Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = canna starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6444 KiB  
Article
Complete Chloroplast Genome Sequences of Three Canna Species: Genome Characterization, Comparative Analyses, and Phylogenetic Relationships Within Zingiberales
by Linhe Sun, Jixiang Liu, Fangyu Liu, Wei Wang, Yajun Chang and Dongrui Yao
Curr. Issues Mol. Biol. 2025, 47(4), 222; https://doi.org/10.3390/cimb47040222 - 25 Mar 2025
Viewed by 491
Abstract
Canna, the sole member of the Cannaceae family, is widely cultivated as an ornamental plant for its decorative flowers and foliage and is also a potential tuber crop due to its high starch content. This study sequenced, assembled, and analyzed the complete [...] Read more.
Canna, the sole member of the Cannaceae family, is widely cultivated as an ornamental plant for its decorative flowers and foliage and is also a potential tuber crop due to its high starch content. This study sequenced, assembled, and analyzed the complete chloroplast (cp) genomes of three common Canna species with distinct leaf colors (green, purple, and variegated). The four cp genomes ranged from 164,427 to 164,509 bp in length, had a GC content of 36.23–36.25%, and exhibited identical gene content and codon preferences. Each genome contained 130 genes, including 110 unique genes (78 protein-coding genes, four of unknown function, four rRNAs, and 28 tRNAs), 18 duplicated genes located in the IR regions (six protein-coding genes, two of unknown function, four rRNAs, and eight tRNAs), and two trnM-CAU genes in the LSC region. SSR and long-repeat showed differences in long repeats numbers and distributions among the four cp genomes, highlighting potential molecular markers for Canna species identification and breeding. Comparative analysis showed high conservation across Canna cp genomes. Phylogenetic analysis confirmed a close relationship between Cannaceae and Marantaceae and supported a [Musaeceae (Cannaceae + Marantaceae)] clade as a sister group to Costaceae. The cp genome data generated in this study provide valuable insights for developing molecular markers, resolving taxonomic classifications, and advancing phylogenetic and population genetic studies in Canna species. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 4378 KiB  
Article
An Experimental and Computational Study on the Effects of Ball Milling on the Physicochemical Properties and Digestibility of a Canna Starch/Tea Polyphenol Complex
by Yizhou Wang, Kejun Di, Ying Sun, Xiaojing Li, Jiong Zheng and Fusheng Zhang
Foods 2025, 14(2), 208; https://doi.org/10.3390/foods14020208 - 10 Jan 2025
Cited by 1 | Viewed by 1167
Abstract
To investigate the impact of tea polyphenols on the thermodynamic properties, gelatinization properties, rheological properties, and digestion characteristics of starch after ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (w/w) in an experiment and [...] Read more.
To investigate the impact of tea polyphenols on the thermodynamic properties, gelatinization properties, rheological properties, and digestion characteristics of starch after ball milling, canna starch and tea polyphenols were mixed at a 10:1 ratio (w/w) in an experiment and processed with different ball milling times. After ball milling for 3 h, the tea polyphenols and starch fragments formed complexes. Compared with the unmilled mixture, the solubility increased by 199.4%; the shear stress decreased by 89.48%; and the storage modulus and loss modulus decreased. The content of resistant starch first decreased and then increased. Infrared results revealed that ball milling led to a non-covalent interaction between the tea polyphenols and starch. Molecular dynamics simulations were used to study the interaction between the starch and tea polyphenols. The binding free energy of the main component, epigallocatechin gallate (EGCG), in tea polyphenols with starch was reduced from −23.20 kcal/mol to −26.73 kcal/mol. This experiment can provide a reference for the development of functional starch with high resistant starch content. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

