Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,154)

Search Parameters:
Keywords = carbon biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1666 KB  
Review
Agroforestry as a Climate-Smart Economic Strategy: Carbon Benefits, Adaptation Pathways, and Global Evidence from Smallholder Systems
by Muhammad Asad Abbas, Suhail Asad, Jianqiang Zhang, Altyeb Ali Abaker Omer, Wajee ul Hassan, Muhammad Ameen, Chen Niu and Ya Li
Forests 2026, 17(2), 159; https://doi.org/10.3390/f17020159 (registering DOI) - 25 Jan 2026
Abstract
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated [...] Read more.
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated carbon sequestration pathways, biophysical adaptation benefits, and socioeconomic outcomes. Findings indicate that agroforestry systems can sequester 0.5–5 Mg C ha−1 yr−1 in biomass and soils. The results show that agroforestry has the potential to improve above- and below-ground carbon stocks, moderate microclimates, decrease erosion and improve functional biodiversity. The results, however, differ greatly depending on the type of system, ecology and practice. The socioeconomic advantages can be diversification of income and stability of the yield, and adoption is limited due to barriers related to the economy, lack of security in tenure, information asymmetry, and insufficient policy encouragement. We find that agroforestry is a multifunctional and climate resistant land-use approach, but the potential that agroforestry has cannot be fulfilled without context-specific policies, better extension services and inclusive carbon financing schemes. Full article
Show Figures

Figure 1

20 pages, 6100 KB  
Article
Application of Sustainable Crab-Waste-Derived Nanochitosan as a Soil Amendment for Tomato Cultivation in Loam Soil
by Divya Shanmugavel and Omar Solorza-Feria
Sustainability 2026, 18(3), 1213; https://doi.org/10.3390/su18031213 (registering DOI) - 25 Jan 2026
Abstract
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner [...] Read more.
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner for tomato (Solanum lycopersicum) grown in loam soil without mineral fertilizer. Our results showed that nanochitosan application as a soil supplement by drench improved the soil moisture content (39% vs. 22%), water-holding capacity (84% vs. 70%), total nitrogen (3.8 vs. 1.4 gm N kg−1), and organic carbon content (48.4 vs. 34.1 gm C kg−1) in nanochitosan-amended soil compared with the non-amended soil. This was accompanied by higher biomass, better root/shoot development and synthesis of phytohormones leading to increased shoot length, early flowering, and increased total soluble solids of fruits in nanochitosan-amended soil compared with control, suggesting that nanochitosan can act both as a beneficial soil conditioner and as a plant biostimulant. The results further show that nanochitosan-based formulations may be used not only as fertilizer-saving bio-inputs but also as bio-based nanochitosan plant biostimulants, which can partly substitute mineral fertilizer application for sustainable production of tomato. Moreover, generic fabrication of such nanochitosan from marine biowaste would support the circular-bioeconomy model to further improve sustainability of agroecosystems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 2281 KB  
Article
Pore-Structure Modulation of Macadamia Shell-Derived Hard Carbon for High-Performance Sodium-Ion Battery Anodes
by Xiaoran Wang, Keren Luo, Yanling Zhang and Hao Wu
Processes 2026, 14(3), 419; https://doi.org/10.3390/pr14030419 (registering DOI) - 25 Jan 2026
Abstract
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating [...] Read more.
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating ZnCl2-modified hard carbon (HCMZ-X) using waste macadamia shells and ZnCl2 as a multifunctional structural modifier through a facile high-temperature carbonization. This approach effectively expands the graphite interlayer spacing to 0.394 nm, reduces microcrystalline size, and induces abundant closed pores, synergistically improving sodium-ion storage kinetics within the hard carbon framework. Mechanistic investigations confirm an “adsorption-intercalation-filling” storage mechanism. Hence, the optimized HCMZ-3 delivers a high reversible capacity of 382.05 mAh g−1 at 0.05 A g−1, with the plateau region contributing approximately 70%, significantly outperforming that of unmodified hard carbon (262.64 mAh g−1). Remarkably, it achieves stable rate performance, delivering 190 mAh g−1 at 1 A g−1, along with excellent cycling stability, retaining over 90% after 500 cycles. By rational pore-structure modulation rather than excessive surface activation, this cost-effective method utilizing agricultural waste and ZnCl2 dual-functional modification partially alleviates the intrinsic energy-density limitation of hard carbon anodes, advancing the development of high-performance, eco-friendly anodes for scalable energy storage systems. Full article
Show Figures

