Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = capacitive touch sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11669 KB  
Article
Cyber–Physical–Human System for Elderly Exercises Based on Flexible Piezoelectric Sensor Array
by Qingwei Song, Chyan Zheng Siow, Takenori Obo and Naoyuki Kubota
Appl. Sci. 2025, 15(23), 12519; https://doi.org/10.3390/app152312519 - 25 Nov 2025
Viewed by 381
Abstract
Developing flexible, cost-effective, and durable sensors is a key challenge for integrating Cyber–Physical–Human Systems (CPHSs) into smart homes. This paper introduces a flexible pressure sensor array designed for CPHS applications, addressing the need for cost-effective and durable sensors in smart homes. Our approach [...] Read more.
Developing flexible, cost-effective, and durable sensors is a key challenge for integrating Cyber–Physical–Human Systems (CPHSs) into smart homes. This paper introduces a flexible pressure sensor array designed for CPHS applications, addressing the need for cost-effective and durable sensors in smart homes. Our approach combines flexible piezoelectric materials with Swept Frequency Capacitive Sensing (SFCS). Unlike previous pressure sensors made of flexible piezoelectric materials, which can only measure dynamic pressure due to charge leakage, by using SFCS, the piezoelectric material is not directly in the circuit, and our sensor can effectively measure static pressure. While traditional arrays require multiple I/O ports or a matrix configuration, our design measures four distinct locations using only a single I/O port. The sensor is also mechanically flexible and exhibits high durability, capable of functioning even after being cut or torn, provided the electrode contact area remains largely intact. To decode the complex, multiplexed signal from this single channel, we developed a two-stage deep learning pipeline. We utilized data from thin-film resistive pressure sensors as ground truth. A classification model determines which of the four sensors are being touched. Then a regression model uses this touch-state information to estimate the corresponding pressure values. This pipeline employs a hybrid architecture that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. The results show that the system can estimate pressure values at each location. To demonstrate its application, the sensor system was integrated into a power recliner, thereby transforming the chair into an interactive tool for daily exercise designed to improve the well-being of older adults. This successful implementation establishes a viable pathway for the development of intelligent, interactive furniture for in-home exercise and rehabilitation within the CPHS paradigm. Full article
Show Figures

Figure 1

19 pages, 2299 KB  
Article
Capacitance Characteristics of Glass-Embedded Interdigitated Capacitors for Touch Sensing Applications
by Apichart Kaewcharoen, Kirote Arpanutud, Prayoot Akkaraekthalin, Phongsaphak Sittimart and Suramate Chalermwisutkul
Sensors 2025, 25(22), 6941; https://doi.org/10.3390/s25226941 - 13 Nov 2025
Viewed by 1111
Abstract
This paper investigates the capacitance characteristics of a glass-embedded interdigitated capacitive sensor (IDCS) for touch-sensing applications. The study analyzes both baseline (no-touch) and touch-induced capacitance variations through a combination of analytical modeling and experimental validation. A multilayer analytical model is first employed to [...] Read more.
This paper investigates the capacitance characteristics of a glass-embedded interdigitated capacitive sensor (IDCS) for touch-sensing applications. The study analyzes both baseline (no-touch) and touch-induced capacitance variations through a combination of analytical modeling and experimental validation. A multilayer analytical model is first employed to calculate the baseline capacitance of the proposed structure, followed by experimental measurements for model verification. Subsequently, an equivalent circuit model of the touched state is introduced to represent the interaction between the human fingertip, sensor electrodes, and earth-ground, explaining the observed capacitance reduction during a finger touch. Sensor prototypes with electrode finger widths of 1.4, 2.0, 2.4, and 3.0 mm were fabricated within a 40 × 40 mm2 sensing area. The baseline capacitance decreased from 28.6 pF at 1.4 mm to 12 pF at 3.0 mm electrode finger width, while the capacitance change upon touch ranged from 0.6–0.9 pF. Touch sensitivity for three test persons increased from about 1.7–4.6% at 1.4 mm to 5–7.6% at 3.0 mm electrode finger width. The results confirm that narrower-electrode designs yield higher absolute capacitance, whereas wider electrodes enhance touch sensitivity and provide greater uniformity within the defined sensing area. Overall, the findings validate the proposed IDCS configuration as a practical approach for realizing glass-integrated touch sensors and offer practical guidelines for optimizing electrode geometry in touch-based smart-glass applications. Full article
(This article belongs to the Special Issue Electromagnetic Sensors and Their Applications)
Show Figures

