Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = calcium hypochlorite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2021 KiB  
Article
Evaluation of Pre-Sterilization Cleaning Protocols on Endodontic Files Using SEM: Effects on Elemental Composition and Surface Roughness
by Rahaf A. Almohareb, Reem M. Barakat, Hadeel Alzahrani, Raghad Alkhattabi, Renad Alsaeed, Sarah Faludah and Reem Alsaqat
Crystals 2025, 15(8), 684; https://doi.org/10.3390/cryst15080684 - 27 Jul 2025
Viewed by 222
Abstract
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a [...] Read more.
This study evaluated the efficacy of various cleaning protocols on two nickel–titanium (NiTi) file systems—RaCe EVO(RE) and EdgeFile X7(EE)—using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Eighty-four NiTi files (42RE, 42EE) were divided into seven groups (n = 12), including a group with unused, sterilized files and a group of used files without cleaning. The remaining files were subjected to simulated clinical use, followed by different cleaning methods, such as soaking in sodium hypochlorite (NaOCl), ethanol wiping (with or without magnification), enzymatic spray, and enzymatic solution. SEM images were imported into ImageJ to quantify surface changes, while EDX assessed elemental composition. The p-value was set to ≤0.05 for significance. Apart from the unused files, calcium and phosphorus—indicators of dentin debris—were present in all groups, especially those cleaned with enzymatic spray (p ≤ 0.0001). Their percentage in RE files soaked in NaOCl or wiped with ethanol was statistically lower than the positive control (p ≤ 0.0001). Post-use, all files showed significantly higher surface asymmetry in Groups 2 and 6 (p = 0.001). Cleaning efficacy depends on the type of NiTi file. RE files responded well to both wiping and soaking, while EE required soaking for effective debris removal. Enzymatic spray was ineffective. Full article
Show Figures

Figure 1

16 pages, 2127 KiB  
Article
Residual Chlorine Interaction with Microelements in Plants Applied for Phytoremediation in Rain Gardens
by Ieva Andriulaityte, Marina Valentukeviciene, Viktoras Chadysas and Antonina Kalinichenko
Plants 2025, 14(13), 1957; https://doi.org/10.3390/plants14131957 - 26 Jun 2025
Viewed by 460
Abstract
Stormwater pollution from residual chlorine after outdoor disinfection with sodium hypochlorite is an increasing environmental challenge due to its potential negative impact on aquatic ecosystems. Even at low concentrations, residual chlorine can disrupt the stability of water ecosystems. In this regard, stormwater treatment [...] Read more.
Stormwater pollution from residual chlorine after outdoor disinfection with sodium hypochlorite is an increasing environmental challenge due to its potential negative impact on aquatic ecosystems. Even at low concentrations, residual chlorine can disrupt the stability of water ecosystems. In this regard, stormwater treatment requires innovative and green solutions such as green infrastructure (rain gardens) using the plant phytoremediation technique to reduce the amount of residual chlorine. This study explores the interactions between residual chlorine retained by plants in a rain garden and different microelements. Selected plants were analyzed via spectroscopy, and possible interactions with elements such as chlorine (Cl), phosphorus (P), zinc (Zn), iron (Fe), calcium (Ca), potassium (K), nickel (Ni), silicon (Si), manganese (Mn), magnesium (Mg), chromium (Cr), and cadmium (Cd) were determined using Python-based analysis. Chlorine presented significant positive correlations with cadmium (0.39–0.53) and potassium (0.51–0.55), while negative correlations were found between silicon and chlorine (−0.48–−0.54) and chlorine and iron (−0.45–−0.51). The correlations between chlorine and microelements suggest both common uptake mechanisms and mutual interactions. These results provide a better understanding of the behavior of chlorine in rain gardens and its interactions with other materials, which is especially valuable for designing green infrastructure. This research can help to develop sustainable solutions that reduce environmental pollution and strengthen urban adaptation to climate change. Full article
Show Figures

Figure 1

15 pages, 540 KiB  
Review
Factors Reducing Postoperative Pain Related to Root Canal Treatment: A Narrative Review of Systematic Reviews
by Abdelrahman M. Alhilou
Dent. J. 2025, 13(3), 102; https://doi.org/10.3390/dj13030102 - 26 Feb 2025
Viewed by 1730
Abstract
Background/Objectives: Pain after root canal treatment is a common concern that can greatly affect a patient’s quality of life. Identifying the factors contributing to this pain and focusing on those supported by high-quality research can lead to more effective pain management. This narrative [...] Read more.
Background/Objectives: Pain after root canal treatment is a common concern that can greatly affect a patient’s quality of life. Identifying the factors contributing to this pain and focusing on those supported by high-quality research can lead to more effective pain management. This narrative review aims to analyze all available systematic reviews on this topic to determine what has been proven to help decrease pain following the root canal procedure. Methods: A comprehensive literature search was conducted across Scopus and Google Scholar from January 2000 to January 2024, using defined MeSH terms. This yielded 51 systematic reviews, of which 45 specifically investigated factors reducing postoperative pain related to root canal treatment. Results: Eleven factors were identified in the literature, with only eight factors supported by low- to moderate-quality evidence to reduce postoperative pain related to root canal treatment. These eight factors include (1) laser therapy, (2) nonsteroidal anti-inflammatory drugs (especially when combined with acetaminophen) and corticosteroids, (3) ultrasonic irrigation and low concentrations of sodium hypochlorite, (4) cryotherapy, (5) specific combinations of intracanal medicaments (notably calcium hydroxide with chlorhexidine), (6) bioceramic sealers, (7) rotary instrumentation, and (8) apical patency. Conclusions: The insights gained from this narrative review highlight several important factors that reduce postoperative pain related to root canal treatment. Nevertheless, the observed variability in the quality of the evidence calls attention to the necessity for further high-quality research. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

24 pages, 2455 KiB  
Review
A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
by Akikazu Sakudo, Koichi Furusaki, Rumiko Onishi, Takashi Onodera and Yasuhiro Yoshikawa
Microorganisms 2025, 13(3), 507; https://doi.org/10.3390/microorganisms13030507 - 25 Feb 2025
Viewed by 791
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants [...] Read more.
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material. Full article
Show Figures

Figure 1

13 pages, 520 KiB  
Article
The Efficacy of Calcium Hypochlorite and Peroxyacetic Acid Treatments in Inactivating Enterohemorrhagic Escherichia coli on Alfalfa Seeds and Sprouts
by Myung-Ji Kim, Wim Dejonghe, Murli Manohar and Jinru Chen
Microorganisms 2025, 13(2), 306; https://doi.org/10.3390/microorganisms13020306 - 30 Jan 2025
Viewed by 992
Abstract
For several decades, recurring outbreaks of human gastrointestinal infections associated with contaminated sprouts have posed an enduring challenge, highlighting the necessity of controlling the etiological agents on contaminated sprout seeds. This study investigated the efficacy of calcium hypochlorite and peroxyacetic acid treatments in [...] Read more.
For several decades, recurring outbreaks of human gastrointestinal infections associated with contaminated sprouts have posed an enduring challenge, highlighting the necessity of controlling the etiological agents on contaminated sprout seeds. This study investigated the efficacy of calcium hypochlorite and peroxyacetic acid treatments in inactivating the cells of four enterohemorrhagic Escherichia coli (EHEC) isolates—viz. E. coli O157:H7 K4492, F4546, and H1730, as well as E. coli O104:H4 BAA-2326—on alfalfa seeds and sprouts. The 2–3 log CFU/g of EHEC cells inoculated to sprout seeds became undetectable (≤1.40 log CFU/g) after treatment with the two sanitizers, even with the enrichment steps. Sprouts grown from calcium hypochlorite- and peroxyacetic acid-treated seeds had mean EHEC populations that were 4.54–4.60 log CFU/g and 1.25–1.52 log CFU/g lower, respectively, compared to those on sprouts grown from the untreated control seeds. Significantly (p ≤ 0.05) different from one another, the mean populations of the four EHEC isolates on harvested sprout samples were in the descending order of E. coli O157:H7 K4492, F4546, H1730, and E. coli O104:H4 BAA-2326. The results suggest that both sanitizing treatments effectively suppressed EHEC growth on alfalfa seeds and sprouts, but their effectiveness was bacterial-isolate-dependent. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

13 pages, 3854 KiB  
Article
Comparative Assessment of Push-Out Bond Strength and Dentinal Tubule Penetration of Different Calcium-Silicate-Based Endodontic Sealers
by Mihai Merfea, Sanda Ileana Cimpean, Radu Stefan Chiorean, Aurora Antoniac, Ada Gabriela Delean, Iulia Clara Badea and Mindra Eugenia Badea
Dent. J. 2024, 12(12), 397; https://doi.org/10.3390/dj12120397 - 6 Dec 2024
Cited by 2 | Viewed by 1722
Abstract
Background: Adhesion within endodontic obturation material and root canal walls improves the efficacy of the endodontic treatment by establishing a barrier that inhibits reinfection and entombs residual bacteria. This study evaluates the push-out bond strength (POBS) of calcium silicate sealers compared to an [...] Read more.
Background: Adhesion within endodontic obturation material and root canal walls improves the efficacy of the endodontic treatment by establishing a barrier that inhibits reinfection and entombs residual bacteria. This study evaluates the push-out bond strength (POBS) of calcium silicate sealers compared to an epoxy-resin-based sealer. Methods: A total of 36 extracted mono-radicular teeth were prepared with Pro Taper Ultimate and irrigated with 5.25% sodium hypochlorite and 17% EDTA. The specimens were randomly split into three groups (n = 12) according to the endodontic sealer and filling technique used as follows: Ah Plus with the continuous wave condensation technique (CWC), Ah Bioceramic (Ah Bio) with the single-cone technique, and Total Fill Hi-Flow (FKG Hi-Flow) with the CWC technique. The material was allowed to set for 4 weeks, and afterwards, the roots were placed in acrylic resin and sectioned into 1 mm transverse slices. A POBS test was conducted using a universal testing machine, and the mode of bond failure was assessed at 4× magnification using a stereomicroscope. Six specimens from each group were selected for SEM-EDX examination to evaluate dentinal tubule penetration. The data were analysed using analysis of variance and Tukey and Bonferroni post hoc tests. Results: The POBS tests revealed higher values for Ah Plus in comparison to both calcium silicate sealers (p < 0.001), while FKG Hi-Flow showed superior results to Ah Bio (p < 0.001). The cohesive mode of failure was prevalent in all three groups. Conclusions: In conclusion, the resin-based sealer showed higher bond strength and better dentinal tubule penetration than the two calcium silicate sealers tested, while FKG Hi-Flow outperformed AH Bio. Full article
(This article belongs to the Special Issue Modern Endodontics)
Show Figures

Graphical abstract

14 pages, 8379 KiB  
Article
Effects of Mechanized Irrigation Protocols on Endodontic Obturation Using Calcium Silicate-Based Sealer
by Lucas David Galvani, Antonia Patricia Oliveira Barros, Joatan Lucas de Sousa Gomes Costa, Eliane Cristina Gulin de Oliveira, Ester Alves Ferreira Bordini, Luís Geraldo Vaz and Milton Carlos Kuga
Appl. Sci. 2024, 14(22), 10317; https://doi.org/10.3390/app142210317 - 9 Nov 2024
Viewed by 2535
Abstract
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the [...] Read more.
The aim of this study was to evaluate the effects of mechanized final irrigation protocols (XPE, XP-Endo Finisher; XPC, XP-Clean; and ECL, Easy Clean) compared to PUI (passive ultrasonic irrigation) on the debris incidence and open dentinal tubules, and their effects on the adhesion interface after 48 h and 6 months. One hundred twenty maxillary central incisors were submitted to chemical–mechanical preparation using a rotary instrument and 2.5% sodium hypochlorite. Specimens were distributed in 4 groups (n = 30) in accordance with the mechanized final irrigation protocol: XPE, XPC, ECL, or PUI. Forty specimens (n = 10/group) were submitted to SEM analysis to evaluate the residue incidence and dentin open tubules. The other specimens were obturated using Bio-C Sealer and submitted to push-out bond strength and adhesive failure mode evaluations in the cervical, middle, and apical thirds after 48 h or 6 months (n = 10/group). Only in the apical third, ECL presented the highest residue incidence and fewer open dentinal tubules when compared to the XPE, XPC, and PUI groups (p < 0.05). In the cervical and middle root thirds, no significant differences were observed regardless of the group evaluated (p > 0.05). After 48 h, ECL resulted in the lowest bond strength only in the apical third (p < 0.05), while the XPE, XPC, and PUI groups remained similar in the cervical and middle thirds (p > 0.05). At 6 months, all groups showed lower bond strength values regardless of the root third evaluated, but ECL showed the lowest bond strength in the apical and middle root thirds when compared to the other groups (p < 0.05). The ECL protocol did not provide adequate residue removal on the apical radicular third and negatively affected the longevity of endodontic obturation using a calcium silicate-based sealer. Full article
Show Figures

Figure 1

17 pages, 14653 KiB  
Article
New Insights on the Understanding of Sulfur-Containing Coal Flotation Desulfurization
by Gan Cheng, Yulong Li, Yijun Cao, Xin Wang, Enze Li, Yanxia Guo and Ee Von Lau
Minerals 2024, 14(10), 981; https://doi.org/10.3390/min14100981 - 29 Sep 2024
Cited by 24 | Viewed by 1655
Abstract
The clean and efficient utilization of coal is a promising way to achieve carbon neutrality. Coking coal is a scarce resource and an important raw material in the steel industry. However, the presence of pyrite sulfur affects its clean utilization. Nonetheless, this pyrite [...] Read more.
The clean and efficient utilization of coal is a promising way to achieve carbon neutrality. Coking coal is a scarce resource and an important raw material in the steel industry. However, the presence of pyrite sulfur affects its clean utilization. Nonetheless, this pyrite could be removed using depressants during flotation. Commonly used organic depressants (sodium lignosulfonate (SL), calcium lignosulfonate (CL), and pyrogallol (PY)) and inorganic depressants (calcium oxide (CaO) and calcium hypochlorite (Ca(ClO)2)) were chosen in this study. Their inhibition mechanism was discussed using FTIR, XPS, and molecular dynamics (MD) methods. The desulfurization ability of organic depressants was shown to be better than inorganic ones. Among the organic depressants, PY proved to be advantageous in terms of low dosage. Physical adsorption was identified as the main interaction form of SL, CL, and PY onto the surface of pyrite, as evidenced from FTIR and XPS analyses. Similarly, MD simulation results showed that hydrogen bonds played a proactive role in the interactions between PY and pyrite. The diffusion coefficient of water molecules on the pyrite surface was also observed to decrease when organic depressants were present, indicating an increase in the hydrophilicity of pyrite. This research is of great significance to utilize sulfur-containing coal and minerals. Full article
(This article belongs to the Special Issue Coal Processing and Utilization)
Show Figures

Figure 1

13 pages, 3550 KiB  
Communication
Application of Calcium Hypochlorite for Sanitizing 3/16-Inch Tubing Used in Maple Sap Collection
by Yangjin Jung, Olivia McHugh and Elijah Ayilaran
Microorganisms 2024, 12(10), 1948; https://doi.org/10.3390/microorganisms12101948 - 26 Sep 2024
Viewed by 1196
Abstract
Despite the widespread empirical adoption of calcium hypochlorite (Ca(ClO)2) for sanitizing 3/16-inch tubing after the maple sap collection season, there remains a dearth of scientific data on its best practice and effectiveness. To address this gap, we cultivated microbial mass in [...] Read more.
Despite the widespread empirical adoption of calcium hypochlorite (Ca(ClO)2) for sanitizing 3/16-inch tubing after the maple sap collection season, there remains a dearth of scientific data on its best practice and effectiveness. To address this gap, we cultivated microbial mass in tubing through continuous maple sap flow at 7 °C for 5 weeks in the lab. The tubing was sanitized with 200, 400, or 600 ppm Ca(ClO)2 and retained Ca(ClO)2 for either 10 min, 1 h, 7 days, or 6 weeks. Half of the tubing segments underwent microbial analysis, while the other half were stored for 6 weeks post-flushing of the Ca(ClO)2 to determine microbial survival/growth. The level and presence of the microbial load were determined, and the inner tubing surfaces were visualized using scanning electron microscopy (SEM). The initial microbial load in the tubing was approximately 4–5 log CFU/cm2. A 10-min and 1 h contact time with 200 ppm Ca(ClO)2, and a 10-min exposure to 400 ppm Ca(ClO)2, achieved reductions of 2.4–2.8 log for Pseudomonas spp., 1.6–2.5 log for mold and yeast, and 2.3–3.3 log for psychrotrophic microorganisms. Microorganisms were recovered from the enrichment process after retaining 200 ppm Ca(ClO)2 for 6 weeks, indicating insufficient inactivation. Consequently, the data suggests the use of at least 400 ppm Ca(ClO)2 for 1 day. The SEM images supported the microbial count results, offering valuable insights for educating maple syrup producers on optimal tubing sanitation practices. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

10 pages, 1580 KiB  
Article
In Vitro Evaluation of Sodium Hypochlorite, Chlorhexidine, Propolis, and Calcium Hydroxide Effect on Lipoteichoic-Acid-Induced Proinflammatory Cytokines Production
by Luciane Dias de Oliveira, Lara Steffany de Carvalho, Ana Claudia Carvalho Xavier, Felipe Eduardo de Oliveira, Mariella Vieira Pereira Leão, Mariana Gadelho Gimenez Diamantino, Rayana Duarte Khoury, Marcia Carneiro Valera, Cláudio Antonio Talge Carvalho and Amjad Abu Hasna
Dent. J. 2024, 12(9), 286; https://doi.org/10.3390/dj12090286 - 5 Sep 2024
Cited by 3 | Viewed by 1875
Abstract
This study aimed to evaluate the effects of sodium hypochlorite (NaOCl), chlorhexidine (CHX), and the glycolic extract of propolis (GEP) as endodontic irrigants and of calcium hydroxide [Ca(OH)2], CHX, or Ca(OH)2 + CHX as intracanal medications on the capacity of [...] Read more.
This study aimed to evaluate the effects of sodium hypochlorite (NaOCl), chlorhexidine (CHX), and the glycolic extract of propolis (GEP) as endodontic irrigants and of calcium hydroxide [Ca(OH)2], CHX, or Ca(OH)2 + CHX as intracanal medications on the capacity of the lipoteichoic acid (LTA) of Enterococcus faecalis in macrophages’ proinflammatory cytokines production. Freshly extracted 108 human single-rooted teeth were used in this study. The LTA of E. faecalis was standardized in double-distilled pyrogen-free water (250 µg/mL) and inoculated into the specimens subdivided into nine subgroups (n = 12). Cultures of murine macrophages (RAW 264.7) were treated with 30 µL of each sample collected from root canals and incubated (37 °C, 5% CO2) for 24 h. Lastly, anti-TNF-α, anti-IL-6, anti-IP-10, anti-MIP-1α, anti-G-CSF, and anti-IL-1β DuoSet kits were used to perform an ELISA assay. Data were analyzed using one-way ANOVA and Tukey test (p ≥ 0.05). It was found that 1% NaOCl was the most effective irrigant in reducing the capacity of LTA in cytokines production, followed by 12% GEP and 2% CHX, respectively. Ca(OH)2 + CHX presented the best results when associated with NaOCl or GEP. Thus, NaOCl or GEP associated with Ca(OH)2 + CHX were effective in reducing the capacity of LTA in different macrophages pro-inflammatory cytokines production. Full article
Show Figures

Figure 1

10 pages, 926 KiB  
Article
Bond Strength of Composite Resin to Bioceramic Cements: An In Vitro Study
by Alejandra Alvarado-Orozco, Louis Hardan, Rim Bourgi, Ana Josefina Monjarás-Ávila, Carlos Enrique Cuevas-Suárez, Laura Emma Rodríguez-Vilchis, Antoun Farrayeh, Blanca Irma Flores-Ferreyra, Rosalía Contreras-Bulnes, Youssef Haikel and Naji Kharouf
Ceramics 2024, 7(3), 1137-1146; https://doi.org/10.3390/ceramics7030074 - 23 Aug 2024
Viewed by 1740
Abstract
Bioceramic endodontic cements, known for their antibacterial properties, calcium ion release, and alkaline pH, may come into contact with various irrigants after furcal perforation repair. This study aimed to evaluate the effect of different irrigating solutions and setting times on the shear bond [...] Read more.
Bioceramic endodontic cements, known for their antibacterial properties, calcium ion release, and alkaline pH, may come into contact with various irrigants after furcal perforation repair. This study aimed to evaluate the effect of different irrigating solutions and setting times on the shear bond strength (SBS) of Biodentine® (Septodont, Saint-Maur-des-Fosses Cedex, France) to a self-adhering flowable composite. Sixty Biodentine® (Septodont, Saint-Maur-des-Fosses Cedex, France) blocks were prepared and divided into two groups based on the setting time: 72 h and 7 days. These were further subdivided into five subgroups based on the irrigation solution applied: distilled water, sodium hypochlorite, ethylenediaminetetraacetic acid, chlorhexidine, and phosphoric acid. They were then restored with Dyad FlowTM (KerrTM, Orange, CA, USA). SBS and failure modes were assessed at 24 h and 6 months. A two-way analysis of variance (ANOVA) test was performed to analyze the effect of the different irrigating solutions and setting times on the SBS of Biodentine® (Septodont, Saint-Maur-des-Fosses Cedex, France) and Dyad FlowTM (KerrTM, Orange, CA, USA). The level of significance was set at a ≤0.05. At 24 h, SBS was significantly influenced by both the irrigant solution (p = 0.029) and setting time (p = 0.018); at 6 months, SBS was influenced only by the irrigating solutions (p < 0.001). The predominant mode of bond failure was adhesive across all groups. In conclusion, while the setting time did not affect the bond strength, certain irrigating solutions reduced it. Thus, careful consideration of surface treatments applied to Biodentine® is crucial for successful endodontic and restorative outcomes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

17 pages, 4979 KiB  
Article
Structure Formation in Engineered Wood Using Wood Waste and Biopolyurethane
by Aurelija Rimkienė, Agnė Kairytė, Sigitas Vėjelis, Arūnas Kremensas, Saulius Vaitkus and Jurga Šeputytė-Jucikė
Materials 2024, 17(16), 4087; https://doi.org/10.3390/ma17164087 - 17 Aug 2024
Cited by 2 | Viewed by 1504
Abstract
This research aims to find suitable processing methods that allow the reuse of wood waste to produce wood waste-based engineered wood logs for construction that meet the strength requirements for structural timber for sawn structural softwood. Three types of wood waste were examined: [...] Read more.
This research aims to find suitable processing methods that allow the reuse of wood waste to produce wood waste-based engineered wood logs for construction that meet the strength requirements for structural timber for sawn structural softwood. Three types of wood waste were examined: wood packaging waste (W), waste from the construction and furniture industry (PLY), and door manufacturing waste (DW). The wood waste was additionally crushed and sieved, and the granulometric composition and shape of the particles were evaluated. The microstructure of the surface of the wood waste particles was also analysed. A three-component biopolyurethane adhesive was used to bind wood waste particles. An analysis of the contact zones between the particles and biopolyurethane was performed, and the adhesion efficiency of their surfaces was evaluated. Analysis was performed using tensile tests, and the formation of contact zones was analysed with a scanning electron microscope. The wood particles were chemically treated with sodium carbonate, calcium hypochlorite, and peroxide to increase the efficiency of the contact zones between the particles and the biopolyurethane adhesive. Chemical treatment made fillers up to 30% lighter and changed the tensile strength depending on the solution used. The tensile strength of engineered wood prepared from W and treated with sodium carbonate increased from 8331 to 12,702 kPa compared to untreated waste. Additionally, the compressive strength of engineered wood made of untreated and treated wood waste particles was determined to evaluate the influence of the wood particles on the strength characteristics. Full article
Show Figures

Figure 1

16 pages, 852 KiB  
Review
Use of Non-Chlorine Sanitizers in Improving Quality and Safety of Marketed Fresh Salad Vegetables
by Sharmin Zaman, Ashfaq Aziz, Md. Abubakkar Siddique, Md. Abdul Khaleque and Md. Latiful Bari
Processes 2024, 12(5), 1011; https://doi.org/10.3390/pr12051011 - 16 May 2024
Cited by 2 | Viewed by 2498
Abstract
The safety of vegetable food is compromised by various factors, including the inefficient or excessive use of sanitizers. Instances of individuals falling ill after consuming raw vegetables have been reported, with outbreaks of diseases caused by pathogens on fresh vegetables becoming increasingly prevalent [...] Read more.
The safety of vegetable food is compromised by various factors, including the inefficient or excessive use of sanitizers. Instances of individuals falling ill after consuming raw vegetables have been reported, with outbreaks of diseases caused by pathogens on fresh vegetables becoming increasingly prevalent globally, attracting significant media coverage and impacting the economic viability of vegetable cultivation. Measures to enhance food safety in postharvest horticultural produce involve controlling microbial proliferation and minimizing cross-contamination. Sanitizers were utilized in the food safety arsenal for a variety of purposes, including pathogen elimination and microbe reduction, hand, tool, and vegetable contact surface cleaning, and produce shelf-life extension. Choosing an appropriate sanitizer for all vegetables is difficult due to a lack of knowledge on which sanitizers are ideal for the many types of vegetables grown on farms under different environmental circumstances. Although chlorine-based sanitizers, such as sodium or calcium hypochlorite, have been widely used for the past 50 years, recent research has revealed that chlorine reacts with an organic compound in fresh vegetables to produce trihalomethane, a carcinogen precursor, and as a result, many countries have prohibited the use of chlorine in all foods. As a result, horticulture research groups worldwide are exploring non-chlorine, ecologically friendly sanitizers for the vegetable industry. They also want to understand more about the present procedures in the vegetable business for employing alternative sanitizers, as well as the efficacy and potential dangers to the food safety of fresh salad vegetables. This review paper presents detailed information on non-chlorine sanitizers, such as their efficacy, benefits, drawbacks, regulatory requirements, and the need for additional research to lower the risk of marketed salad vegetable food safety. Full article
Show Figures