18 pages, 6128 KiB  
Article
Characterization and Nutritional Intervention Effects of Canna edulis Type 5 Resistant Starch in Hyperlipidemia Mice
by Houxier Li, Nan Wang, Jiahui Wu, Shuting Tan, Yan Li, Nan Zhang, Li Yang, Aji Li, Rongting Min, Maochun Xiao, Shiyao Su, Xiang Wang and Xueyong Wang
Foods 2025, 14(1), 92; https://doi.org/10.3390/foods14010092 - 2 Jan 2025
Viewed by 1213
Abstract
Numerous reports have indicated that the type 3 resistant starch (RS3) derived from Canna edulis can regulate lipid metabolism. However, it remains unclear whether the type 5 resistant starch (RS5) exhibits similar effects. In this study, RS5 was prepared from Canna edulis native [...] Read more.
Numerous reports have indicated that the type 3 resistant starch (RS3) derived from Canna edulis can regulate lipid metabolism. However, it remains unclear whether the type 5 resistant starch (RS5) exhibits similar effects. In this study, RS5 was prepared from Canna edulis native starch and lauric acid through a hydrothermal method for the first time, and its nutritional intervention effects on hyperlipidemia in mice were investigated. The Canna edulis type 5 resistant starch (Ce-RS5) prepared using Canna edulis native starch and lauric acid exhibited a high compound index and resistant starch content, along with decreased swelling power and enhanced starch granule stability. The crystallinity of Ce-RS5 was decreased, and its crystal structure displayed a B+V pattern. Microscopically, the surface appeared rough with deepened grooves, and the granules were loose. Feeding mice with 1.5 g/kg and 3 g/kg of Ce-RS5 significantly reduced their body weight, positively regulated their blood lipid levels, and improved liver damage and fat accumulation. Additionally, Ce-RS5 promoted the abundance of beneficial gut bacteria, such as norank_f_Muribaculaceae, and inhibited the abundance of harmful bacteria like Colidextribacter. This study provides the first evidence of the hypolipidemic and weight loss effects of Ce-RS5 in hyperlipidemia mice. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

10 pages, 1467 KiB  
Article
Canna Starch Improves Intestinal Barrier Function, Inhibits Allergen Uptake, and Suppresses Anaphylactic Symptoms in Ovalbumin-Induced Food Allergy in Mice
by Ayaka Koida, Mamoru Tanaka, Rina Kosaka, Shoei Okuda, Shiro Takei, Suzuno Ota, Sayaka Yokoyama, Kaho Miyake and Hiroyuki Watanabe
Biomolecules 2024, 14(2), 215; https://doi.org/10.3390/biom14020215 - 12 Feb 2024
Cited by 4 | Viewed by 2176
Abstract
Edible canna rhizomes contain extremely high levels of resistant starch among cereals and potatoes. We previously showed that feeding canna rhizome starch to mice may increase intestinal barrier function and improve the intestinal environment. Here, we investigated the effects of canna starch intake [...] Read more.
Edible canna rhizomes contain extremely high levels of resistant starch among cereals and potatoes. We previously showed that feeding canna rhizome starch to mice may increase intestinal barrier function and improve the intestinal environment. Here, we investigated the effects of canna starch intake in a murine food allergy model. Five-week-old female BALB/c mice were divided into four groups: Control and OVA groups fed on the control diet (AIN-93G) ad libitum and Canna and OVA-Canna groups fed on the canna diet (AIN-93G with 10% replaced with canna starch). The OVA and OVA-Canna groups were sensitized to ovalbumin (OVA), and the anaphylactic response was assessed by measuring body temperature. Body temperature was significantly lower in the OVA group than in the non-sensitized group, but no decrease was observed in the OVA-Canna group. Fecal weight, fecal mucin content, and goblet cells of colorectal tissue were significantly increased in the Canna and OVA-Canna groups compared with those in the Control and OVA groups. Allergen uptake into the liver was also increased in the OVA group and decreased in the OVA-Canna group to the same level as in the non-sensitized group. These results indicate that canna starch supplementation in a murine food allergy model suppresses anaphylactic symptoms by improving the intestinal environment and reducing allergen uptake by increasing intestinal barrier function. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