Figure 1

21 pages, 5469 KB  
Article
Radio Frequency Passive Tagging System Enabling Object Recognition and Alignment by Robotic Hands
by Armin Gharibi, Mahmoud Tavakoli, André F. Silva, Filippo Costa and Simone Genovesi
Electronics 2025, 14(17), 3381; https://doi.org/10.3390/electronics14173381 - 25 Aug 2025
Viewed by 1610
Abstract
Robotic hands require reliable and precise sensing systems to achieve accurate object recognition and manipulation, particularly in environments where vision- or capacitive-based approaches face limitations such as poor lighting, dust, reflective surfaces, or non-metallic materials. This paper presents a novel radiofrequency (RF) pre-touch [...] Read more.
Robotic hands require reliable and precise sensing systems to achieve accurate object recognition and manipulation, particularly in environments where vision- or capacitive-based approaches face limitations such as poor lighting, dust, reflective surfaces, or non-metallic materials. This paper presents a novel radiofrequency (RF) pre-touch sensing system that enables robust localization and orientation estimation of objects prior to grasping. The system integrates a compact coplanar waveguide (CPW) probe with fully passive chipless RF resonator tags fabricated using a patented flexible and stretchable conductive ink through additive manufacturing. This approach provides a low-cost, durable, and highly adaptable solution that operates effectively across diverse object geometries and environmental conditions. The experimental results demonstrate that the proposed RF sensor maintains stable performance under varying distances, orientations, and inter-tag spacings, showing robustness where traditional methods may fail. By combining compact design, cost-effectiveness, and reliable near-field sensing independent of an object or lighting, this work establishes RF sensing as a practical and scalable alternative to optical and capacitive systems. The proposed method advances robotic perception by offering enhanced precision, resilience, and integration potential for industrial automation, warehouse handling, and collaborative robotics. Full article
Show Figures

Figure 1

7 pages, 4149 KB  
Proceeding Paper
Empowering Smart Surfaces: Optimizing Dielectric Inks for In-Mold Electronics
by Priscilla Hong, Gibson Soo Chin Yuan, Yeow Meng Tan and Kebao Wan
Eng. Proc. 2024, 78(1), 8; https://doi.org/10.3390/engproc2024078008 - 6 Feb 2025
Viewed by 1030
Abstract
Dielectric materials have gained traction for their energy-storage capacitive and electrically insulating properties as sensors and in smart surface technologies such as in In-Mold Electronics (IME). IME is a disruptive technology that involves environmentally protected electronics in plastic thermoformed and molded structures. The [...] Read more.
Dielectric materials have gained traction for their energy-storage capacitive and electrically insulating properties as sensors and in smart surface technologies such as in In-Mold Electronics (IME). IME is a disruptive technology that involves environmentally protected electronics in plastic thermoformed and molded structures. The use of IME in a human–machine interface (HMI) provides a favorable experience to the users and helps reduce production costs due to a smaller list of parts and lower material costs. A few functional components that are compatible with one another are crucial to the final product’s properties in the IME structure. Of these components, the dielectric layers are an important component in the smart surface industry, providing insulation for the prevention of leakage currents in multilayered printed structures and capacitance sensing on the surface of specially designed shapes in IME. Advanced dielectric materials are non-conductive materials that impend and polarize electron movements within the material, store electrical energy, and reduce the flow of electric current with exceptional thermal stability. The selection of a suitable dielectric ink is an integral stage in the planning of the IME smart touch surface. The ink medium, solvent, and surface tension determine the printability, adhesion, print quality, and the respective reaction with the bottom and top conductive traces. The sequence in which the components are deposited and the heating processes in subsequent thermoforming and injection molding are other critical factors. In this study, various commercially available dielectric layers were each printed in two to four consecutive layers with a mesh thickness of 50–60 µm or 110–120 µm, acting as an insulator between conductive silver traces overlaid onto a polycarbonate substrate. Elemental mapping and optical analysis on the cross-section were conducted to determine the compatibility and the adhesion of the dielectric layers on the conductive traces and polycarbonate substrate. The final selection was based on the functionality, reliability, repeatability, time-stability, thickness, total processing time, appearance, and cross-sectional analysis results. The chosen candidate was then placed through the final product design, circuitry design, and plastic thermoforming process. In summary, this study will provide a general guideline to optimize the selection of dielectric inks for in-mold electronics applications. Full article
Show Figures

Figure 1

30 pages, 9276 KB  
Review
Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application
by Jingyao Tang, Yiheng Li, Yirong Yu, Qing Hu, Wenya Du and Dabin Lin
Sensors 2025, 25(3), 964; https://doi.org/10.3390/s25030964 - 5 Feb 2025
Cited by 18 | Viewed by 8082
Abstract
Flexible tactile sensors are widely used in aerospace, medical and health monitoring, electronic skin, human–computer interaction, and other fields due to their unique advantages, thus becoming a research hotspot. The goal is to develop a flexible tactile sensor characterized by outstanding sensitivity, extensive [...] Read more.
Flexible tactile sensors are widely used in aerospace, medical and health monitoring, electronic skin, human–computer interaction, and other fields due to their unique advantages, thus becoming a research hotspot. The goal is to develop a flexible tactile sensor characterized by outstanding sensitivity, extensive detection range and linearity, elevated spatial resolution, and commendable adaptability. Among several strategies like capacitive, piezoresistive, and triboelectric tactile sensors, etc., we focus on piezoelectric tactile sensors because of their self-powered nature, high sensitivity, and quick response time. These sensors can respond to a wide range of dynamic mechanical stimuli and turn them into measurable electrical signals. This makes it possible to accurately detect objects, including their shapes and textures, and for them to sense touch in real time. This work encapsulates current advancements in flexible piezoelectric tactile sensors, focusing on enhanced material properties, optimized structural design, improved fabrication techniques, and broadened application domains. We outline the challenges facing piezoelectric tactile sensors to provide inspiration and guidance for their future development. Full article
(This article belongs to the Special Issue Materials and Devices for Flexible Electronics in Sensor Applications)
Show Figures

Figure 1

14 pages, 3333 KB  
Article
Capacitive Sensors Based on Recycled Carbon Fibre (rCF) Composites
by Oliver Ozioko, Daniel C. Odiyi, Uchenna Diala, Fiyinfoluwa Akinbami, Marshal Emu and Mahmoud Shafik
Sensors 2024, 24(14), 4731; https://doi.org/10.3390/s24144731 - 21 Jul 2024
Cited by 2 | Viewed by 2888
Abstract
Recycled carbon fibre (rCF) composites are increasingly being explored for applications such as strain sensing, manufacturing of automobile parts, assistive technologies, and structural health monitoring due to their properties and economic and environmental benefits. The high conductivity of carbon and its wide application [...] Read more.
Recycled carbon fibre (rCF) composites are increasingly being explored for applications such as strain sensing, manufacturing of automobile parts, assistive technologies, and structural health monitoring due to their properties and economic and environmental benefits. The high conductivity of carbon and its wide application for sensing makes rCF very attractive for integrating sensing into passive structures. In this paper, capacitive sensors have been fabricated using rCF composites of varying compositions. First, we investigated the suitability of recycled carbon fibre polymer composites for different sensing applications. As a proof of concept, we fabricated five touch/proximity sensors and three soil moisture sensors, using recycled carbon fibre composites and their performances compared. The soil moisture sensors were realised using rCF as electrodes. This makes them corrosion-resistant and more environmental-friendly, compared to conventional soil moisture sensors realised using metallic electrodes. The results of the touch/proximity sensing show an average change in capacitance (ΔC/C~34) for 20 mm and (ΔC/C~5) for 100 mm, distances of a hand from the active sensing region. The results of the soil moisture sensors show a stable and repeatable response, with a high sensitivity of ~116 pF/mL of water in the linear region. These results demonstrate their respective potential for touch/proximity sensing, as well as smart and sustainable agriculture. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 9997 KB  
Review
Review of Integrated Gate Driver Circuits in Active Matrix Thin-Film Transistor Display Panels
by Min-Kyu Chang, Seoyeong Jeong, Darren Kim and Hyoungsik Nam
Micromachines 2024, 15(7), 823; https://doi.org/10.3390/mi15070823 - 25 Jun 2024
Cited by 8 | Viewed by 6363
Abstract
Many advanced technologies have been employed in high-performance active matrix displays, including liquid crystal displays, organic light-emitting diode displays, and micro-light-emitting diode displays. On the other side, there exists a strong demand for cost reduction, and it is one of the low-cost schemes [...] Read more.
Many advanced technologies have been employed in high-performance active matrix displays, including liquid crystal displays, organic light-emitting diode displays, and micro-light-emitting diode displays. On the other side, there exists a strong demand for cost reduction, and it is one of the low-cost schemes for integrating the driver circuit in a panel based on thin-film transistor technologies. This paper reviews the overall concept, operation principles, and various circuit approaches in shift registers for scanning pulse generation. In addition, it deals with the implementation of additional functionalities in gate drivers to support pixel compensation, multi-line driving, in-cell capacitive touch screen, pixel sensing, and adaptive scanning region control. Full article
Show Figures