Figure 1

13 pages, 1974 KiB  
Article
Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite
by Valentin Romanovski, Andrei Paspelau, Maksim Kamarou, Vitaly Likhavitski, Natalia Korob and Elena Romanovskaia
Water 2024, 16(5), 793; https://doi.org/10.3390/w16050793 - 6 Mar 2024
Cited by 6 | Viewed by 2726
Abstract
Disinfection of surfaces with various functional purposes is a relevant measure for the inactivation of microorganisms and viruses. This procedure is used almost universally, from water treatment facilities to medical institutions and public spaces. Some of the most common disinfectants the World Health [...] Read more.
Disinfection of surfaces with various functional purposes is a relevant measure for the inactivation of microorganisms and viruses. This procedure is used almost universally, from water treatment facilities to medical institutions and public spaces. Some of the most common disinfectants the World Health Organization recommends are chlorine-containing compounds. Sodium and calcium hypochlorites are only used for disinfection of the internal surfaces of water treatment facilities. However, it is known that ozone is a more powerful oxidizing agent. This study compares the effectiveness of inactivating yeast-like fungi Candida albicans, Gram-positive Bacillus subtilis, and Gram-negative bacteria Escherichia coli with aqueous ozone and sodium hypochlorite solutions. This study used ozone solutions in water with a concentration of 0.5–1.5 mg/L and sodium hypochlorite solutions with an active chlorine concentration of 50–150 mg/L. Steel and polymeric plates were used as substrates. Comparison of the CT (concentration by time) criterion at the ratio of LD50 in NaClO to ozonated water shows that the smallest difference, around 100 times, was observed in the inactivation of Candida albicans. The maximum difference is up to 230 times in the inactivation of Bacillus subtilis. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants)
Show Figures

Figure 1

11 pages, 747 KiB  
Article
Temporary Root Canal Obturation with a Calcium Hydroxide-Based Dressing: A Randomized Controlled Clinical Trial
by Johannes-Simon Wenzler, Wolfgang Falk, Roland Frankenberger and Andreas Braun
Antibiotics 2023, 12(12), 1663; https://doi.org/10.3390/antibiotics12121663 - 26 Nov 2023
Cited by 2 | Viewed by 5211
Abstract
Successful bacterial inactivation or elimination is essential for successful outcomes in endodontics. This study investigated the efficacy of a calcium hydroxide paste (Ca(OH)2) as a temporary medical dressing for 1 week after chemomechanical root canal treatment (CMRCT). Microbiological samples from 26 [...] Read more.
Successful bacterial inactivation or elimination is essential for successful outcomes in endodontics. This study investigated the efficacy of a calcium hydroxide paste (Ca(OH)2) as a temporary medical dressing for 1 week after chemomechanical root canal treatment (CMRCT). Microbiological samples from 26 patients were collected after endodontic emergency treatment as follows: (1) removal of the provisional filling material; (2) CMRCT; (3) irrigation with sodium hypochlorite I (3%); (4) medicinal insertion of Ca(OH)2; and (5) irrigation with sodium hypochlorite II (3%). A microbiological examination was carried out after the specimens had been taken from the root canals via saline and sterile paper points. CMRCT resulted in a significant reduction in total bacterial load (TBL) in the root canal (p < 0.05). Additional irrigation (3) resulted in a further significant reduction in TBL (p < 0.05). In contrast, Ca(OH)2 medication did not prevent the bacterial load from returning to the previous level immediately after CMRCT, but did not increase above that level either (p < 0.05). However, the increase in TBL was significant (p < 0.05) in comparison with the disinfection groups (I/II). Administration of Ca(OH)2 for 1 week shows that in combination with an additional disinfection procedure, an increase in TBL must be expected, but not above the level of conditions after CMRCT. Full article
Show Figures

Figure 1

Back to TopTop