Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = calmodulin-like

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3084 KB  
Article
Neuromodulatory Effects of Arecoline on Anxiety-like Behavior in Mice Exposed to Chronic Unpredictable Mild Stress
by Xiangfei Zhang, Danyang Wang, Jingwen Cui, Bei Fan, Fengzhong Wang and Cong Lu
Int. J. Mol. Sci. 2026, 27(1), 371; https://doi.org/10.3390/ijms27010371 - 29 Dec 2025
Viewed by 279
Abstract
Chronic stress disrupts neuroendocrine regulation, neurotransmitter balance, and neuronal redox homeostasis, thereby contributing to the development of anxiety-related neuropathology. Arecoline, the predominant alkaloid of Areca catechu L., displays diverse neuropharmacological properties, yet its role in stress-induced emotional dysfunction has not been fully elucidated. [...] Read more.
Chronic stress disrupts neuroendocrine regulation, neurotransmitter balance, and neuronal redox homeostasis, thereby contributing to the development of anxiety-related neuropathology. Arecoline, the predominant alkaloid of Areca catechu L., displays diverse neuropharmacological properties, yet its role in stress-induced emotional dysfunction has not been fully elucidated. This study examined the anxiolytic-like and neuroprotective effects of arecoline in mice exposed to chronic unpredictable mild stress (CUMS). Arecoline administration markedly improved behavioral outcomes, reflected by increased central exploration in the open-field test, prolonged time in the light compartment, and enhanced open-arm activity in the elevated plus maze. These behavioral benefits were accompanied by normalization of serum corticosterone levels, restoration of hippocampal neurotransmitters, reinforcement of antioxidant enzyme activities, and attenuation of pro-inflammatory cytokines. At the molecular level, arecoline elevated brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), cAMP response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII), indicating enhanced synaptic plasticity, while concurrently diminishing oxidative and inflammatory stress. Collectively, the findings suggest that arecoline exerts multifaceted neuroprotective actions under chronic stress by coordinating neuroendocrine modulation, neurotransmitter homeostasis, antioxidant defenses, and synaptic plasticity. This study provides new mechanistic evidence supporting the potential relevance of arecoline as a functional neuroactive compound for managing stress-induced anxiety disorders. Full article
(This article belongs to the Special Issue Role of Natural Compounds in Human Health and Disease)
Show Figures

Graphical abstract

27 pages, 13894 KB  
Review
History of Gap Junction Architecture and Potential Role of Calmodulin in Channel Arrays
by Camillo Peracchia
Int. J. Mol. Sci. 2025, 26(23), 11337; https://doi.org/10.3390/ijms262311337 - 24 Nov 2025
Viewed by 463
Abstract
This review article focuses first on the historical development of present understanding of gap junction channel architecture, one of its goals being to enlighten younger generations of scientists about the early steps of this field that begun over half a century ago. Early [...] Read more.
This review article focuses first on the historical development of present understanding of gap junction channel architecture, one of its goals being to enlighten younger generations of scientists about the early steps of this field that begun over half a century ago. Early findings on gap junction architecture are reviewed as follows. The channels cross the membrane and project from the membrane surfaces; they are made of six subunits (hexamers) and show dimples on both ends, which represent inner and outer openings of the channel. Images of the central dimples on both channel ends (channel pores) seen in freeze-fracture replicas correspond to the electron-opaque spots visible in negatively stained sections and in isolated junctions. The channels are linked to each other extracellularly. Calmodulin (CaM) is a major accessory protein of gap junctions that is involved in channel gating and gap junction formation and is also likely to play a key role in determining different patterns of channel aggregation. Full article
(This article belongs to the Special Issue Membrane Channels in Intercellular Communication)
Show Figures