28 pages, 3125 KiB  
Article
Characterization and Technological Potential of Underutilized Ancestral Andean Crop Flours from Ecuador
by Diego Salazar, Mirari Arancibia, Iván Ocaña, Roman Rodríguez-Maecker, Mauricio Bedón, María Elvira López-Caballero and María Pilar Montero
Agronomy 2021, 11(9), 1693; https://doi.org/10.3390/agronomy11091693 - 25 Aug 2021
Cited by 14 | Viewed by 5596
Abstract
Ancestral Andean crop flours (ACF) from Ecuador such as camote (Ipomea Batatas), oca (Oxalis tuberosa), achira (Canna indica), mashua (Tropaeolum tuberosum), white arracacha (Arracacia xanthorrhiza), taro (Colocasia esculenta) and tarwi ( [...] Read more.
Ancestral Andean crop flours (ACF) from Ecuador such as camote (Ipomea Batatas), oca (Oxalis tuberosa), achira (Canna indica), mashua (Tropaeolum tuberosum), white arracacha (Arracacia xanthorrhiza), taro (Colocasia esculenta) and tarwi (Lupinus mutabilis sweet) were characterized in terms of physico-chemical and techno-functional properties in order to identify their potential as new alternative ingredients in food products. Flour from camote, oca, achira and arracacha showed a low protein content (<5%), mashua and taro had ~9% and tarwi flour registered higher values than 52%. Carbohydrate content ranged from 56–77%, with the exception of tarwi, just reaching 6.9%. Starch content was relatively low in ACF but in taro and tarwi, starch practically constituted almost all the carbohydrates. The highest amylose content in starch, in decreasing order, was found in mashua, oca, tarwi and achira flours, the rest being ≤15%. Fiber content exceeded 10% in most crops, except for oca flour with 5.33%. Fat content was generally lower than 1%, except in tarwi with ~17%. All flours showed a gel-like behavior G′ > G″, this being very similar in camote, achira and tarwi flours. The exception was taro with G′ < G″. Mashua flour registered the highest value for phenol content (60.8 µg gallic acid equivalents/g of sample); the content of phenols was not exclusively responsible for the antioxidant activity, since flours with the highest activity were arracacha and tarwi, which presented the lowest phenol content among all flours. Principal component analyses (PCA) showed a high correlation between moisture, fiber, solubility and water absorption capacity, with viscoelastic behavior and total phenolic content; while starch content was correlated with melting temperature, poorly and inversely related to protein and fat. For PC1, achira, camote and taro flours were very similar, and different from oca and mashua flours. Tarwi showed its own characteristics according to PC1 and 2. Because of their properties, Andean crop flours could have a great potential for use in food technology. Full article
(This article belongs to the Special Issue Using Our Agrobiodiversity: Plant-Based Solutions to Feed the World)
Show Figures

Graphical abstract

12 pages, 1531 KiB  
Article
The Influence of Konjac Glucomannan on the Physicochemical and Rheological Properties and Microstructure of Canna Starch
by Yuanqin Liu, Qiaoli Chen, Fang Fang, Jiali Liu, Zhiying Wang, Hourong Chen and Fusheng Zhang
Foods 2021, 10(2), 422; https://doi.org/10.3390/foods10020422 - 15 Feb 2021
Cited by 24 | Viewed by 3471
Abstract
The addition of hydrocolloid is an effective method to improve the properties of native starch. However, few studies have investigated the effects of konjac glucomannan (KGM) on canna starch (CS). In this study, the effects of various KGM concentration on the pasting, rheological, [...] Read more.
The addition of hydrocolloid is an effective method to improve the properties of native starch. However, few studies have investigated the effects of konjac glucomannan (KGM) on canna starch (CS). In this study, the effects of various KGM concentration on the pasting, rheological, textural, and morphological properties of CS were investigated. The addition of KGM significantly increased CS’s pasting viscosities. Incorporation of KGM in CS at a relatively high level (1.2% w/w) exerted a significant influence on the pasting properties of CS. The consistency coefficient of CS was notably increased by KGM (from 43.6 to 143.3 Pa·sn) and positively correlated positive with KGM concentration. KGM concentration at a relatively high level (1.2% w/w) increased the elasticities and cohesiveness of CS by 53.3% and 88.0%, respectively, in texture profile analysis. The polarized optical microscope images indicated that KGM played an important part in protecting the crystalline structure of CS during heating. A denser porous microstructure with a filamentous network was observed in gelatinized KGM/CS mixtures as compared with the CS control. This research advances the knowledge of interactions between KGM and CS and opens possibilities to improve rheological properties of CS and to develop its new functionalities with KGM addition. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop