Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = burgers relationship

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 143
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

18 pages, 8183 KiB  
Article
Experimental Study on Rheological Behavior of Firefighting Foams
by Youquan Bao, Huiqiang Zhi, Lu Wang, Yakun Fan and Junqi Wang
Materials 2025, 18(14), 3236; https://doi.org/10.3390/ma18143236 - 9 Jul 2025
Viewed by 248
Abstract
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the [...] Read more.
The rheological behavior of firefighting foam is the basis for analyzing foam flow and foam spreading. This experimental study investigates the complex rheological behavior of rapidly aging firefighting foams, specifically focusing on alcohol-resistant aqueous film-forming foam. The primary objective is to characterize the time-dependent viscoelasticity, yielding, and viscous flow of firefighting foam under controlled shear conditions, addressing the significant challenge posed by its rapid structural evolution (drainage and coarsening) during measurement. Using a cylindrical Couette rheometer, conductivity measurements for the liquid fraction, and microscopy for the bubble size analysis, the study quantifies how foam aging impacts key rheological parameters. The results show that the creep and relaxation response of the firefighting foam in the linear viscoelastic region conforms to the Burgers model. The firefighting foam shows ductile yielding and significant shear thinning, and its flow curve under slow shear can be well represented by the Herschel–Bulkley model. Foam drainage and coarsening have competitive effects on the rheology of the firefighting foam, which results in monotonic and nonmonotonic variations in the rheological response in the linear and nonlinear viscoelastic regions, respectively. The work reveals that established empirical relationships between rheology, liquid fraction, and bubble size for general aqueous foams are inadequate for firefighting foams, highlighting the need for foam-specific constitutive models. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

18 pages, 8242 KiB  
Article
Quasi-In Situ EBSD Investigation of Variant Evolution and Twin Formation in a Hot Isostatic Pressing-Treated Additively-Manufactured Titanium Alloy Under Tensile Loading
by Fengli Zhu, Jiahong Liang, Guojian Cao, Aihan Feng, Hao Wang, Shoujiang Qu and Daolun Chen
Materials 2025, 18(13), 3169; https://doi.org/10.3390/ma18133169 - 3 Jul 2025
Viewed by 462
Abstract
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated [...] Read more.
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated via selective electron beam melting (SEBM). The alloy exhibits a dual-phase (α+β) microstructure, where six distinct α variants are formed through the β→α phase transformation following the Burgers orientation relationship. Variant selection during AM leads to a non-uniform distribution of these α variants, with α6 (22.3%) dominating due to preferential growth. Analysis of the prismatic slip Schmid factor reveals that α4–α6 variants, with higher Schmid factors (>0.45), primarily undergo prismatic slip, while α1–α3 variants, with lower Schmid factors (<0.3), rely on basal or pyramidal slip and twinning for plastic deformation. In-grain misorientation axis (IGMA) analysis further reveals strain-dependent slip transitions: pyramidal slip is activated in α1–α3 variants at lower strains, while prismatic slip becomes the dominant deformation mechanism in α4–α6 variants at higher strains. Additionally, deformation twins, primarily {10–12}<1–101> extension twins (7.1%), contribute to the plasticity of hard-oriented α variants. These findings significantly enhance the understanding of the orientation-dependent deformation mechanisms in HIPed TA15 alloy and provide a crucial basis for optimizing the performance of additively-manufactured titanium alloys. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

24 pages, 1142 KiB  
Article
Healthful vs. Unhealthful Plant-Based Restaurant Meals
by Kim A. Williams, Amy M. Horton, Rosella D. Baldridge and Mashaal Ikram
Nutrients 2025, 17(5), 742; https://doi.org/10.3390/nu17050742 - 20 Feb 2025
Viewed by 4117
Abstract
Background: Vegan/vegetarian (VEG) restaurants and VEG options in omnivore (OMNI) restaurants may serve unhealthful plant-based food that may be more harmful than a typical American diet. Methods: A sample of 561 restaurants with online menus were analyzed over a 3-year period. Each plant-based [...] Read more.
Background: Vegan/vegetarian (VEG) restaurants and VEG options in omnivore (OMNI) restaurants may serve unhealthful plant-based food that may be more harmful than a typical American diet. Methods: A sample of 561 restaurants with online menus were analyzed over a 3-year period. Each plant-based menu entrée was counted, up to a maximum of ten entrées per restaurant, meaning that a restaurant customer could select from ten or more healthful plant-based choices. Entrées containing refined grains (e.g., white rice and refined flour), saturated fat (e.g., palm oil and coconut oil), or deep-fried foods were counted as zero. Results: We evaluated 278 VEG and 283 OMNI restaurants. A full menu (10 or more plant-based entrées) was available in 59% of the VEG, but only 16% of the OMNI (p < 0.0001). Zero healthful options occurred in 27% of OMNI, but only 14% of VEG (p = 0.0002). The mean healthy entrée count for all restaurants was 3.2, meaning that, on average, there were only about three healthful plant-based choices of entrées on the menu, significantly more in VEG (4.0 vs. 2.4 p < 0.0001). The most common entrée reduction was for refined grains (e.g., white flour in veggie-burger buns or white rice in Asian entrées, n = 1408), followed by fried items (n = 768) and saturated fat (n = 318). VEG restaurants had a significantly higher frequency of adequate VEG options (≥7 options, 24% vs. 13%, p = 0.0005). Conclusions: Restaurants listed as VEG have a slightly higher number of healthful entrées than OMNI restaurants, which offer more limited vegan/vegetarian options. Given the published relationship between unhealthful dietary patterns, chronic illness, and mortality, we propose that detailed nutrition facts be publicly available for every restaurant. Full article
(This article belongs to the Special Issue Vegetarian Diets and Human Health: Current Prospects)
Show Figures

Figure 1

20 pages, 25650 KiB  
Article
Investigation of the Mechanical Properties of Reinforced Calcareous Sand Using a Permeable Polyurethane Polymer Adhesive
by Dingfeng Cao, Lei Fan, Rui Huang and Chengchao Guo
Materials 2024, 17(21), 5277; https://doi.org/10.3390/ma17215277 - 30 Oct 2024
Cited by 3 | Viewed by 1026
Abstract
Calcareous sand has been widely used as a construction material for offshore projects; however, the problem of foundation settlement caused by particle crushing cannot be ignored. Although many methods for reinforcing calcareous sands have been proposed, they are difficult to apply on-site. In [...] Read more.
Calcareous sand has been widely used as a construction material for offshore projects; however, the problem of foundation settlement caused by particle crushing cannot be ignored. Although many methods for reinforcing calcareous sands have been proposed, they are difficult to apply on-site. In this study, a permeable polyurethane polymer adhesive (PPA) was used to reinforce calcareous sands, and its mechanical properties after reinforcement were investigated through compression creep, direct shear, and triaxial shear tests. The reinforcement mechanism was analyzed using optical microscopy, CT tomography, and mercury intrusion porosimetry. The experimental results indicate that there is a critical time during the compression creep process. Once the critical time is surpassed, creep accelerates again, causing failure of the traditional Burgers and Murayama models. The direct shear strength of the fiber- and geogrid-reinforced calcareous sand reinforced by PPA was approximately nine times greater than that without PPA. The influence of normal stress was not significant when the moisture content was less than 10%, but when the moisture content was more than 10%, the shear strength increased with an increase in vertical normal stress. Strain-softening features can be observed in triaxial shear tests under conditions of low confining pressure, and the relationship between the deviatoric stress and strain can be described using the Duncan–Chang model before softening occurs. The moisture content also has a significant influence on the peak strength and cohesive force but has little influence on the internal friction angle and Poisson’s ratio. This influence is caused by the different PPA structures among the particles. The higher the moisture content, the greater the number of pores left after grouting PPA. Full article
Show Figures

Figure 1

14 pages, 11311 KiB  
Article
Effect of Cooling Rate on α Variant Selection and Microstructure Evolution in TB17 Titanium Alloy
by Guoqiang Shang, Xueping Gan, Xinnan Wang, Jinyang Ge, Chao Li, Zhishou Zhu, Xiaoyong Zhang and Kechao Zhou
Materials 2024, 17(20), 5010; https://doi.org/10.3390/ma17205010 - 13 Oct 2024
Cited by 5 | Viewed by 1656
Abstract
The α variant selection and microstructure evolution in a new metastable β titanium alloy TB17 were studied in depth by DTA, microhardness, XRD, SEM, and EBSD characterization methods. Under the rapid cooling rate conditions (150 °C/min–400 °C/min), only a very small amount of [...] Read more.
The α variant selection and microstructure evolution in a new metastable β titanium alloy TB17 were studied in depth by DTA, microhardness, XRD, SEM, and EBSD characterization methods. Under the rapid cooling rate conditions (150 °C/min–400 °C/min), only a very small amount of granular αWM (α Widmanstatten precipitates within the grains) precipitated within the grains. The secondary α phase precipitated in the alloy changed from granular to fine needle-like at moderate cooling rates (15 °C/min–20 °C/min). When continuing to slow down the cooling rates (10 °C/min and 1 °C/min), the αGB (α precipitates along the β grain boundaries), αWGB (α Widmanstatten precipitates that developed from β grain boundaries or αGB) and αWM grew rapidly. Moreover, the continuous cooling transformation (CCT) diagram illustrated the effect of cooling rate on the β/α phase transition. EBSD analysis revealed that the variants selection of α near the original β grain boundary is mainly divided into three categories. (i) The double-BOR (Burgers orientation relationship) αWGB colonies within neighboring β grains grow in different directions but have the same crystallographic orientation. (ii) The double-BOR αWGB colonies within neighboring β grains have different growth directions and different crystallographic orientations. (iii) The double-BOR αWGB colonies within the same grain have the same growth direction, but different crystallographic directions. And these double-BOR αWGB colonies correspond to two variants of the given {0001}α//{110}β. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

19 pages, 8359 KiB  
Article
Investigation on the Performance of Modified Corn Stalk Fiber AC-13 Asphalt Mixture
by Kun Wang, Lu Qu, Liang Tang, Peng Hu, Qiong Wu, Xiaofei Zhang and Hao Xu
Coatings 2024, 14(4), 436; https://doi.org/10.3390/coatings14040436 - 7 Apr 2024
Viewed by 1802
Abstract
As an agricultural waste, a large amount of corn stalk will cause environmental pollution. In order to realize the resource utilization of waste and meet the strict requirements of modern traffic on pavement strength and durability, it was modified and applied to an [...] Read more.
As an agricultural waste, a large amount of corn stalk will cause environmental pollution. In order to realize the resource utilization of waste and meet the strict requirements of modern traffic on pavement strength and durability, it was modified and applied to an AC-13 asphalt mixture to study its influence on the road performance of asphalt mixture and its mechanism. The road performances of modified corn stalk fiber, lignin fiber, and ordinary asphalt mixtures were evaluated via the wheel tracking test, low-temperature bending test, water immersion Marshall test, freeze–thaw splitting test, and fatigue test. Based on the results of three-point bending fatigue test, the viscoelastic parameters and indexes of the fiber asphalt mixture were obtained by fitting the loading specimen and deflection data with the Burgers constitutive model, and the creep strain response was analyzed by applying dynamic load, so as to explore the relationship between the viscoelastic characteristics and creep behavior of modified corn stalk fiber and AC-13 mixture. The long-term high-temperature performance test of the asphalt mixture with the best fiber content was carried out by using the long-term pavement intelligent monitoring equipment independently developed by the group of investigators. According to the findings, the ideal fiber contents for modified corn and lignin in asphalt mixture are 0.2% and 0.3%, respectively. Among them, the modified corn stalk fiber with a 0.2% content has the best effect on road performance, viscoelastic performance, and the asphalt mixture’s creep behavior under dynamic load. Compared with the 0.3% lignin fiber asphalt mixture, its dynamic stability, bending stiffness modulus, immersion residual stability, freeze–thaw splitting strength ratio, and loading times at failure increased by 19.9%, 18.28%, 4.19%, 8.6%, and 9.15%, respectively. Compared with ordinary asphalt mixture, it increased by 47.0%, 28.72%, 7.65%, 15%, and 75.81%, respectively. Moreover, when modified corn stalk fiber is added at 0.2%, the viscoelastic delay time of asphalt mixture is the longest, the strain peak value and rut depth are at a minimum, and the viscoelastic properties, creep properties, and long-term high-temperature properties are the best. Full article
(This article belongs to the Special Issue Asphalt Pavement: Materials, Design and Characterization)
Show Figures

Figure 1

18 pages, 13363 KiB  
Article
Study on Mechanical Properties of Tomatoes for the End-Effector Design of the Harvesting Robot
by Shuhe Zheng, Minglei He, Xuexin Jia, Zebin Zheng, Xinhui Wu and Wuxiong Weng
Agriculture 2023, 13(12), 2201; https://doi.org/10.3390/agriculture13122201 - 26 Nov 2023
Cited by 5 | Viewed by 3727
Abstract
Agricultural robotics has emerged as a research area within robotics, with a particular focus on designing end effectors that are adapted to the physical characteristics of the target fruits. Acquiring a comprehensive understanding of the physical and mechanical properties specific to tomato fruits [...] Read more.
Agricultural robotics has emerged as a research area within robotics, with a particular focus on designing end effectors that are adapted to the physical characteristics of the target fruits. Acquiring a comprehensive understanding of the physical and mechanical properties specific to tomato fruits not only minimizes mechanical damage during grasping processes but also serves as a foundation for the optimal design of gripping components. In this study, the Syngenta Sibede variety of tomatoes was used as the experimental material. The reversible viscoelastic behavior and deformation characteristics of tomato fruits were approximated using a four-element Burgers model through creep testing. The fitting coefficients for the model exceeded 0.99. The creep parameters for the four ripening stages of tomatoes were obtained, and the correlation between the ripening stage, deformation value, and creep parameters was analyzed. Correlation analysis was performed to examine the relationships between each parameter and creep deformation, revealing significant and highly significant correlations. Inter-parameter correlations were also found to be highly significant. Puncture tests were conducted on tomatoes. The exocarp rupture force of the green-ripening stage was 9.224 ± 0.901 N, which was 53.87%, 70.63%, and 104.01% higher than that of the semi-ripening stage, early firm-ripening stage, and mid-late firm-ripening stage, respectively. This study suggests that when harvesting tomatoes at the semi-ripening stage and beyond, attention should be paid to trimming the stem. Compression experiments were conducted on tomatoes, and it was discovered that under the same ripening stage, the axial compressive rupture force of tomatoes was greater than the radial rupture force. Tomatoes exhibited anisotropic behavior. The grasping direction is axial, which can be used as the new design direction of the end-effector. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

12 pages, 455 KiB  
Article
Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming
by Amelia Willits-Smith, Harmonii Odinga, Keelia O’Malley and Donald Rose
Nutrients 2023, 15(17), 3795; https://doi.org/10.3390/nu15173795 - 30 Aug 2023
Cited by 16 | Viewed by 33552
Abstract
Concern for the environment when making dietary choices has grown as the contribution of the food sector to global greenhouse gas emissions becomes more widely known. Understanding the correlates of beef eating could assist in the targeting of campaigns to reduce the consumption [...] Read more.
Concern for the environment when making dietary choices has grown as the contribution of the food sector to global greenhouse gas emissions becomes more widely known. Understanding the correlates of beef eating could assist in the targeting of campaigns to reduce the consumption of high-impact foods. The objective of this study was to identify the demographic, socioeconomic, and behavioral correlates of disproportionate beef consumption in the United States. We analyzed 24-h dietary recall data from adults (n = 10,248) in the 2015–2018 National Health and Nutrition Examination Survey (NHANES). Disproportionate beef consumption was defined as an intake greater than four ounce-equivalents per 2200 kcal. Associations of this indicator variable with gender, age, race/ethnicity, education, family income, diet knowledge, and away-from-home meals were assessed using logistic regression, incorporating survey design and weighting. Disproportionate beef diets were consumed by 12% of individuals, but accounted for half of all beef consumed. Males were more likely than females (p < 0.001) to consume these diets. This relationship was seen in all bivariate and multivariable models. Older adults, college graduates, and those who looked up the MyPlate educational campaign online were less likely (p < 0.01) to consume a disproportionate beef diet. While almost one-third of reported consumption came from cuts of beef (e.g., steak or brisket), six of the top ten beef sources were mixed dishes: burgers, meat mixed dishes, burritos and tacos, frankfurters, soups, and pasta. Efforts to address climate change through diet modification could benefit from targeting campaigns to the highest consumers of beef, as their consumption accounts for half of all beef consumed. Full article
Show Figures

Figure 1

12 pages, 10945 KiB  
Article
Microstructure Evolution and Dislocation Mechanism of a Third-Generation Single-Crystal Ni-Based Superalloy during Creep at 1170 °C
by Ruida Xu, Ying Li and Huichen Yu
Materials 2023, 16(14), 5166; https://doi.org/10.3390/ma16145166 - 22 Jul 2023
Cited by 7 | Viewed by 2351
Abstract
The present study investigates the creep behavior and deformation mechanism of a third-generation single-crystal Ni-based superalloy at 1170 °C under a range of stress levels. Scanning electron microscopes (SEM) and transmission electron microscopes (TEM) were employed to observe the formation of a rafted [...] Read more.
The present study investigates the creep behavior and deformation mechanism of a third-generation single-crystal Ni-based superalloy at 1170 °C under a range of stress levels. Scanning electron microscopes (SEM) and transmission electron microscopes (TEM) were employed to observe the formation of a rafted γ′ phase, which exhibits a topologically close-packed (TCP) structure. The orientation relationship and elemental composition of the TCP phase and matrix were analyzed to discern their impact on the creep properties of the alloy. The primary deformation mechanism of the examined alloy was identified as dislocation slipping within the γ matrix, accompanied by the climbing of dislocations over the rafted γ′ phase during the initial stage of creep. In the later stages of creep, super-dislocations with Burgers vectors of a<010> and a/2<110> were observed to shear into the γ′ phase, originating from interfacial dislocation networks. Up to the fracture, the sequential activation of dislocation shearing in the primary and secondary slipping systems of the γ′ phase occurs. As a consequence of this alternating dislocation shearing, a twist deformation of the rafted γ′ phase ensued, ultimately contributing to the fracture mechanism observed in the alloy during creep. Full article
Show Figures

Figure 1

14 pages, 5603 KiB  
Article
The Effect of Cooling Rate on Crystallographic Features of Phase Transformations in Zr-2.5Nb
by Mikhail L. Lobanov, Valentin Yu. Yarkov, Vladimir I. Pastukhov, Inna A. Naschetnikova, Stepan I. Stepanov, Andrey A. Redikultsev and Mariya A. Zorina
Materials 2023, 16(10), 3758; https://doi.org/10.3390/ma16103758 - 16 May 2023
Cited by 5 | Viewed by 1912
Abstract
Zirconium (Zr) alloys are utilized as structural components for the cores of nuclear reactors due to the excellent combination of their mechanical properties and corrosion resistance under intense neutron irradiation conditions in water. The characteristics of microstructures formed during heat treatments play a [...] Read more.
Zirconium (Zr) alloys are utilized as structural components for the cores of nuclear reactors due to the excellent combination of their mechanical properties and corrosion resistance under intense neutron irradiation conditions in water. The characteristics of microstructures formed during heat treatments play a crucial role in obtaining the operational performance of parts made from Zr alloys. This study investigates the morphological features of (α + β)-microstructures in the Zr-2.5Nb alloy, as well as the crystallographic relationships between α- and β-phases. These relationships are induced by the β→α(α″) displacive transformation that occurs during water quenching (WQ) and the diffusion-eutectoid transformation that takes place during furnace cooling (FC). To conduct this analysis, samples solution treated at 920 °C were examined using EBSD and TEM. The experimental distribution of α/β-misorientations for both cooling regimes deviates from the Burgers orientation relationship (BOR) at a discrete set of angles close to 0, 29, 35, and 43°. The experimental α/β-misorientation spectra are confirmed by crystallographic calculations for the β→α→β-transformation path based on the BOR. Similar spectra of misorientation angle distribution in α-phase and between α and β phases in Zr-2.5Nb after WQ and FC point to similar transformation mechanisms and the significant role of shear and shuffle in β→α-transformation. Full article
(This article belongs to the Special Issue Structural Materials for Nuclear Applications)
Show Figures

Figure 1

14 pages, 3216 KiB  
Article
Uniaxial Creep Test Analysis on Creep Characteristics of Fully Weathered Sandy Shale
by Lianzhen Zhang, Changxin Huang, Zhipeng Li, Zichuan Han, Xianjie Weng and Lige Wang
Processes 2023, 11(2), 610; https://doi.org/10.3390/pr11020610 - 17 Feb 2023
Cited by 2 | Viewed by 2545
Abstract
The creep damage behavior of rocks is very important for evaluating the stability and safety of key rock engineering. Based on the Lianhua Tunnel Project in China, this paper aims to study the creep damage mechanics, the influencing factors and the creep constitutive [...] Read more.
The creep damage behavior of rocks is very important for evaluating the stability and safety of key rock engineering. Based on the Lianhua Tunnel Project in China, this paper aims to study the creep damage mechanics, the influencing factors and the creep constitutive models of sandy shale. In order to achieve these goals, a uniaxial compressive strength test and a creep test under different moisture contents and load levels were carried out. According to the test results, the creep parameters (elastic coefficients E1 and E2 and viscosity coefficients η1 and η2) of the Burgers Model were achieved, and the relationship between the creep parameters and moisture content, ω, was established accordingly (E1 = f(ω), E2 = f(ω), η1 = f(ω), η2 = f(ω)). A fully weathered sandy-shale creep constitutive model considering moisture content was finally obtained. Test results showed that creep deformation increases with any increase in load level or moisture content, and the influence of moisture content is more significant. For instance, creep deformation increased by 35% when the load increased by 50%, and creep deformation increased by 82% when the moisture content increased by 45%. In addition, the creep rate in the steady stage and the duration of the primary creep stage increased with any increase in moisture content or load level. The higher the moisture content, the greater the influence of creep deformation on the total deformation. The creep model of fully weathered sandy shale showed that the elastic coefficients (E1, E2) and the viscosity coefficients (η1, η2) are negatively correlated to moisture content; E1 is negatively correlated to load level; and E2, η1 and η2 are positively correlated to load level. Qualitative and quantitative analysis of fully weathered sandy shale can improve the existing research of creep properties and is expected to provide theoretical support for treatment of large deformation disasters in the fully weathered sandy-shale stratum. Full article
(This article belongs to the Special Issue Multiphase Flows and Particle Technology)
Show Figures

Figure 1

21 pages, 1454 KiB  
Review
Oleogels—Innovative Technological Solution for the Nutritional Improvement of Meat Products
by Simona Perța-Crișan, Claudiu-Ștefan Ursachi, Bianca-Denisa Chereji and Florentina-Daniela Munteanu
Foods 2023, 12(1), 131; https://doi.org/10.3390/foods12010131 - 27 Dec 2022
Cited by 21 | Viewed by 4968
Abstract
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating [...] Read more.
Food products contain important quantities of fats, which include saturated and/or unsaturated fatty acids. Because of a proven relationship between saturated fat consumption and the appearance of several diseases, an actual trend is to eliminate them from foodstuffs by finding solutions for integrating other healthier fats with high stability and solid-like structure. Polyunsaturated vegetable oils are healthier for the human diet, but their liquid consistency can lead to a weak texture or oil drain if directly introduced into foods during technological processes. Lately, the use of oleogels that are obtained through the solidification of liquid oils by using edible oleogelators, showed encouraging results as fat replacers in several types of foods. In particular, for meat products, studies regarding successful oleogel integration in burgers, meat batters, pâtés, frankfurters, fermented and bologna sausages have been noted, in order to improve their nutritional profile and make them healthier by substituting for animal fats. The present review aims to summarize the newest trends regarding the use of oleogels in meat products. However, further research on the compatibility between different oil-oleogelator formulations and meat product components is needed, as it is extremely important to obtain appropriate compositions with adequate behavior under the processing conditions. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

55 pages, 714 KiB  
Review
Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations
by Nikolay K. Vitanov
Entropy 2022, 24(11), 1653; https://doi.org/10.3390/e24111653 - 14 Nov 2022
Cited by 28 | Viewed by 8016
Abstract
Exact solutions of nonlinear differential equations are of great importance to the theory and practice of complex systems. The main point of this review article is to discuss a specific methodology for obtaining such exact solutions. The methodology is called the SEsM, or [...] Read more.
Exact solutions of nonlinear differential equations are of great importance to the theory and practice of complex systems. The main point of this review article is to discuss a specific methodology for obtaining such exact solutions. The methodology is called the SEsM, or the Simple Equations Method. The article begins with a short overview of the literature connected to the methodology for obtaining exact solutions of nonlinear differential equations. This overview includes research on nonlinear waves, research on the methodology of the Inverse Scattering Transform method, and the method of Hirota, as well as some of the nonlinear equations studied by these methods. The overview continues with articles devoted to the phenomena described by the exact solutions of the nonlinear differential equations and articles about mathematical results connected to the methodology for obtaining such exact solutions. Several articles devoted to the numerical study of nonlinear waves are mentioned. Then, the approach to the SEsM is described starting from the Hopf–Cole transformation, the research of Kudryashov on the Method of the Simplest Equation, the approach to the Modified Method of the Simplest Equation, and the development of this methodology towards the SEsM. The description of the algorithm of the SEsM begins with the transformations that convert the nonlinearity of the solved complicated equation into a treatable kind of nonlinearity. Next, we discuss the use of composite functions in the steps of the algorithms. Special attention is given to the role of the simple equation in the SEsM. The connection of the methodology with other methods for obtaining exact multisoliton solutions of nonlinear differential equations is discussed. These methods are the Inverse Scattering Transform method and the Hirota method. Numerous examples of the application of the SEsM for obtaining exact solutions of nonlinear differential equations are demonstrated. One of the examples is connected to the exact solution of an equation that occurs in the SIR model of epidemic spreading. The solution of this equation can be used for modeling epidemic waves, for example, COVID-19 epidemic waves. Other examples of the application of the SEsM methodology are connected to the use of the differential equation of Bernoulli and Riccati as simple equations for obtaining exact solutions of more complicated nonlinear differential equations. The SEsM leads to a definition of a specific special function through a simple equation containing polynomial nonlinearities. The special function contains specific cases of numerous well-known functions such as the trigonometric and hyperbolic functions and the elliptic functions of Jacobi, Weierstrass, etc. Among the examples are the solutions of the differential equations of Fisher, equation of Burgers–Huxley, generalized equation of Camassa–Holm, generalized equation of Swift–Hohenberg, generalized Rayleigh equation, etc. Finally, we discuss the connection between the SEsM and the other methods for obtaining exact solutions of nonintegrable nonlinear differential equations. We present a conjecture about the relationship of the SEsM with these methods. Full article
19 pages, 5521 KiB  
Article
Large Stress-Gradient Creep Tests and Model Establishment for Red Sandstone Treated at High Temperatures
by Xiaopeng Ren, Yajun Xin, Baoshan Jia, Kun Gao, Xuping Li and Yu Wang
Energies 2022, 15(20), 7786; https://doi.org/10.3390/en15207786 - 20 Oct 2022
Cited by 4 | Viewed by 1604
Abstract
Red sandstone samples treated at high temperatures feature complex creep properties. Uniaxial compression tests and the incremental creep tests at different stress gradients were conducted on 10 red sandstone samples of the same specifications divided into five groups on an RLW-2000 triaxial servo [...] Read more.
Red sandstone samples treated at high temperatures feature complex creep properties. Uniaxial compression tests and the incremental creep tests at different stress gradients were conducted on 10 red sandstone samples of the same specifications divided into five groups on an RLW-2000 triaxial servo rheometer in the laboratory. Relationships of the instantaneous strain and creep strain of red sandstone samples treated at high temperatures with the stress level were explored, and the creep properties and strength of the samples at different temperature gradients were investigated. In addition, the creep failure patterns and failure mechanism of the red sandstone samples were determined, and a creep constitutive model was established for the samples considering the effects of temperature. The conformity between test data and theoretical curves was discussed. Results show that as the stress increases, the instantaneous strain tends to decrease rapidly, slowly, then increase slowly; the creep strain tends to decrease, steadily increase, then increase substantially. At the same stress, as the stress gradient is doubled, the instantaneous strain decreases by 47.45%, and the creep strain decreases by 48.30%. For samples treated at 300~900 °C, the number of stress levels experienced gradually decreases; as the temperature increases, the creep failure strength of samples first increases, then decreases in an arcuate form, and the creep strain tends to decrease, increase, then increase rapidly. In the temperature range, the creep strain at the two stress gradients has a growing difference, with the maximum difference reaching 0.0134%; there is an inflection point at 300 °C in the creep failure strength of samples. At the same stress, the more the stress levels experienced, the lower the creep failure strength, and the temperature, creep failure strength, and creep strain can be characterized by a quadratic polynomial. At 300 °C, mineral particles in samples are sintered and cemented into chains, and there is a significant primary control plane, so the samples show oblique shear failure of a single primary control plane. At 600~900 °C, particles and blocks in samples begin to be sintered and flow, and the cemented chains are broken. Under the condition, the samples mainly show failure dominated by mixed and crossed primary and secondary control planes and crushing failure due to transverse compression. The established Burgers–Kelvin-Temperature (BKT) creep constitutive model is sensitive to changes in temperature; the theoretical curves are consistent with the test data. Full article
Show Figures

Figure 1

Back to TopTop