Figure 1

24 pages, 4016 KB  
Article
Transcriptomic Profiling Unravels the Molecular Mechanisms of GmCML-Mediated Resistance to Fusarium oxysporum in Soybean
by Runnan Zhou, Jia You, Jinrong Li, Xue Qu, Yuxin Shang, Honglei Ren and Jiajun Wang
Plants 2025, 14(20), 3222; https://doi.org/10.3390/plants14203222 - 20 Oct 2025
Cited by 1 | Viewed by 757
Abstract
Fusarium oxysporum-induced root rot severely threatens global soybean production, yet limited understanding of resistance mechanisms constrains breeding progress. This study conducted comparative transcriptomic analysis between highly resistant (Xiaoheiqi) and susceptible (L83-4752) soybean accessions following pathogen inoculation across four time points (8–17 days [...] Read more.
Fusarium oxysporum-induced root rot severely threatens global soybean production, yet limited understanding of resistance mechanisms constrains breeding progress. This study conducted comparative transcriptomic analysis between highly resistant (Xiaoheiqi) and susceptible (L83-4752) soybean accessions following pathogen inoculation across four time points (8–17 days post-infection). RNA-seq analysis identified 1496 differentially expressed genes following pathogen challenge. KEGG pathway enrichment analysis revealed significant enrichment in MAPK signaling pathway (12 genes) and plant–pathogen interaction pathway (13 genes). Eight genes co-occurred in both pathways, with GmCML (Glyma.10G178400) exhibiting the most dramatic differential expression among these candidates. This gene encodes a 151-amino acid calmodulin-like protein showing 185-fold higher expression in resistant plants at 17 days post-inoculation, confirmed by qRT-PCR validation. Functional validation through transgenic hairy root overexpression demonstrated that GmCML significantly enhanced disease resistance by coordinately activating antioxidant defense systems. Overexpression of GmCML in transgenic soybean enhanced resistance to F. oxysporum by modulating the activity of antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT) and the accumulation of osmoregulatory substances (proline and soluble sugars). Population genetic analysis of 295 diverse soybean accessions revealed three GmCML haplotypes based on promoter region polymorphisms. Two favorable variants (Hap2 and Hap3) conferred significantly lower disease indices and exhibited evidence of positive selection during domestication, indicating evolutionary importance in disease resistance. This research provides the first comprehensive characterization of GmCML’s role in soybean–Fusarium interactions, establishing this calmodulin-like protein as a regulatory hub linking calcium signaling to coordinated defense responses. The identified natural variants and functional mechanisms offer validated targets for both marker-assisted breeding and genetic engineering approaches to enhance soybean disease resistance. Full article
Show Figures

Figure 1

15 pages, 4217 KB  
Article
TaCML49-B, a Calmodulin-like Protein, Interacts with TaIQD23 to Positively Regulate Salt Tolerance in Wheat
by Jingna Ru, Jiamin Hao, Bingqing Hao, Xiaoqian Ji, Jiale Yang, Hongtao Wang, Baoquan Quan, Pengyan Guo, Jiping Zhao, Huawei Shi and Zhaoshi Xu
Plants 2025, 14(20), 3163; https://doi.org/10.3390/plants14203163 - 15 Oct 2025
Viewed by 614
Abstract
Calcium signaling is essential for coordinating plant responses to diverse stimuli and regulating growth and development. Among calcium sensors, calmodulin (CaM) and CaM-like proteins (CMLs) represent a class that, despite increasing research, remains incompletely characterized in wheat, with many interacting partners and biological [...] Read more.
Calcium signaling is essential for coordinating plant responses to diverse stimuli and regulating growth and development. Among calcium sensors, calmodulin (CaM) and CaM-like proteins (CMLs) represent a class that, despite increasing research, remains incompletely characterized in wheat, with many interacting partners and biological functions remaining largely elusive. This study conducted bioinformatics analyses of subgroup II CaM/CMLs, characterizing their phylogenetic relationships, conserved motifs, sequence features, and cis-elements. Expression analysis revealed that TaCML49-B was significantly upregulated in roots under salt stress. Moreover, TaCML49-B was localized to nucleus, cytoplasm, and membrane. Function characterization demonstrated that overexpression of TaCML49-B in Arabidopsis enhanced salt tolerance, whereas the BSMV-VIGS silencing of TaCML49-B reduced salt resistance in wheat. Furthermore, STRING database prediction analysis and bimolecular fluorescence complementation (BiFC) assay confirmed that TaCML49-B can physically interact with TaIQD23, which encodes an IQ67 domain protein, suggesting its potential involvement in the salt stress signaling pathway. Collectively, our findings indicate that TaCML49-B functions as a positive role in wheat salt stress response, thereby providing novel insights into the functions of TaCML genes and calcium signaling in wheat. Full article
Show Figures

Figure 1

17 pages, 1152 KB  
Article
From Isolation to Genomics: Characterization of Aspergillus uvarum HT4 as a Novel Producer of Extracellular Tannase
by Erika Arbildi, Karen Ovsejevi, Diego Roldán, Rosario Durán, Magdalena Portela, Gabriela Garmendia and Silvana Vero
J. Fungi 2025, 11(10), 722; https://doi.org/10.3390/jof11100722 - 7 Oct 2025
Viewed by 989
Abstract
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 [...] Read more.
Tannases (tannin acyl hydrolases, EC 3.1.1.20) are enzymes of industrial interest due to their ability to hydrolyze hydrolyzable tannins into bioactive compounds like gallic acid. In this study fungal strains capable of producing extracellular tannase were isolated and identified. From tannin-rich substrates, 24 fungal isolates were obtained, of which 17 showed tannase activity. Molecular identification based on calmodulin gene sequencing identified three species of tannase-producing black aspergilli: Aspergillus luchuensis, A. niger (formerly A. welwitschiae), and A. uvarum. The isolate A. uvarum HT4 exhibited the highest extracellular tannase activity (182 U/mL) and was selected for further study. Whole-genome sequencing of HT4 revealed 15 putative tannase genes, most sharing high identity with A. uvarum CBS 121591. Two divergent genes appeared to be acquired via horizontal gene transfer from Aspergillus brunneoviolaceus and Penicillium angulare. Proteomic analysis of the secretome confirmed the expression of two extracellular tannases. The enzyme showed optimal activity at pH 5.0–6.0 and 40–50 °C. Secretome analysis revealed hydrolytic enzymes typical of saprophytic fungi in lignocellulose-rich environments. Importantly, no biosynthetic gene clusters of major mycotoxins were detected, supporting the biosafety of HT4 for industrial applications. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

30 pages, 5556 KB  
Article
Dysregulation of Protein Kinase CaMKI Leads to Autism-Related Phenotypes in Synaptic Connectivity, Sleep, Sociality, and Aging-Dependent Degeneration in Drosophila
by Claudia Gualtieri, Zachary M. Smith, Abby Cruz, Ziam Khan, Conor Jenkins, Ketu Mishra-Gorur and Fernando J. Vonhoff
Biology 2025, 14(9), 1228; https://doi.org/10.3390/biology14091228 - 9 Sep 2025
Viewed by 1348
Abstract
Autism spectrum disorder (ASD) encompasses a range of conditions, primarily marked by deficits in social behaviors, along with several comorbidities such as sleep abnormalities and motor dysfunction. Recent studies have identified genetic risk factors associated with ASD, including the CAMK4 (calcium/calmodulin-dependent protein kinase [...] Read more.
Autism spectrum disorder (ASD) encompasses a range of conditions, primarily marked by deficits in social behaviors, along with several comorbidities such as sleep abnormalities and motor dysfunction. Recent studies have identified genetic risk factors associated with ASD, including the CAMK4 (calcium/calmodulin-dependent protein kinase 4). However, the molecular mechanisms linking CAMK4 dysregulation and ASD-associated phenotypes remain poorly understood. Here, we used Drosophila melanogaster as a model system to investigate ASD-associated phenotypes in flies with dysregulated CaMKI, the fly homolog of mammalian CAMK4. We show that CaMKI manipulations affect sleep, circadian rhythmicity, and social behavior. Consistent with the higher prevalence of dementia observed in autistic patients, we also observed a significantly enhanced behavioral decline in motor performance and dendritic degeneration in flies expressing RNAi-based CaMKI knockdown in flight motoneurons, suggesting a link between developmental and degenerative processes. As aberrant synaptic pruning is hypothesized to underlie the synaptic phenotypes observed in brains of autistic patients, we examined synaptic phenotypes following CaMKI manipulations using the larval neuromuscular junction (NMJ) and observed miswiring phenotypes suggesting aberrant synaptic refinement. We performed shotgun mass-spectrometry proteomics and identified various molecular candidates, particularly molecules involved in cytoskeleton regulation and chemorepulsion, likely to regulate the phenotypes described here. Thus, our results suggest that CaMKI plays a role in developmental processes and influences aging-dependent degenerative processes, possibly providing mechanistic insight into the genetic basis of ASD etiology and the development of effective treatments. Full article
Show Figures

Figure 1

22 pages, 1446 KB  
Review
Adaptations in Mitochondrial Function Induced by Exercise: A Therapeutic Route for Treatment-Resistant Depression
by Arnulfo Ramos-Jiménez, Mariazel Rubio-Valles, Javier A. Ramos-Hernández, Everardo González-Rodríguez and Verónica Moreno-Brito
Int. J. Mol. Sci. 2025, 26(17), 8697; https://doi.org/10.3390/ijms26178697 - 6 Sep 2025
Cited by 3 | Viewed by 3562
Abstract
Mitochondrial dysfunction is a key factor in the pathophysiology of major depressive disorder (MDD) and treatment-resistant depression (TRD), connecting oxidative stress, neuroinflammation, and reduced neuroplasticity. Physical exercise induces specific mitochondrial changes linked to improvements in mental health. The aim of this paper was [...] Read more.
Mitochondrial dysfunction is a key factor in the pathophysiology of major depressive disorder (MDD) and treatment-resistant depression (TRD), connecting oxidative stress, neuroinflammation, and reduced neuroplasticity. Physical exercise induces specific mitochondrial changes linked to improvements in mental health. The aim of this paper was to examine emerging evidence regarding the effects of physical exercise on mitochondrial function and treatment-resistant depression, highlighting the clinical importance of the use of mitochondrial biomarkers to personalize exercise prescriptions for patients with depression, particularly those who cannot tolerate standard treatments. Physical exercise improves mitochondrial function, enhances biogenesis and neuroplasticity, and decreases oxidative stress and neuroinflammation. Essential signaling pathways, including brain-derived neurotrophic factor, AMP-activated protein kinase, active peroxisome proliferator-activated receptor-γ coactivator-1α, and Ca2+/calmodulin-dependent protein kinase, support these effects. Most studies have concentrated on the impact of low- and moderate-intensity aerobic exercise on general health. However, new evidence suggests that resistance exercise and high-intensity interval training also promote healthy mitochondrial adaptations, although the specific exercise intensity required to achieve this goal remains to be determined. There is strong evidence that exercise is an effective treatment for MDD, particularly for TRD, by promoting specific mitochondrial adaptations. However, key gaps remain in our understanding of the optimal exercise dose and which patient subgroups are most likely to benefit from it (Graphical Abstract). Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

16 pages, 2994 KB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Viewed by 912
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

12 pages, 2241 KB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 - 1 Aug 2025
Viewed by 752
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

15 pages, 3707 KB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Cited by 1 | Viewed by 931
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