Figure 1

27 pages, 823 KB  
Review
Green Synthesis of Biocatalysts for Sustainable Biofuel Production: Advances, Challenges, and Future Directions
by Ghazala Muteeb, Asmaa Waled Abdelrahman, Mohamed Abdelrahman Mohamed, Youssef Basem, Abanoub Sherif, Mohammad Aatif, Mohd Farhan, Ghazi I. Al Jowf, Anabelle P. Buran-Omar and Doaa S. R. Khafaga
Catalysts 2026, 16(2), 115; https://doi.org/10.3390/catal16020115 (registering DOI) - 25 Jan 2026
Abstract
The accelerating global demand for sustainable energy, driven by population growth, industrialization, and environmental concerns, has intensified the search for renewable alternatives to fossil fuels. Biofuels, including bioethanol, biodiesel, biogas, and biohydrogen, offer a viable and practical pathway to reducing net carbon dioxide [...] Read more.
The accelerating global demand for sustainable energy, driven by population growth, industrialization, and environmental concerns, has intensified the search for renewable alternatives to fossil fuels. Biofuels, including bioethanol, biodiesel, biogas, and biohydrogen, offer a viable and practical pathway to reducing net carbon dioxide (CO2) emissions. Yet, their large-scale production remains constrained by biomass recalcitrance, high pretreatment costs, and the enzyme-intensive nature of conversion processes. Recent advances in enzyme immobilization using magnetic nanoparticles (MNPs), covalent organic frameworks, metal–organic frameworks, and biochar have significantly improved enzyme stability, recyclability, and catalytic efficiency. Complementary strategies such as cross-linked enzyme aggregates, carrier-free immobilization, and site-specific attachment further reduce enzyme leaching and operational costs, particularly in lipase-mediated biodiesel synthesis. In addition to biocatalysis, nanozymes—nanomaterials exhibiting enzyme-like activity—are emerging as robust co-catalysts for biomass degradation and upgrading, although challenges in selectivity and environmental safety persist. Green synthesis approaches employing plant extracts, microbes, and agro-industrial wastes are increasingly adopted to produce eco-friendly nanomaterials and bio-derived supports aligned with circular economy principles. These functionalized materials have demonstrated promising performance in esterification, transesterification, and catalytic routes for biohydrogen generation. Technoeconomic and lifecycle assessments emphasize the need to balance catalyst complexity with environmental and economic sustainability. Multifunctional catalysts, process intensification strategies, and engineered thermostable enzymes are improving productivity. Looking forward, pilot-scale validation of green-synthesized nano- and biomaterials, coupled with appropriate regulatory frameworks, will be critical for real-world deployment. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis, 2nd Edition)
Show Figures

Figure 1

19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 (registering DOI) - 25 Jan 2026
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