Figure 1

30 pages, 4620 KB  
Review
Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications
by Jianguo Xi, Huaiwen Yang, Xinyu Li, Ruilai Wei, Taiping Zhang, Lin Dong, Zhenjun Yang, Zuqing Yuan, Junlu Sun and Qilin Hua
Nanomaterials 2024, 14(5), 465; https://doi.org/10.3390/nano14050465 - 4 Mar 2024
Cited by 26 | Viewed by 13168
Abstract
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human–machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering [...] Read more.
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human–machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors. Full article
(This article belongs to the Special Issue Advances in Flexible Nanoelectronics)
Show Figures

Figure 1

18 pages, 7265 KB  
Article
Design, Fabrication, and Optimization of a Printed Ag Nanoparticle-Based Flexible Capacitive Sensor for Automotive IVI Bezel Display Applications
by Srinivasan Palanisamy, Muthuramalingam Thangaraj, Khaja Moiduddin, Hisham Alkhalefah, Panagiotis Karmiris-Obratański and Cheng Siong Chin
Sensors 2023, 23(9), 4211; https://doi.org/10.3390/s23094211 - 23 Apr 2023
Cited by 6 | Viewed by 2541
Abstract
Since printed capacitive sensors provide better sensing performance, they can be used in automotive bezel applications. It is necessary to fabricate such sensors and apply an optimization approach for choosing the optimal sensor pattern. In the present work, an effort was made to [...] Read more.
Since printed capacitive sensors provide better sensing performance, they can be used in automotive bezel applications. It is necessary to fabricate such sensors and apply an optimization approach for choosing the optimal sensor pattern. In the present work, an effort was made to formulate interdigitated pattern-printed Silver (Ag) electrode flexible sensors and adopt the Taguchi Grey Relational (TGR)-based optimization approach to enhance the flexible sensor’s panel for enhanced automobile infotainment applications. The optimization technique was performed to derive better design considerations and analyze the influence of the sensor’s parameters on change in capacitance when touched and production cost. The fabricated flexible printed sensors can provide better sensing properties. A design pattern which integrates an overlap of 15 mm, an electrode line width of 0.8 mm, and an electrode gap 0.8 mm can produce a higher change in capacitance and achieve a lower weight. The overlap has a greater influence on sensor performance owing to its optimization of spatial interpolation. Full article
(This article belongs to the Special Issue Advanced Devices and Materials for Printed Flexible Electronics)
Show Figures

Figure 1

13 pages, 1300 KB  
Communication
Self Capacitance Mismatch Calibration Technique for Fully-Differential Touch Screen Panel Self Capacitance Sensing System
by Siheon Seong, Sewon Lee, Sunghyun Bae and Minjae Lee
Sensors 2023, 23(7), 3779; https://doi.org/10.3390/s23073779 - 6 Apr 2023
Cited by 1 | Viewed by 3554
Abstract
This paper presents a fully-differential touch screen panel (TSP) self-capacitance sensing (SCS) system with a self-capacitance mismatch calibration technique. Due to the self-capacitance mismatch of TSP, the analog front-end (AFE) of the receiver (RX) circuit suffers from dynamic range degradation and gain limitations, [...] Read more.
This paper presents a fully-differential touch screen panel (TSP) self-capacitance sensing (SCS) system with a self-capacitance mismatch calibration technique. Due to the self-capacitance mismatch of TSP, the analog front-end (AFE) of the receiver (RX) circuit suffers from dynamic range degradation and gain limitations, which lead to the signal-to-noise ratio (SNR) loss for the TSP SCS system. The proposed calibration introduces the difference in input resistance and the driving amplifier’s strength between the fully-differential input. Thus, the mismatch effect is efficiently relieved in terms of area and power consumption. The proposed calibration restores the SNR by 19.54 dB even under the worst self-capacitance mismatch case. Full article
(This article belongs to the Special Issue Advanced CMOS Integrated Circuit Design and Application II)
Show Figures