18 pages, 5008 KB  
Article
Enhanced Modulation of CaMKII in Mouse Hippocampus by an Antidepressant-like Dose of Melatonin/Ketamine Combination
by Armida Miranda-Riestra, Rosa Estrada-Reyes, Luis A. Constantino-Jonapa, Jesús Argueta, Julián Oikawa-Sala, Miguel A. Reséndiz-Gachús, Daniel Albarrán-Gaona and Gloria Benítez-King
Cells 2025, 14(15), 1187; https://doi.org/10.3390/cells14151187 - 1 Aug 2025
Viewed by 1342
Abstract
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of [...] Read more.
Forty per cent of major depression patients are resistant to antidepressant medication. Thus, it is necessary to search for alternative treatments. Melatonin (N-acetyl-5-hydroxytryptamine) enhances neurogenesis and neuronal survival in the adult mouse hippocampal dentate gyrus. Additionally, melatonin stimulates the activity of Ca2+/Calmodulin-dependent Kinase II (CaMKII), promoting dendrite formation and neurogenic processes in human olfactory neuronal precursors and rat organotypic cultures. Similarly, ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, modulates CaMKII activity. Importantly, co-treatment of low doses of ketamine (10−7 M) in combination with melatonin (10−7 M) produces additive effects on neurogenic responses in olfactory neuronal precursors. Importantly, enhanced neurogenic responses are produced by conventional antidepressants like ISSRs. The goal of this study was to investigate whether hippocampal CaMKII participates in the signaling pathway elicited by combining doses of melatonin with ketamine acutely administered to mice, 30 min before being subjected to the forced swimming test. The results showed that melatonin, in conjunction with ketamine, significantly enhances CaMKII activation and changes its subcellular distribution in the dentate gyrus of the hippocampus. Remarkably, melatonin causes nuclear translocation of the active form of CaMKII. Luzindole, a non-selective MT1 and MT2 receptor antagonist, abolished these effects, suggesting that CaMKII is downstream of the melatonin receptor pathway that causes the antidepressant-like effects. These findings provide molecular insights into the combined effects of melatonin and ketamine on neuronal plasticity-related signaling pathways and pave the way for combating depression using combination therapy. Full article
(This article belongs to the Section Cellular Neuroscience)
Show Figures

Figure 1

16 pages, 9859 KB  
Article
In Vitro Pollen Viability, Fluorescence Microscopy, and Transcriptomic Comparison of Self-Pollinated and Cross-Pollinated Inflorescence of Artemisia annua L. to Analyze Candidate Self-Incompatibility-Associated Genes
by Yimei Zang, Shengrong Cui, Shugen Wei, Limei Pan, Lingyun Wan, Xiaojun Ma, Zuliang Luo, Jine Fu and Chongnan Wang
Horticulturae 2025, 11(7), 790; https://doi.org/10.3390/horticulturae11070790 - 3 Jul 2025
Viewed by 1078
Abstract
Artemisia annua L., the primary source of the antimalarial compound artemisinin, is of great importance for malaria treatment. However, its self-incompatibility (SI) restricts selfing breeding and results in unstable artemisinin content which is vulnerable to environmental fluctuations. To address this, our study employed [...] Read more.
Artemisia annua L., the primary source of the antimalarial compound artemisinin, is of great importance for malaria treatment. However, its self-incompatibility (SI) restricts selfing breeding and results in unstable artemisinin content which is vulnerable to environmental fluctuations. To address this, our study employed fluorescence microscopy and transcriptomic analysis on stigmas post self- and cross-pollination to explore the molecular mechanisms of SI in Artemisia annua L. Fluorescence microscopy observations indicate that, three hours after pollination, cross-pollinated pollen tubes mostly exhibit normal filamentous growth, whereas the growth of self-pollinated pollen tubes is significantly inhibited, with most appearing as growth-arrested pollen tubes. Using transcriptome analysis, we generated approximately 25.03 GB of data assembled into 69,498 genes and identified 620 differentially expressed genes (DEGs), including 10 classified as SI response genes. Several specific SI-related candidate genes were identified, such as the S-locus receptor kinase (SRK), Calmodulin-like (CML), modifier (MOD), and exocyst complex component (EXO) genes, between AasB and AahA. These DEGs provide vital information for studying A. annua’s SI molecular mechanisms. The putative DEGs between the two groups provided important information for a further study of the molecular mechanisms of SI in A. annua. Candidate SI-associated genes are essential for the genetic engineering of A. annua to overcome SI and to avoid breeding inbred lines. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

15 pages, 1375 KB  
Article
Comparative Transcriptome Analysis Elucidates the Desiccation Stress Adaptation in Sargassum muticum
by Wei Cao, Mingyi Zhang, Nan Wu, Yanxin Zheng, Xiaodong Li, Haiying Han, Tao Yu, Zhongxun Wu, Pei Qu and Bo Li
Genes 2025, 16(5), 587; https://doi.org/10.3390/genes16050587 - 16 May 2025
Viewed by 1088
Abstract
Background/Objectives: Desiccation profoundly influences the distribution and abundance of intertidal seaweeds, necessitating robust molecular adaptations. Sargassum muticum is a brown seaweed inhabiting intertidal rocky substrates. During low tides, this species undergoes periodic aerial exposure. Such environmental conditions necessitate robust physiological mechanisms to mitigate [...] Read more.
Background/Objectives: Desiccation profoundly influences the distribution and abundance of intertidal seaweeds, necessitating robust molecular adaptations. Sargassum muticum is a brown seaweed inhabiting intertidal rocky substrates. During low tides, this species undergoes periodic aerial exposure. Such environmental conditions necessitate robust physiological mechanisms to mitigate desiccation stress. Yet, the molecular basis of this adaptation remains poorly understood. Methods: To investigate desiccation-responsive genes and elucidate the underlying mechanisms of adaptation, we exposed S. muticum to 6 h of controlled desiccation stress in sterilized ceramic trays, simulating natural tidal conditions, and performed comparative transcriptome analysis using RNA-seq on the Illumina NovaSeq 6000 platform. Results: High-quality sequencing identified 66,192 unigenes, with 1990 differentially expressed genes (1399 upregulated and 591 downregulated). These differentially expressed genes (DEGs) were categorized into regulatory genes—including mitogen-activated protein kinase (MAPK), calmodulin, elongation factor, and serine/threonine-protein kinase—and functional genes, such as heat shock protein family members (HSP20, HSP40, and HSP70), tubulin (TUBA and TUBB), and endoplasmic reticulum homeostasis-related genes (protein disulfide-isomerase A6, calreticulin, and calnexin). Gene Ontology (GO) enrichment highlighted upregulated DEGs in metabolic processes like glutathione metabolism, critical for oxidative stress mitigation, while downregulated genes were linked to transport functions, such as ammonium transport, suggesting reduced nutrient uptake during dehydration. KEGG pathway analysis revealed significant enrichment in “protein processing in endoplasmic reticulum” and “MAPK signaling pathway-plant”, implicating endoplasmic reticulum stress response and conserved signaling cascades in desiccation adaptation. Validation via qRT-PCR confirmed consistent expression trends for key genes, reinforcing the reliability of transcriptomic data. Conclusions: These findings suggest that S. muticum undergoes extensive biological adjustments to mitigate desiccation stress, highlighting candidate pathways for future investigations into recovery and tolerance mechanisms. Full article
Show Figures

Figure 1

19 pages, 14572 KB  
Article
Genome-Wide Investigation of CPK-Related Kinase (CRK) Gene Family in Arabidopsis thaliana
by Shiquan Yang, Yuan Fang, Xianming Fang, Jingwen He and Kai He
Int. J. Mol. Sci. 2025, 26(7), 3297; https://doi.org/10.3390/ijms26073297 - 2 Apr 2025
Cited by 1 | Viewed by 1667
Abstract
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but [...] Read more.
Calcium-dependent protein kinase (CPK), representing a group of typical Ca2+ sensors in plants, has been well characterized in plants. CPK is capable of binding to Ca2+, which sequentially activates CPK. CPK-related kinase (CRK) shows protein structures similar to CPK but only contains degenerative EF-hands, which likely makes the activation of CRK Ca2+ independent. Compared with CPK, CRK is barely functionally analyzed. In this study, we systematically investigated CRK genes in the Arabidopsis genome. We found that CRK appeared to emerge in land plants, suggesting CPK and CRK are divided at very early stages during plant evolution. In Arabidopsis, the detailed analysis of the calmodulin-like domain of CRK indicated the substitutions of key amino acid residues in its EF-hands result in disrupted Ca2+ association. Next, by using a YFP tag, we found that all Arabidopsis CRK proteins were localized at the plasma membrane. After cloning the promoters of all eight CRK genes, we found that CRKs were widely expressed at all stages of Arabidopsis by using GUS staining. Furthermore, the kinase activity of CRK was examined by using phospho-antibody and Pro-Q staining. CRK was shown to possess high autophosphorylation, which was not affected by the presence of Ca2+. Moreover, we analyzed the cis-elements of CRK promoters and discovered that stress signals potentially regulate the expression of CRK genes. Consistently, by using quantitative real-time PCR (qPCR), we found a number of CRK genes were regulated by a variety of biotic and abiotic treatments such as flg22, ABA, drought, salt, and high and low temperatures. Furthermore, by utilizing proteomic approaches, we identified more than 100 proteins that interacted with CRK5 in planta. Notably, RLK and channels/transporters were found in CRK5-containing complexes, suggesting they function upstream and downstream of CRK, respectively. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 12384 KB  
Article
Genome-Wide Characterization of CaM/CML Gene Family in Cabbage (Brassica oleracea var. capitata): Expression Profiling and Functional Implications During Hyaloperonospora parasitica Infection
by Yuankang Wu, Bin Zhang, Xuehui Yao, Limei Yang, Mu Zhuang, Honghao Lv, Yong Wang, Jialei Ji, Xilin Hou and Yangyong Zhang
Int. J. Mol. Sci. 2025, 26(7), 3208; https://doi.org/10.3390/ijms26073208 - 30 Mar 2025
Cited by 3 | Viewed by 880
Abstract
Calmodulin (CaM) and calmodulin-like proteins (CMLs) are crucial for calcium signal transduction in plants. Although CaM/CML genes have been extensively studied in various plant species, research on these genes in Brassica oleracea is still limited. In this study, 14 BoCaM and [...] Read more.
Calmodulin (CaM) and calmodulin-like proteins (CMLs) are crucial for calcium signal transduction in plants. Although CaM/CML genes have been extensively studied in various plant species, research on these genes in Brassica oleracea is still limited. In this study, 14 BoCaM and 75 BoCML genes were identified in the B. oleracea genome through a genome-wide search. Phylogenetic analysis categorized these genes, along with their homologs in Arabidopsis and rice, into six distinct groups. All BoCaM/BoCML genes were unevenly distributed across the nine chromosomes of B. oleracea, with 52 of them lacking introns. Collinearity analysis revealed that CaM/CML genes in Arabidopsis are present in multiple copies in the B. oleracea genome. Moreover, the majority of BoCaM/BoCML genes exhibited distinct expression patterns across the different tissues, indicating their role in the growth and development of B. oleracea. A clustering heatmap of BoCaM/BoCML gene expression showed distinct patterns before and four days after Hyaloperonospora parasitica infection, dividing the genes into five groups based on their expression patterns. Notably, BoCML46-2 is significantly downregulated in both susceptible and resistant materials, suggesting that it plays an important role in responding to H. parasitica infection. This study conducted a comprehensive survey of the BoCaM/BoCML gene family in B. oleracea. It could serve as a theoretical foundation for further functional identification and utilization of family members and their role in the interaction between B. oleracea and H. parasitica. Full article
Show Figures

Figure 1

Back to TopTop