Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (458)

Search Parameters:
Keywords = business intelligence systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 237
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

48 pages, 835 KiB  
Review
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review
by Jorge Gomes and Mário Romão
Healthcare 2025, 13(15), 1847; https://doi.org/10.3390/healthcare13151847 - 29 Jul 2025
Viewed by 357
Abstract
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by [...] Read more.
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by assessing readiness, process efficiency, technology adoption, and interoperability. This study presents a comprehensive literature review identifying 45 Maturity Models used across various healthcare domains, including telemedicine, analytics, business intelligence, and electronic medical records. These models, often based on Capability Maturity Model Integration (CMMI), vary in structure, scope, and maturity stages. The findings demonstrate that structured maturity assessments help healthcare organizations plan, implement, and optimize HIS more effectively, leading to enhanced clinical and operational performance. This review contributes to an understanding of how different MMs can support healthcare digital transformation and provides a resource for selecting appropriate models based on specific organizational goals and technological contexts. Full article
Show Figures

Figure 1

32 pages, 2698 KiB  
Article
Design and Validation of an Edge-AI Fire Safety System with SmartThings Integration for Accelerated Detection and Targeted Suppression
by Seung-Jun Lee, Hong-Sik Yun, Yang-Bae Sim and Sang-Hoon Lee
Appl. Sci. 2025, 15(14), 8118; https://doi.org/10.3390/app15148118 - 21 Jul 2025
Viewed by 624
Abstract
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor [...] Read more.
This study presents the design and validation of an integrated fire safety system that leverages edge AI, hybrid sensing, and precision suppression to overcome the latency and collateral limitations of conventional smoke detection and sprinkler systems. The proposed platform features a dual-mode sensor array for early fire recognition, motorized ventilation units for rapid smoke extraction, and a 360° directional nozzle for targeted agent discharge using a residue-free clean extinguishing agent. Experimental trials demonstrated an average fire detection time of 5.8 s and complete flame suppression within 13.2 s, with 90% smoke clearance achieved in under 95 s. No false positives were recorded during non-fire simulations, and the system remained fully functional under simulated cloud communication failure, confirming its edge-resilient architecture. A probabilistic risk analysis based on ISO 31000 and NFPA 551 frameworks showed risk reductions of 75.6% in life safety, 58.0% in property damage, and 67.1% in business disruption. The system achieved a composite risk reduction of approximately 73%, shifting the operational risk level into the ALARP region. These findings demonstrate the system’s capacity to provide proactive, energy-efficient, and spatially targeted fire response suitable for high-value infrastructure. The modular design and SmartThings Edge integration further support scalable deployment and real-time system intelligence, establishing a strong foundation for future adaptive fire protection frameworks. Full article
Show Figures

Figure 1

30 pages, 1095 KiB  
Article
Unraveling the Drivers of ESG Performance in Chinese Firms: An Explainable Machine-Learning Approach
by Hyojin Kim and Myounggu Lee
Systems 2025, 13(7), 578; https://doi.org/10.3390/systems13070578 - 14 Jul 2025
Viewed by 425
Abstract
As Chinese firms play pivotal roles in global supply chains, multinational corporations face increasing pressure to ensure ESG accountability across their sourcing networks. Current ESG rating systems lack transparency in incorporating China’s unique industrial, economic, and cultural factors, creating reliability concerns for stakeholders [...] Read more.
As Chinese firms play pivotal roles in global supply chains, multinational corporations face increasing pressure to ensure ESG accountability across their sourcing networks. Current ESG rating systems lack transparency in incorporating China’s unique industrial, economic, and cultural factors, creating reliability concerns for stakeholders managing supply chain sustainability risks. This study develops an explainable artificial intelligence framework using SHAP and permutation feature importance (PFI) methods to predict the ESG performance of Chinese firms. We analyze comprehensive ESG data of 1608 Chinese listed companies over 13 years (2009–2021), integrating financial and non-financial determinants traditionally examined in isolation. Empirical findings demonstrate that random forest algorithms significantly outperform multivariate linear regression in capturing nonlinear ESG relationships. Key non-financial determinants include patent portfolios, CSR training initiatives, pollutant emissions, and charitable donations, while financial factors such as current assets and gearing ratios prove influential. Sectoral analysis reveals that manufacturing firms are evaluated through pollutant emissions and technical capabilities, whereas non-manufacturing firms are assessed on business taxes and intangible assets. These insights provide essential tools for multinational corporations to anticipate supply chain sustainability conditions. Full article
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Cited by 1 | Viewed by 566
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

22 pages, 1065 KiB  
Article
Harnessing Knowledge: The Robust Role of Knowledge Management Practices and Business Intelligence Systems in Developing Entrepreneurial Leadership and Organizational Sustainability in SMEs
by Sager Alharthi
Sustainability 2025, 17(14), 6264; https://doi.org/10.3390/su17146264 - 8 Jul 2025
Viewed by 462
Abstract
The present study examines the role of knowledge management practices in developing business intelligence systems (BISMs) and organizational sustainability (OS) in small and medium-sized enterprises (SMEs) in Saudi Arabia. With the underpinning of the knowledge-based view (KBV) in the model of the study, [...] Read more.
The present study examines the role of knowledge management practices in developing business intelligence systems (BISMs) and organizational sustainability (OS) in small and medium-sized enterprises (SMEs) in Saudi Arabia. With the underpinning of the knowledge-based view (KBV) in the model of the study, the study employed a deductive approach. Cross-sectional data were gathered from CEOs, senior managers, and business intelligence officers using both offline and online survey tools. Finally, the study utilized 356 usable cases to support its conclusions. The study confirmed a positive effect on knowledge management practices, i.e., knowledge acquisition (KAG) and knowledge dissemination (KDM) on BISMs and OS. On the other hand, the impact of knowledge responsiveness (KRN) on BISMs is negative but positive on OS. Furthermore, BISMs have a positive effect on OS and entrepreneurial leadership (ELP). ELP also positively affects OS. Finally, ELP mediates the relationship between BISMs and OS. The study provides guidelines for SME managers and policymakers on how to invest in knowledge management initiatives to foster a culture of continuous learning and information sharing. The study directly supports Saudi Arabia’s Vision 2030, which requires the development of the sustainability of SMEs. Finally, the study addresses the gaps in the integrated model, providing empirical evidence from a developing context. Full article
Show Figures

Figure 1

29 pages, 1282 KiB  
Article
The Role of Business Models in Smart-City Waste Management: A Framework for Sustainable Decision-Making
by Silvia Krúpová, Gabriel Koman, Jakub Soviar and Martin Holubčík
Systems 2025, 13(7), 556; https://doi.org/10.3390/systems13070556 - 8 Jul 2025
Viewed by 466
Abstract
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research [...] Read more.
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research question investigates the role of innovative business models and sustainable decision-making frameworks in advancing smart waste management within urban environments. This research integrates three interrelated domains: business-model innovation, smart-city paradigms, and sustainability in waste management. Its novelty lies in synthesizing these domains, conducting a comparative analysis of best practices from leading European smart cities, and proposing a conceptual framework to guide sustainable decision-making. Methodologically, the study employs a systematic literature review, case-study analyses, and the synthesis of theoretical and empirical data. Key findings demonstrate that innovative business models—such as product-as-a-service, circular-economy approaches, and waste-as-a-service—substantially enhance the sustainability and operational efficiency of urban waste systems. However, many cities lack comprehensive strategies for integrating these models, highlighting the necessity for deliberate planning and active stakeholder engagement. Based on these insights, the study offers actionable recommendations for policymakers and urban managers to embed sustainable business models into smart-city waste infrastructures. These contributions aim to promote the development of resilient, efficient, and environmentally responsible waste-management systems in smart cities. Full article
Show Figures

Figure 1

21 pages, 2201 KiB  
Article
Evaluating China’s Electric Vehicle Adoption with PESTLE: Stakeholder Perspectives on Sustainability and Adoption Barriers
by Daniyal Irfan and Xuan Tang
Sustainability 2025, 17(14), 6258; https://doi.org/10.3390/su17146258 - 8 Jul 2025
Viewed by 513
Abstract
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in [...] Read more.
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in 2023 (33% market share), faces infrastructure gaps constraining further growth. China is strategically mitigating CO2 emissions while fostering economic expansion, notwithstanding constraints such as suboptimal battery technology advancements, elevated production expenditure, and enduring ecological impacts. This Political, Economic, Social, Technological, Legal, Environmental (PESTLE) assessment, operationalized through a survey of 800 stakeholders and Statistical Package for the Social Sciences IBM SPSS SPSS (Version 28) quantitative analysis (factor loading = 0.73 for Technology; eigenvalue = 4.12), identifies infrastructure gaps as the dominant barrier (72% of stakeholders). Political factors (β = 0.82) emerged as the strongest adoption predictor, outweighing economic subsidies in significance. The adoption of EVs in China presents a significant prospect for reducing CO2 emissions and advancing technology. However, economic barriers, market dynamics, inadequate infrastructure, regulatory uncertainty, and social acceptance issues are addressed in the assessment. The study recommends prioritizing infrastructure investment (e.g., 500 K fast-charging stations by 2027) and policy stability to overcome adoption barriers. This study provides three key advances: (1) quantification of PESTLE factor weights via factor analysis, revealing technological (infrastructure) and political factors as dominant; (2) identification of infrastructure gaps, not subsidies, as the primary adoption barrier; and (3) demonstration of infrastructure’s persistence post-subsidy cuts. These insights redefine EV adoption priorities in China. Full article
Show Figures

Figure 1

33 pages, 5362 KiB  
Article
A Method for Trust-Based Collaborative Smart Device Selection and Resource Allocation in the Financial Internet of Things
by Bo Wang, Jiesheng Wang and Mingchu Li
Sensors 2025, 25(13), 4082; https://doi.org/10.3390/s25134082 - 30 Jun 2025
Viewed by 246
Abstract
With the rapid development of the Financial Internet of Things (FIoT), many intelligent devices have been deployed in various business scenarios. Due to the unique characteristics of these devices, they are highly vulnerable to malicious attacks, posing significant threats to the system’s stability [...] Read more.
With the rapid development of the Financial Internet of Things (FIoT), many intelligent devices have been deployed in various business scenarios. Due to the unique characteristics of these devices, they are highly vulnerable to malicious attacks, posing significant threats to the system’s stability and security. Moreover, the limited resources available in the FIoT, combined with the extensive deployment of AI algorithms, can significantly reduce overall system availability. To address the challenge of resisting malicious behaviors and attacks in the FIoT, this paper proposes a trust-based collaborative smart device selection algorithm that integrates both subjective and objective trust mechanisms with dynamic blacklists and whitelists, leveraging domain knowledge and game theory. It is essential to evaluate real-time dynamic trust levels during system execution to accurately assess device trustworthiness. A dynamic blacklist and whitelist transformation mechanism is also proposed to capture the evolving behavior of collaborative service devices and update the lists accordingly. The proposed algorithm enhances the anti-attack capabilities of smart devices in the FIoT by combining adaptive trust evaluation with blacklist and whitelist strategies. It maintains a high task success rate in both single and complex attack scenarios. Furthermore, to address the challenge of resource allocation for trusted smart devices under constrained edge resources, a coalition game-based algorithm is proposed that considers both device activity and trust levels. Experimental results demonstrate that the proposed method significantly improves task success rates and resource allocation performance compared to existing approaches. Full article
(This article belongs to the Special Issue Network Security and IoT Security: 2nd Edition)
Show Figures

Figure 1

13 pages, 532 KiB  
Article
The Impact of AI-Driven Chatbot Assistance on Protocol Development and Clinical Research Engagement: An Implementation Report
by Kusal Weerasinghe, David B. Olawade, Jennifer Teke, Maines Msiska and Stergios Boussios
J. Pers. Med. 2025, 15(7), 269; https://doi.org/10.3390/jpm15070269 - 24 Jun 2025
Cited by 1 | Viewed by 492
Abstract
Background: The integration of artificial intelligence (AI) into healthcare research has the potential to enhance research capacity, streamline protocol development, and reduce barriers to engagement. Medway NHS Foundation Trust identified a plateau in homegrown research participation, particularly among clinicians with limited research experience. [...] Read more.
Background: The integration of artificial intelligence (AI) into healthcare research has the potential to enhance research capacity, streamline protocol development, and reduce barriers to engagement. Medway NHS Foundation Trust identified a plateau in homegrown research participation, particularly among clinicians with limited research experience. A generative AI-driven chatbot was introduced to assist researchers in protocol development by providing step-by-step guidance, prompting ethical and scientific considerations, and offering immediate feedback. Methods: The chatbot was developed using OpenAI’s GPT-3.5 architecture, customised with domain-specific training based on Trust guidelines, Health Research Authority (HRA) requirements, and Integrated Research Application System (IRAS) submission protocols. It was deployed to guide researchers through protocol planning, ensuring compliance with ethical and scientific standards. A mixed-methods evaluation was conducted using a qualitative-dominant sequential explanatory design. Seven early adopters completed a 10-item questionnaire (5-point Likert scales), followed by eight free-flowing interviews to achieve thematic saturation. Results: Since its launch, the chatbot has received an overall performance rating of 8.86/10 from the seven survey respondents. Users reported increased confidence in protocol development, reduced waiting times for expert review, and improved inclusivity in research participation across professional groups. However, limitations in usage due to free-tier platform constraints were identified as a key challenge. Conclusions: AI-driven chatbot tools show promise in supporting research engagement in busy clinical environments. Future improvements should focus on expanding access, optimising integration, and fostering collaboration among NHS institutions to enhance research efficiency and inclusivity. Full article
Show Figures

Graphical abstract

19 pages, 582 KiB  
Systematic Review
Human–AI Collaboration in the Modernization of COBOL-Based Legacy Systems: The Case of the Department of Government Efficiency (DOGE)
by Inês Melo, Daniel Polónia and Leonor Teixeira
Computers 2025, 14(7), 244; https://doi.org/10.3390/computers14070244 - 23 Jun 2025
Viewed by 1726
Abstract
This paper aims to explore the challenges of maintaining and modernizing legacy systems, particularly COBOL-based platforms, the backbone of many financial and administrative systems. By exploring the DOGE team’s initiative to modernize government IT systems on a relevant case study, the author analyzes [...] Read more.
This paper aims to explore the challenges of maintaining and modernizing legacy systems, particularly COBOL-based platforms, the backbone of many financial and administrative systems. By exploring the DOGE team’s initiative to modernize government IT systems on a relevant case study, the author analyzes the pros and cons of AI and Agile methodologies in addressing the limitations of static and highly resilient legacy architectures. A systematic literature review was conducted to assess the state of the art about legacy system modernization, AI integration, and Agile methodologies. Then, the gray literature was analyzed to provide practical insights into how government agencies can modernize their IT infrastructures while addressing the growing shortage of COBOL experts. Findings suggest that AI may support interoperability, automation, and knowledge abstraction, but also introduce new risks related to cybersecurity, workforce disruption, and knowledge retention. Furthermore, the transition from Waterfall to Agile approaches poses significant epistemological and operational challenges. The results highlight the importance of adopting a hybrid human–AI model and structured governance strategies to ensure sustainable and secure system evolution. This study offers valuable insights for organizations that are facing the challenge of balancing the desire for modernization with the need to ensure their systems remain functional and manage tacit knowledge transfer. Full article
Show Figures

Figure 1

31 pages, 802 KiB  
Review
Impact of EU Laws on the Adoption of AI and IoT in Advanced Building Energy Management Systems: A Review of Regulatory Barriers, Technological Challenges, and Economic Opportunities
by Bo Nørregaard Jørgensen and Zheng Grace Ma
Buildings 2025, 15(13), 2160; https://doi.org/10.3390/buildings15132160 - 21 Jun 2025
Cited by 1 | Viewed by 834
Abstract
The integration of Artificial Intelligence (AI) and the Internet of Things (IoT) in Building Energy Management Systems (BEMSs) offers transformative potential for improving energy efficiency, enhancing occupant comfort, and supporting grid stability. However, the adoption of these technologies in the European Union (EU) [...] Read more.
The integration of Artificial Intelligence (AI) and the Internet of Things (IoT) in Building Energy Management Systems (BEMSs) offers transformative potential for improving energy efficiency, enhancing occupant comfort, and supporting grid stability. However, the adoption of these technologies in the European Union (EU) is significantly influenced by a complex regulatory landscape, including the EU AI Act, the General Data Protection Regulation (GDPR), the EU Cybersecurity Act, and the Energy Performance of Buildings Directive (EPBD). This review systematically examines the legal, technological, and economic implications of these regulations on AI- and IoT-driven BEMS. Following the PRISMA-ScR guidelines, 64 relevant sources were reviewed, comprising 34 peer-reviewed articles and 30 regulatory or policy documents. First, legal and regulatory barriers that may hinder innovation are identified, including data protection constraints, cybersecurity compliance, liability concerns, and interoperability requirements. Second, technological challenges in designing regulatory-compliant AI and IoT solutions are examined, with a focus on data privacy-preserving architectures (e.g., edge computing versus cloud processing), explainability requirements for AI decision-making, and cybersecurity resilience. Finally, the economic opportunities arising from regulatory alignment are highlighted, demonstrating how compliant AI and IoT-based BEMS can enable energy savings, operational efficiencies, and new business models in smart buildings. By synthesizing current research and policy developments, this review offers a comprehensive framework for understanding the intersection of regulatory requirements and technological innovation in AI-driven building management. Strategies are discussed for navigating regulatory constraints while leveraging AI and IoT for energy-efficient, intelligent building operations. The insights presented aim to support researchers, policymakers, and industry stakeholders in advancing regulatory-compliant BEMS that balance innovation, security, and sustainability. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 442 KiB  
Article
A Review of AI and Its Impact on Management Accounting and Society
by David Kerr, Katherine Taken Smith, Lawrence Murphy Smith and Tian Xu
J. Risk Financial Manag. 2025, 18(6), 340; https://doi.org/10.3390/jrfm18060340 - 19 Jun 2025
Viewed by 1449
Abstract
Past and current advances in artificial intelligence (AI) have resulted in a significant impact on business and accounting. Over time, AI has slowly transformed from the 1950s to today, from rule-based systems, also known as expert systems, to the deep learning architectures and [...] Read more.
Past and current advances in artificial intelligence (AI) have resulted in a significant impact on business and accounting. Over time, AI has slowly transformed from the 1950s to today, from rule-based systems, also known as expert systems, to the deep learning architectures and sophisticated neural networks of modern generative AI. Early AI accounting applications of expert systems included a GAAP-based expert system to assess the appropriate accounting treatment for business combinations and an expert system to determine the proper type of audit report to issue. Recent accounting expert systems have been developed for document analysis, fraud detection, evaluating credit risk, and corporate default forecasting. The purpose of this study is to examine key events in the history of AI, current applications, and potential future effects pertaining to management accounting and society overall. In addition, the relationship of AI with economic and social factors will be evaluated. The study’s findings will be of interest to management accountants, businesspersons, academic researchers, and others who are concerned with artificial intelligence and its impact on management accounting and society overall. Full article
(This article belongs to the Special Issue Innovations and Challenges in Management Accounting)
Show Figures