Figure 1

33 pages, 9795 KB  
Article
Energy Autonomous Wireless Sensing Node Working at 5 Lux from a 4 cm2 Solar Cell
by Marcel Louis Meli, Sebastien Favre, Benjamin Maij, Stefan Stajic, Manuel Boebel, Philip John Poole, Martin Schellenberg and Charalampos S. Kouzinopoulos
J. Low Power Electron. Appl. 2023, 13(1), 12; https://doi.org/10.3390/jlpea13010012 - 1 Feb 2023
Cited by 4 | Viewed by 6120
Abstract
Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the [...] Read more.
Harvesting energy for IoT nodes in places that are permanently poorly lit is important, as many such places exist in buildings and other locations. The need for energy-autonomous devices working in such environments has so far received little attention. This work reports the design and test results of an energy-autonomous sensor node powered solely by solar cells. The system can cold-start and run in low light conditions (in this case 20 lux and below, using white LEDs as light sources). Four solar cells of 1 cm2 each are used, yielding a total active surface of 4 cm2. The system includes a capacitive sensor that acts as a touch detector, a crystal-accurate real-time clock (RTC), and a Cortex-M3-compatible microcontroller integrating a Bluetooth Low Energy radio (BLE) and the necessary stack for communication. A capacitor of 100 μF is used as energy storage. A low-power comparator monitors the level of the energy storage and powers up the system. The combination of the RTC and touch sensor enables the MCU load to be powered up periodically or using an asynchronous user touch activity. First tests have shown that the system can perform the basic work of cold-starting, sensing, and transmitting frames at +0 dBm, at illuminances as low as 5 lux. Harvesting starts earlier, meaning that the potential for full function below 5 lux is present. The system has also been tested with other light sources. The comparator is a test chip developed for energy harvesting. Other elements are off-the-shelf components. The use of commercially available devices, the reduced number of parts, and the absence of complex storage elements enable a small node to be built in the future, for use in constantly or intermittently poorly lit places. Full article
(This article belongs to the Special Issue Energy-Harvesting and Self-Powered Devices)
Show Figures

Figure 1

11 pages, 3072 KB  
Article
Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation
by Xiao Cheng, Fan Zhang and Wentao Dong
Polymers 2022, 14(19), 3930; https://doi.org/10.3390/polym14193930 - 20 Sep 2022
Cited by 22 | Viewed by 5420
Abstract
Electronic skin with human-like sensory capabilities has been widely applied to artificial intelligence, biomedical engineering, and the prosthetic hand for expanding the sensing ability of robots. Robotic electronic skin (RES) based on conductive hydrogel is developed to collect strain and pressure data for [...] Read more.
Electronic skin with human-like sensory capabilities has been widely applied to artificial intelligence, biomedical engineering, and the prosthetic hand for expanding the sensing ability of robots. Robotic electronic skin (RES) based on conductive hydrogel is developed to collect strain and pressure data for improving the grasping capability of the robot finger. RES is fabricated and assembled by the soft functional materials through a sol–gel process for guaranteeing the overall softness. The strain sensor based on piezoresistive hydrogel (gauge factor ~9.98) is integrated onto the back surface of the robot finger to collect the bending angle of the robot finger. The capacitive pressure sensor based on a hydrogel electrode (sensitivity: 0.105 kPa−1 below 3.61 kPa, and 0.0327 kPa−1 in the range from 4.12 to 15 kPa.) is adhered onto the fingertip to collect the pressure data when touching the objects. A robot-finger-compatible RES with strain and pressure sensing function is designed for finger gesture detection and grasping manipulation. The negative force feedback control framework is built to improve grasping manipulation of the robot finger with RES, which would provide a self-adaptive control method to determine whether the objects are grasped successfully or not. Robot fingers integrated with soft sensors would promote the development of sensing and grasping abilities of the robot finger and interaction with human beings. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Sensors)
Show Figures

Figure 1

18 pages, 3529 KB  
Article
Research on Indoor Spatial Behavior Perception IoT Smart System for Solitary Elderly at Home
by Chor-Kheng Lim
Designs 2022, 6(5), 75; https://doi.org/10.3390/designs6050075 - 28 Aug 2022
Cited by 4 | Viewed by 3894
Abstract
This research aims at contributing to a seamless, integrated technology intelligent living system for solitary older adults at home. The capacitive intimate sensing module, that can be easily pasted to the existing home space element surfaces, daily objects, or home furniture, such as [...] Read more.
This research aims at contributing to a seamless, integrated technology intelligent living system for solitary older adults at home. The capacitive intimate sensing module, that can be easily pasted to the existing home space element surfaces, daily objects, or home furniture, such as a wall, door, stairs, a chair, cabinet, table, sofa, etc, is developed in this research. This 30 × 30 cm sensing module can actively sense people’s physical behaviors and body movements in spaces. The signals acquired from the sensing modules in indoor spaces will then integrate into the controller system through the IoT application and logically define the behavior classification. From the preliminary analysis of observing the 80-year-old elderly subject’s daily activities, the movement trajectory of the ‘Move–Stop’ pattern is found. There will be a touch (T) and a touchless (TL) relationship between the body and the space elements or objects. The touchless or non-contact intimate relationship also can be divided into two types: 1. the body ‘Passes by’ (P) the spatial elements or objects, and 2. the body ‘Stays’ (S) in front of the object and performs activities. This research pasted eight sensing modules on nine objects in six spaces. Finally, the specific actions and life pattern can be recognized and analyzed through the developed IoT spatial behavior smart system and provide the customized intelligent application function for the elderly. Full article
(This article belongs to the Special Issue Smart Home Design)
Show Figures

Figure 1

22 pages, 12670 KB  
Article
Robust Touch Screen Readout System to Display Noise Using Multireference Differential Sensing Scheme for Flexible AMOLED Display
by Junmin Lee, Hyoyoung Kim, Juwon Ham and Seunghoon Ko
Micromachines 2022, 13(6), 942; https://doi.org/10.3390/mi13060942 - 14 Jun 2022
Cited by 5 | Viewed by 4174
Abstract
This paper presents a front-end architecture for touch screen panel (TSP) readout in a TSP-integrated, ultrathin flexible display to mitigate severe display noise interference, which is an uncommon mode caused by the large panel load of the TSP in the flexible display. The [...] Read more.
This paper presents a front-end architecture for touch screen panel (TSP) readout in a TSP-integrated, ultrathin flexible display to mitigate severe display noise interference, which is an uncommon mode caused by the large panel load of the TSP in the flexible display. The differential sensing method with multireference TSP channels minimized an imbalance of the phase and amplitude of the coupled-display noise interference. In addition, cascaded time-discrete bandpass sampling was employed to enhance the touch sensitivity in the sensing block. Moreover, a rated front-end block could be reconfigured to a differential or single-ended sensing structure, which reused the prefilter capacitors in the differential sensing for offset cancellation in reference capacitance sensing. To further improve the sensitivity, programmable postfiltering was employed on the reference TSP channels. Subsequently, the proposed front-end was implemented in a 350 nm process, wherein it achieved a SNR of 50.5 dB with a scan rate of 200 Hz and attenuated aggravated display noise interference by more than 6.84 dB as compared to the conventional differential sensing method. The designed chip occupied an area of 4.8 mm2 and consumed 17.6 mW from a 3 V supply. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in "Materials and Processing" 2022)
Show Figures

Figure 1

21 pages, 3330 KB  
Review
Recent Advances in Touch Sensors for Flexible Wearable Devices
by Abdul Hakeem Anwer, Nishat Khan, Mohd Zahid Ansari, Sang-Soo Baek, Hoon Yi, Soeun Kim, Seung Man Noh and Changyoon Jeong
Sensors 2022, 22(12), 4460; https://doi.org/10.3390/s22124460 - 13 Jun 2022
Cited by 81 | Viewed by 13107
Abstract
Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch [...] Read more.
Many modern user interfaces are based on touch, and such sensors are widely used in displays, Internet of Things (IoT) projects, and robotics. From lamps to touchscreens of smartphones, these user interfaces can be found in an array of applications. However, traditional touch sensors are bulky, complicated, inflexible, and difficult-to-wear devices made of stiff materials. The touch screen is gaining further importance with the trend of current IoT technology flexibly and comfortably used on the skin or clothing to affect different aspects of human life. This review presents an updated overview of the recent advances in this area. Exciting advances in various aspects of touch sensing are discussed, with particular focus on materials, manufacturing, enhancements, and applications of flexible wearable sensors. This review further elaborates on the theoretical principles of various types of touch sensors, including resistive, piezoelectric, and capacitive sensors. The traditional and novel hybrid materials and manufacturing technologies of flexible sensors are considered. This review highlights the multidisciplinary applications of flexible touch sensors, such as e-textiles, e-skins, e-control, and e-healthcare. Finally, the obstacles and prospects for future research that are critical to the broader development and adoption of the technology are surveyed. Full article
(This article belongs to the Special Issue Wearable Sensor for Activity Analysis and Context Recognition)
Show Figures

Figure 1

Back to TopTop