23 pages, 5269 KB  
Article
Sustainable Functionalization of Natural Fibers Using Biochar: Structural and Evaporation Studies
by Juan José Quiroz Ramírez, Reinier Abreu-Naranjo, Oscar M. Rodriguez-Narvaez, Sergio Alonso Romero and Alejandro Suarez Toriello
Processes 2026, 14(3), 415; https://doi.org/10.3390/pr14030415 (registering DOI) - 24 Jan 2026
Abstract
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with [...] Read more.
The sustainable valorization of lignocellulosic biomass offers a promising route for developing low-cost photothermal materials for solar water purification. This study investigates natural fibers from Opuntia ficus-indica, Agave sisalana, and cellulose sponge, which were chemically purified through alkaline–peroxide pretreatment and subsequently functionalized with biochar via immersion and crosslinking-assisted deposition. Structural analyses (SEM, FTIR, XRD, CHNS/O) confirmed the transition from heterogeneous lignocellulosic matrices to cellulose-rich scaffolds and finally to hierarchical composites in which crystalline cellulose cores are coated with amorphous carbon structures containing aromatic domains typically formed during biomass carbonization. The NaOH/urea/citric acid crosslinking system significantly improved biochar adhesion, producing uniform and mechanically stable photothermal layers. Under 500 W m−2 illumination, the biochar-modified fibers exhibited rapid thermal response and enhanced surface heating, resulting in increased water evaporation rates, with cellulose sponge achieving the highest performance (1.12–1.25 kg m−2 h−1). Water-quality analysis of the condensate showed >97% TDS removal, complete rejection of hardness, fluoride, nitrates, arsenic, and barium, and turbidity <0.2 NTU, meeting NOM-127-SSA1-2021 standards. Overall, the findings demonstrate that biochar-functionalized natural fibers constitute a scalable, environmentally benign strategy for efficient solar-driven purification, supporting their potential for sustainable clean-water technologies in resource-limited settings. Full article
(This article belongs to the Special Issue Advances in Biochar and Biobased Carbonaceous Materials)
Show Figures

Figure 1

13 pages, 618 KB  
Article
Elemental Content and Distribution in Various Willow Clones and Tissue Types
by Cyriac S. Mvolo, Emmanuel A. Boakye and Richard Krygier
Energies 2026, 19(3), 607; https://doi.org/10.3390/en19030607 (registering DOI) - 24 Jan 2026
Abstract
Willows (genus Salix) are versatile plants with applications in construction, medicine, and biomass fuel in North America. Advances in breeding have improved willow clones for higher yields and pest resistance, but the chemical content and distribution across different plant parts remain poorly [...] Read more.
Willows (genus Salix) are versatile plants with applications in construction, medicine, and biomass fuel in North America. Advances in breeding have improved willow clones for higher yields and pest resistance, but the chemical content and distribution across different plant parts remain poorly understood. This study examined the variation in chemical elements (carbon, hydrogen, nitrogen, sulfur, chlorine, and ash) across six willow clones (India, Jorr, Olof, Otisco, Preble, and Tora) and three tissue types (wood, bark, twigs). We also compared freeze-drying and oven-drying methods to assess their impact on chemical content. Freeze-dried samples generally exhibited higher carbon and hydrogen concentrations than oven-dried samples, with statistically significant differences primarily observed for carbon, while nitrogen showed no overall significant difference between drying methods. Chemical composition varied among clones, although no single clone consistently dominated across all chemical parameters. In contrast, pronounced tissue-type differences were observed: bark had higher nitrogen, carbon, sulfur, chlorine, and ash contents, whereas wood exhibited relatively higher hydrogen concentrations, with twigs showing intermediate values. These findings suggest that accounting for tissue-specific chemical differences can improve the selection and utilization of willow biomass and increase the accuracy of ecological assessments, including carbon storage estimates. The findings of this study indicate that oven-drying should remain in use within the bioenergy sector, whereas freeze-drying ought to become the preferred standard for carbon-accounting protocols. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy: 2nd Edition)
21 pages, 3026 KB  
Article
In Situ Quantification of Root Exudates in a Subtropical Mangrove (Bruguiera gymnorhiza) Forest
by Norihiro Kato, Ken’ichi Osaka, Nada Yimatsa, Toshiyuki Ohtsuka and Yasuo Iimura
Forests 2026, 17(2), 156; https://doi.org/10.3390/f17020156 (registering DOI) - 24 Jan 2026
Abstract
Root exudates represent a critical belowground carbon flux; however, direct field-based quantification of these rates on intact mangrove roots remains limited due to methodological challenges. Here, we present, to our knowledge, the first in situ evaluation of root exudation rates in a subtropical [...] Read more.
Root exudates represent a critical belowground carbon flux; however, direct field-based quantification of these rates on intact mangrove roots remains limited due to methodological challenges. Here, we present, to our knowledge, the first in situ evaluation of root exudation rates in a subtropical Bruguiera gymnorhiza forest in Japan, employing a modified cuvette method specifically designed for field measurements on intact root systems. The net root exudation rates measured in artificial seawater at depths of 0–60 cm ranged from 0.01 to 0.97 mg C g−1 h−1, with a mean of 0.22 mg C g−1 h−1. Although this mean rate was comparable to values reported for tropical terrestrial forests, the spatiotemporal variation exhibited variable site-specific patterns. At the midstream site, exudation rates were closely coupled with fine root biomass under nitrogen-limited conditions and peaked during summer. In contrast, the upstream site exhibited unusually high exudation rates during winter, even in deep soil layers. Furthermore, contrary to patterns typically observed in terrestrial forests, exudation rates showed positive correlations with root C:N ratios and proton efflux. These findings suggest that root exudation in mangroves is regulated by complex interactions among site-specific hydrological regimes and stress-adaptation mechanisms, particularly salinity tolerance and nutrient acquisition, rather than by simple growth trade-offs. When integrated over a depth of 0–60 cm, the estimated annual root exudate carbon flux was approximately 0.4 kg C m−2 yr−1. This likely represents a conservative lower-bound estimate because fine root systems extend well below this depth in mangrove forests. Our results strongly suggest that root exudates constitute an important, previously under-recognized component of the “missing carbon” in mangrove ecosystems and underscore the need to explicitly incorporate this flux into blue carbon models to more accurately evaluate mangrove carbon sequestration capacity. Full article
(This article belongs to the Special Issue Soil Carbon Storage in Forests: Dynamics and Management)
Show Figures

Figure 1

18 pages, 5643 KB  
Article
Chemical Characteristics and Source Identification of PM2.5 in Industrial Complexes, Korea
by Hyeok Jang, Shin-Young Park, Ji-Eun Moon, Young-Hyun Kim, Joong-Bo Kwon, Jae-Won Choi and Cheol-Min Lee
Toxics 2026, 14(2), 111; https://doi.org/10.3390/toxics14020111 - 23 Jan 2026
Abstract
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, [...] Read more.
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, two carbon species, and 19 trace elements) were measured and analyzed at five monitoring sites adjacent to the Yeosu and Gwangyang industrial complexes from August 2020 to December 2024. Chemical characterization and source identification were conducted. The average PM2.5 concentration was 18.63 ± 9.71 μg/m3, with notably higher levels observed during winter and spring. A low correlation (R = 0.56) between elemental carbon (EC) and organic carbon (OC) suggests a dominance of secondary aerosols. The charge balance analysis of [NH4+] with [SO42−], [NO3], and [Cl] showed slopes below the 1:1 line, indicating that NH4+ is capable of neutralizing these anions. Positive matrix factorization (PMF) identified eight contributing sources—biomass burning (10.4%), sea salt (11.8%), suspended particles (7.1%), industrial sources (4.6%), Asian dust (5.2%), steel industry (21.8%), secondary nitrate (16.4%), and secondary sulfate (22.7%). These findings provide valuable insights for the development of targeted mitigation strategies and the establishment of effective emission control policies in industrial regions. Full article
(This article belongs to the Section Air Pollution and Health)
17 pages, 6087 KB  
Article
Study on the Physicochemical Properties of Biomass-Assisted Enhanced Coal Extraction Process
by Yue Kang, Hailan Zhao, Yuanhao Yu and Haibin Zuo
Processes 2026, 14(3), 404; https://doi.org/10.3390/pr14030404 - 23 Jan 2026
Abstract
With the transformation of energy structure to low carbon, the clean and efficient utilization of coal has received extensive attention. Among them, the technology of preparing super-clean coal by solvothermal extraction has become a research hotspot because of its good product characteristics. In [...] Read more.
With the transformation of energy structure to low carbon, the clean and efficient utilization of coal has received extensive attention. Among them, the technology of preparing super-clean coal by solvothermal extraction has become a research hotspot because of its good product characteristics. In this paper, FGZ coal was used as a raw material to explore its synergistic extraction effect with wood charcoal at different mass ratios, and the extracted products were systematically characterized by various analytical methods. The results show that the addition of biomass can effectively improve the extraction yield of this coal. When the biomass addition ratio was 35%, the extraction yield reached the highest value of 69.47%, which was about 28.3% higher than that without biomass. Hypercoal has a smooth surface with significantly fewer impurities than raw coal. At the same time, Raman spectroscopy and X-ray diffraction analysis showed that when the biomass addition ratio was 35%, the ID/IG reached a minimum value of 0.8354, and the structural order of the extracted product was the highest. When the biomass addition ratio was 35%, the Lc reached a maximum value of 2.0569 nm, indicating the highest degree of carbon layer stacking and structural order among the samples. Full article
18 pages, 1479 KB  
Article
Phosphorus Loading Drives Microalgal Community Changes and Enhances Nutrient Removal in Photobioreactors Treating Synthetic Wastewater
by Ayache Laabassi, Azzedine Fercha, Stefano Bellucci, Alessia Postiglione, Viviana Maresca, Martina Dentato, Asma Boudehane, Laribi Amira, Fatma Z. Saada, Rodeina Boukehil and Zahia Djenien
Plants 2026, 15(3), 351; https://doi.org/10.3390/plants15030351 - 23 Jan 2026
Viewed by 18
Abstract
Phosphorus is a key nutrient regulating algal growth and eutrophication in aquatic systems, yet its isolated effect on microalgae-based wastewater treatment remains underexplored. This study evaluated how varying phosphorus loads drive microalgal community structure and purification performance in controlled photobioreactors fed synthetic wastewater. [...] Read more.
Phosphorus is a key nutrient regulating algal growth and eutrophication in aquatic systems, yet its isolated effect on microalgae-based wastewater treatment remains underexplored. This study evaluated how varying phosphorus loads drive microalgal community structure and purification performance in controlled photobioreactors fed synthetic wastewater. The synthetic wastewater was formulated with constant carbon and nitrogen but graded phosphorus at C/N/P ratios of 100/5/1, 100/5/10, and 100/5/20 under 6000 lux, a 14 h photoperiod, and 24 ± 2 °C with a 15-day hydraulic retention time. Monitoring of chlorophyll a, pH, total and volatile suspended solids, and algal composition showed that phosphorus enrichment significantly increased chlorophyll a (up to 43.9 µg/L at 20 mg P/L) and particulate biomass (TSS and VSS), while pH remained near neutral to slightly alkaline, with no significant differences among the three bioreactors. Although the same core taxa—Chlorella spp., Scenedesmus spp., Navicula spp., and filamentous algae were present across all bioreactors, their relative abundances shifted significantly with phosphorus concentration. A two-way ANOVA confirmed a highly significant interaction between bioreactor (P level) and genus (p < 0.001), demonstrating phosphorus-driven changes in the microalgal community. Notably, filamentous cyanobacteria (Anabaena spp.) were undetectable in the low- and medium-phosphorus treatments but emerged prominently only at the highest phosphorus level (20 mg/L). Nutrient removal efficiencies peaked in this high-phosphorus bioreactor (C), achieving 85% for bCOD, 78% for nitrogen, and >70% for phosphorus. These results show that phosphorus loading drives predictable shifts in microalgal community composition toward fast-growing algae and cyanobacteria and that these shifts likely contribute to enhanced nutrient removal. The findings support optimization of phosphorus supply and hydraulic residence time in low-cost, sunlight-driven systems to improve polishing performance for small settlements in arid regions. Full article
Show Figures

Figure 1

16 pages, 1231 KB  
Article
Biotechnological Potential and Metabolic Diversity of Lignin-Degrading Bacteria from Decaying Tilia cordata Wood
by Elena Y. Shulga, Bakhtiyar R. Islamov, Artemiy Y. Sukhanov, Mikhail Frolov, Alexander V. Laikov, Natalia V. Trachtmann and Shamil Z. Validov
Microorganisms 2026, 14(2), 266; https://doi.org/10.3390/microorganisms14020266 - 23 Jan 2026
Viewed by 34
Abstract
Lignin is a complex aromatic polymer that constitutes a major fraction of plant biomass and represents a valuable renewable carbon resource. Naturally decaying wood serves as an environmental reservoir of microorganisms capable of degrading lignin. In this study, we isolated and characterized sixteen [...] Read more.
Lignin is a complex aromatic polymer that constitutes a major fraction of plant biomass and represents a valuable renewable carbon resource. Naturally decaying wood serves as an environmental reservoir of microorganisms capable of degrading lignin. In this study, we isolated and characterized sixteen bacterial strains from decaying Tilia cordata wood using an enrichment culture technique with lignin as the sole carbon source. Taxonomic identification via 16S rRNA gene sequencing revealed microbial diversity spanning the genera Bacillus, Pseudomonas, Stenotrophomonas, and several members of the Enterobacteriaceae family, including Raoultella terrigena isolates. Metagenomic sequencing of the wood substrate revealed an exceptionally rich and balanced bacterial community (Shannon index H′ = 5.07), dominated by Streptomyces, Bradyrhizobium, Bacillus, and Pseudomonas, likely reflecting a specialized consortium adapted to lignin rich late-stage decay. Functional phenotyping demonstrated that all isolates possess ligninolytic potential, evidenced by peroxidase/laccase-type activity through methylene blue decolorization. Dynamic Light Scattering (DLS) and HPLC analyses showed that some isolates, such as Raoultella terrigena MGMM806, effectively depolymerized lignosulfonate into low molecular weight fragments (1.23 nm), while others accumulated intermediate metabolites or completely mineralized the substrate. Growth profiling on monolignol substrates revealed a broad spectrum of catabolic specialization in lignin monomer degradation. The results demonstrate a complex system of metabolic partitioning within a natural bacterial consortium. This collection represents a foundational genetic resource for developing engineered biocatalysts and synthetic microbial communities aimed at the efficient conversion of lignin into valuable aromatic compounds. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

16 pages, 2002 KB  
Review
A Dual Soil Carbon Framework for Enhanced Silicate Rock Weathering: Integrating Organic and Inorganic Carbon Pathways Across Forest and Cropland Ecosystems
by Yang Ding, Zhongao Yan, Hao Wang, Yifei Mao, Zeding Liu, Jordi Sardans, Chao Fang and Zhaozhong Feng
Forests 2026, 17(1), 144; https://doi.org/10.3390/f17010144 - 22 Jan 2026
Viewed by 8
Abstract
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics [...] Read more.
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics across forest and cropland ecosystems using a unified SOC–SIC dual-pool framework. Across both systems, ESRW operates through shared geochemical processes, including proton consumption during silicate dissolution and base cation release, which promote atmospheric CO2 uptake. However, carbon fate diverges markedly among ecosystems. Forest systems, characterized by high biomass production, deep rooting, and strong hydrological connectivity, primarily favor biologically mediated pathways, enhancing net primary productivity and mineral-associated organic carbon (MAOC) formation, while facilitating downstream export of dissolved inorganic carbon (DIC). In contrast, intensively managed croplands more readily accumulate measurable soil inorganic carbon (SIC) and soil DIC over short to medium timescales, particularly under evapotranspiration-dominated or calcium-rich conditions, although SOC responses are often moderate and variable. Importantly, only a subset of ESRW-driven pathways—such as MAOC formation and secondary carbonate precipitation—represent durable carbon storage on decadal to centennial timescales. By explicitly distinguishing carbon storage from carbon transport, this synthesis clarifies the conditions under which ESRW can contribute to climate change mitigation and highlights the need for ecosystem-specific deployment and monitoring strategies. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