Figure 1

26 pages, 2689 KiB  
Article
A Study on Predicting Key Times in the Takeout System’s Order Fulfillment Process
by Dongyi Hu, Wei Deng, Zilong Jiang and Yong Shi
Systems 2025, 13(6), 457; https://doi.org/10.3390/systems13060457 - 10 Jun 2025
Viewed by 578
Abstract
With the rapid development of the Internet, businesses in the traditional catering industry are increasingly shifting toward the Online-to-Offline mode, as on-demand food delivery platforms continue to grow rapidly. Within these takeout systems, riders have a role throughout the order fulfillment process. Their [...] Read more.
With the rapid development of the Internet, businesses in the traditional catering industry are increasingly shifting toward the Online-to-Offline mode, as on-demand food delivery platforms continue to grow rapidly. Within these takeout systems, riders have a role throughout the order fulfillment process. Their behaviors involve multiple key time points, and accurately predicting these critical moments in advance is essential for enhancing both user retention and operational efficiency on such platforms. This paper first proposes a time chain simulation method, which simulates the order fulfillment in segments with an incremental process by combining dynamic and static information in the data. Subsequently, a GRU-Transformer architecture is presented, which is based on the Transformer incorporating the advantages of the Gated Recurrent Unit, thus working in concert with the time chain simulation and enabling efficient parallel prediction before order creation. Extensive experiments conducted on a real-world takeout food order dataset demonstrate that the Mean Squared Error of the prediction results of GRU-Transformer with time chain simulation is reduced by about 9.78% compared to the Transformer. Finally, according to the temporal inconsistency analysis, it can be seen that GRU-Transformer with time chain simulation still has a stable performance during peak periods, which is valuable for the intelligent takeout system. Full article
Show Figures

Figure 1

35 pages, 1590 KiB  
Review
Data-Driven Decision Support in SaaS Cloud-Based Service Models
by Gerasimos Charizanis, Efthimia Mavridou, Eleni Vrochidou, Theofanis Kalampokas and George A. Papakostas
Appl. Sci. 2025, 15(12), 6508; https://doi.org/10.3390/app15126508 - 10 Jun 2025
Viewed by 1011
Abstract
Software as a service (SaaS) is a major service model for delivering software to end users through the cloud. SaaS platforms provide their users with cost-efficient, flexible and scalable services that can be available on demand, anytime, and anywhere. Moreover, SaaS empowers software [...] Read more.
Software as a service (SaaS) is a major service model for delivering software to end users through the cloud. SaaS platforms provide their users with cost-efficient, flexible and scalable services that can be available on demand, anytime, and anywhere. Moreover, SaaS empowers software providers to establish recurring revenue and create profitable businesses. However, SaaS can endure high customer turnover due to reasons such as serving a wide range of customers, intense competition and rapid evolution of technology. Maintaining a regular customer base and keeping users engaged is crucial for the survival of a SaaS business. Thus, it is crucial for SaaS providers to identify both the reasons behind users’ engagement and churn of their app towards taking proper actions to retain them in the long term. SaaS data regarding user behavior, subscriptions and system performance can be utilized for deriving insights and identifying patterns to support decision-making for SaaS providers. To this end, the aim of this survey is to review research in data-driven decision support systems in SaaS, identifying current gaps and challenges and highlighting directions for future improvements towards the development of more efficient and intelligent systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop