and an environmentally friendly society. Full article
(This article belongs to the Topic Rubbers and Elastomers Materials)
Show Figures

Figure 1

Back to TopTop