30 pages, 2837 KB  
Article
Influence of Saline Irrigation and Genotype on Yield, Grain Quality and Physiological Ideotypic Indicators of Bread Wheat in Hot Arid Zones
by Ayesha Rukhsar, Osama Kanbar, Henda Mahmoudi, Salima Yousfi, Maria Dolors Serret and José Luis Araus
Agronomy 2026, 16(2), 270; https://doi.org/10.3390/agronomy16020270 - 22 Jan 2026
Viewed by 22
Abstract
Wheat (Triticum aestivum L.) is a strategic food crop for arid, hot regions such as the Arabian Peninsula, the Middle East, and North Africa. In these areas, production is limited by extreme environmental and agronomic conditions, leading to heavy dependence on imported [...] Read more.
Wheat (Triticum aestivum L.) is a strategic food crop for arid, hot regions such as the Arabian Peninsula, the Middle East, and North Africa. In these areas, production is limited by extreme environmental and agronomic conditions, leading to heavy dependence on imported wheat. Irrigation is often essential for successful cultivation, but available water sources are frequently saline. This study evaluated the comparative effects of irrigation salinity and genotype on agronomic performance, physiological responses, and grain quality. Nine Syrian wheat genotypes and one French bread-making cultivar, Florence Aurora, were grown in sandy soil under three irrigation salinity levels (2.6, 10, and 15 dS m−1) across two seasons at the International Center for Biosaline Agriculture (Dubai, UAE). Salinity strongly negatively impacted yield, which decreased by 61% from the control to 15 dS m−1, along with key yield components such as thousand grain weight and total biomass. Physiological traits, including carbon isotope composition (δ13C) and Na concentrations in roots, shoots and grains, increased significantly with salinity, while chlorophyll content showed a modest decline. Effects on grain quality were relatively minor: total nitrogen concentration and most mineral levels increased slightly, mainly due to a passive concentration effect associated with reduced TGW. Genotypes varied significantly in yield, biomass, TGW, physiological traits, and grain quality. The highest-yielding genotypes under control conditions (ACSAD 981 and ACSAD 1147) also performed best under saline conditions, and no trade-off was observed between yield and grain quality parameters (TGW, nitrogen, zinc, and iron concentrations). Separate analyses conducted for control and saline treatments identified different drivers of genotypic variability. Under control conditions, chlorophyll content, closely linked with δ13C, was the best predictor of genotypic differences and was positively correlated with yield across genotypes. Under salinity stress, grain magnesium (Mg) concentration was the strongest predictor, followed by grain δ13C, with both traits positively correlated with yield. These findings highlight key physiological traits linked to salinity tolerance and offer insights into the mechanisms underlying genotypic variability under both optimal and saline irrigation conditions. Full article
23 pages, 1546 KB  
Article
Remote Sensing-Based Mapping of Forest Above-Ground Biomass and Its Relationship with Bioclimatic Factors in the Atacora Mountain Chain (Togo) Using Google Earth Engine
by Demirel Maza-esso Bawa, Fousséni Folega, Kueshi Semanou Dahan, Cristian Constantin Stoleriu, Bilouktime Badjaré, Jasmina Šinžar-Sekulić, Huaguo Huang, Wala Kperkouma and Batawila Komlan
Geomatics 2026, 6(1), 8; https://doi.org/10.3390/geomatics6010008 (registering DOI) - 22 Jan 2026
Viewed by 31
Abstract
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach [...] Read more.
Accurate estimation of above-ground biomass (AGB) is vital for carbon accounting, biodiversity conservation, and sustainable forest management, especially in tropical regions under strong anthropogenic pressure. This study estimated and mapped AGB in the Atacora Mountain Chain, Togo, using a multi-source remote sensing approach within Google Earth Engine (GEE). Field data from 421 plots of the 2021 National Forest Inventory were combined with Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral imagery, bioclimatic variables from WorldClim, and topographic data. A Random Forest regression model evaluated the predictive capacity of different variable combinations. The best model, integrating SAR, optical, and climatic variables (S1S2allBio), achieved R2 = 0.90, MAE = 13.42 Mg/ha, and RMSE = 22.54 Mg/ha, outperforming models without climate data. Dense forests stored the highest biomass (124.2 Mg/ha), while tree/shrub savannas had the lowest (25.38 Mg/ha). Spatially, ~60% of the area had biomass ≤ 50 Mg/ha. Precipitation correlated positively with AGB (r = 0.55), whereas temperature showed negative correlations. This work demonstrates the effectiveness of integrating multi-sensor satellite data with climatic predictors for accurate biomass mapping in complex tropical landscapes. The approach supports national forest monitoring, REDD+ programs, and ecosystem restoration, contributing to SDGs 13, 15, and 12 and offering a scalable method for other tropical regions. Full article
Show Figures

Graphical abstract

Back to TopTop