Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Dietary Data: Calculating Outcome Variable
2.3. Demographic, Socioeconomic, and Behavioral Data: Predictor Variables
2.4. Statistical Analysis
3. Results
Disproportionate Beef Consumption (>4 oz/2200 kcal) | ||||||
---|---|---|---|---|---|---|
n | No (%) | Yes (%) | OR | 95%CI | p | |
Total | 10,248 | 87.8 | 12.2 | |||
Gender | ||||||
Male | 4969 | 85.4 | 14.6 | 1.55 | 1.24, 1.93 | <0.001 |
Female | 5279 | 90.1 | 9.9 | ------- | ------- | ------- |
Age (Years) | ||||||
18–29 | 2018 | 89.1 | 11.0 | 0.71 | 0.52, 0.97 | 0.034 |
30–49 | 3125 | 88.1 | 11.9 | 0.78 | 0.58, 1.04 | 0.091 |
50–65 | 2842 | 85.2 | 14.8 | ------- | ------- | ------- |
66–80+ | 2263 | 89.7 | 10.3 | 0.66 | 0.45, 0.97 | 0.034 |
Race/Ethnicity | ||||||
Non-Hispanic White | 3535 | 87.4 | 12.6 | ------- | ------- | ------- |
Non-Hispanic Black | 2293 | 90.4 | 9.6 | 0.74 | 0.58, 0.94 | 0.016 |
Mexican American | 1612 | 86.2 | 13.8 | 1.11 | 0.89, 1.38 | 0.336 |
Other Hispanic | 1147 | 87.0 | 13.0 | 1.03 | 0.80, 1.33 | 0.787 |
Non-Hispanic Asian | 1205 | 91.8 | 8.2 | 0.62 | 0.48, 0.80 | 0.001 |
Other, incl. multiracial | 456 | 85.9 | 14.1 | 1.14 | 0.77, 1.70 | 0.497 |
Education | ||||||
<High school | 2185 | 87.4 | 12.6 | 0.86 | 0.59, 1.25 | 0.407 |
High school graduate | 2487 | 85.7 | 14.4 | ------- | ------- | ------- |
Some college | 3159 | 87.5 | 12.5 | 0.85 | 0.64, 1.14 | 0.272 |
College graduate | 2407 | 90.1 | 9.9 | 0.65 | 0.48, 0.89 | 0.007 |
IPR | ||||||
<1 | 1902 | 89.2 | 10.9 | 0.93 | 0.74, 1.17 | 0.504 |
1–<2 | 2521 | 88.4 | 11.6 | ------- | ------- | ------- |
2–<5 | 3194 | 88.0 | 12.0 | 1.03 | 0.79, 1.35 | 0.798 |
5+ | 1528 | 87.1 | 12.9 | 1.12 | 0.85, 1.48 | 0.396 |
Missing | 1103 | 85.5 | 14.5 | 1.29 | 0.91, 1.84 | 0.148 |
Family Size | ||||||
1 | 2151 | 88.0 | 12.0 | 0.94 | 0.74, 1.19 | 0.600 |
2 | 2584 | 88.0 | 12.0 | 0.94 | 0.73, 1.22 | 0.656 |
3–4 | 3274 | 87.3 | 12.7 | ------- | ------- | ------- |
5+ | 2239 | 88.1 | 11.9 | 0.93 | 0.69, 1.25 | 0.623 |
Disproportionate Beef Consumption (>4 oz/2200 kcal) | ||||||
---|---|---|---|---|---|---|
n | No (%) | Yes (%) | OR | 95%CI | p | |
Total | 10,248 | 87.8 | 12.2 | |||
Heard of MyPlate | ||||||
Yes | 2055 | 90.8 | 9.2 | 0.67 | 0.52, 0.86 | 0.003 |
No | 8193 | 86.8 | 13.2 | ------- | ------- | ------- |
Looked up MyPlate | ||||||
Yes | 769 | 92.9 | 7.1 | 0.53 | 0.36, 0.77 | 0.002 |
No | 9479 | 87.3 | 12.7 | ------- | ------- | ------- |
Tried MyPlate | ||||||
Yes | 740 | 91.6 | 8.4 | 0.64 | 0.40, 1.02 | 0.058 |
No | 9508 | 87.5 | 12.5 | ------- | ------- | ------- |
Diet Healthiness (Self-Assessed) | ||||||
Excellent | 783 | 90.0 | 10.1 | 0.76 | 0.48, 1.20 | 0.230 |
Very Good | 1941 | 88.2 | 11.8 | 0.91 | 0.70, 1.20 | 0.503 |
Good | 4062 | 87.5 | 12.5 | 0.97 | 0.80, 1.18 | 0.757 |
Fair | 2726 | 87.2 | 12.8 | ------- | ------- | ------- |
Poor | 734 | 87.8 | 12.2 | 0.95 | 0.65, 1.37 | 0.758 |
≥5 Away From Home Meals/Week | ||||||
No | 7812 | 87.9 | 12.1 | ------- | ------- | ------- |
Yes | 2424 | 87.7 | 12.3 | 1.01 | 0.81, 1.26 | 0.908 |
≥10 Ready-to-Eat Meals/Week | ||||||
No | 9600 | 88.0 | 12.0 | ------- | ------- | ------- |
Yes | 611 | 85.4 | 14.6 | 1.25 | 0.80, 1.95 | 0.306 |
≥10 Frozen Food or Pizza Meals/Week | ||||||
No | 9526 | 87.8 | 12.2 | ------- | ------- | ------- |
Yes | 705 | 87.4 | 12.6 | 1.04 | 0.74, 1.48 | 0.801 |
Model 1: Demographics | Model 2: Demographics + Socioeconomic | Model 3: Demographics + Socioeconomic + Behavioral | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | |
Gender | |||||||||
Male | 1.55 | 1.24, 1.93 | < 0.001 | 1.52 | 1.23, 1.89 | < 0.001 | 1.48 | 1.19, 1.84 | 0.001 |
Female | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- |
Age (Years) | |||||||||
18–29 | 0.70 | 0.51, 0.97 | 0.031 | 0.70 | 0.51, 0.96 | 0.030 | 0.72 | 0.53, 1.00 | 0.048 |
30–49 | 0.78 | 0.58, 1.04 | 0.088 | 0.82 | 0.62, 1.08 | 0.150 | 0.83 | 0.62, 1.09 | 0.171 |
50–65 | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- |
66–80+ | 0.66 | 0.44, 0.98 | 0.039 | 0.67 | 0.45, 1.00 | 0.047 | 0.65 | 0.44, 0.98 | 0.041 |
Race/Ethnicity | |||||||||
Non-Hispanic White | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- | ------- |
Non-Hispanic Black | 0.74 | 0.58, 0.95 | 0.019 | 0.72 | 0.55, 0.94 | 0.017 | 0.72 | 0.55, 0.93 | 0.015 |
Mexican American | 1.12 | 0.89, 1.41 | 0.317 | 1.08 | 0.82, 1.41 | 0.571 | 1.07 | 0.82, 1.40 | 0.584 |
Other Hispanic | 1.04 | 0.81, 1.34 | 0.748 | 1.01 | 0.78, 1.31 | 0.916 | 1.00 | 0.77, 1.30 | 0.991 |
Non-Hispanic Asian | 0.62 | 0.48, 0.81 | 0.001 | 0.67 | 0.51, 0.87 | 0.005 | 0.66 | 0.50, 0.86 | 0.003 |
Other, incl. multiracial | 1.12 | 0.75, 1.67 | 0.575 | 1.14 | 0.75, 1.71 | 0.529 | 1.15 | 0.76, 1.72 | 0.502 |
Education | |||||||||
< High school | 0.86 | 0.57, 1.28 | 0.444 | 0.86 | 0.57, 1.28 | 0.444 | |||
High school graduate | ------- | ------- | ------- | ------- | ------- | ------- | |||
Some college | 0.84 | 0.64, 1.11 | 0.215 | 0.86 | 0.65, 1.14 | 0.275 | |||
College graduate | 0.61 | 0.47, 0.80 | 0.001 | 0.65 | 0.49, 0.86 | 0.004 | |||
IPR | |||||||||
<1 | 0.93 | 0.73, 1.18 | 0.534 | 0.93 | 0.73, 1.18 | 0.520 | |||
1–<2 | ------- | ------- | ------- | ------- | ------- | ------- | |||
2–<5 | 1.08 | 0.82, 1.43 | 0.566 | 1.08 | 0.82, 1.42 | 0.556 | |||
5+ | 1.24 | 0.94, 1.62 | 0.119 | 1.24 | 0.95, 1.62 | 0.115 | |||
Missing | 1.41 | 0.97, 2.05 | 0.072 | 1.39 | 0.96, 2.02 | 0.078 | |||
Looked up MyPlate | |||||||||
Yes | 0.62 | 0.41, 0.95 | 0.030 | ||||||
No | ------- | ------- | ------- | ||||||
Model F value | 4.502 | 2.954 | 3.137 | ||||||
Model p value | 0.0019 | 0.0210 | 0.0180 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute Healthy Eating Index—Overview & Background. 2020. Available online: https://epi.grants.cancer.gov/hei/ (accessed on 1 July 2023).
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans 2020–2025, 9th ed.; 2020. Available online: http://www.dietaryguidelines.gov/ (accessed on 1 July 2023).
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse Gas Emissions and Energy Use Associated with Production of Individual Self-Selected US Diets. Environ. Res. Lett. 2018, 13, 044004. [Google Scholar] [CrossRef]
- EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2021. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 1 July 2023).
- United Nations Environment Programme and Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Brink, E.; Van Rossum, C.; Postma-Smeets, A.; Stafleu, A.; Wolvers, D.; Van Dooren, C.; Toxopeus, I.; Buurma-Rethans, E.; Geurts, M.; Ocké, M. Development of Healthy and Sustainable Food-Based Dietary Guidelines for the Netherlands. Public Health Nutr. 2019, 22, 2419–2435. [Google Scholar] [CrossRef]
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the Society for Nutrition Education and Behavior: The Importance of Including Environmental Sustainability in Dietary Guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15.e1. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2015. [Google Scholar]
- Bianchi, F.; Dorsel, C.; Garnett, E.; Aveyard, P.; Jebb, S.A. Interventions Targeting Conscious Determinants of Human Behaviour to Reduce the Demand for Meat: A Systematic Review with Qualitative Comparative Analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 102. [Google Scholar] [CrossRef]
- Wang, Y.; Beydoun, M.A.; Caballero, B.; Gary, T.L.; Lawrence, R. Trends and Correlates in Meat Consumption Patterns in the US Adult Population. Public Health Nutrition 2010, 13, 1333–1345. [Google Scholar] [CrossRef]
- Zeng, L.; Ruan, M.; Liu, J.; Wilde, P.; Naumova, E.N.; Mozaffarian, D.; Zhang, F.F. Trends in Processed Meat, Unprocessed Red Meat, Poultry, and Fish Consumption in the United States, 1999–2016. J. Acad. Nutr. Diet. 2019, 119, 1085–1098.e12. [Google Scholar] [CrossRef]
- An, R.; Nickols-Richardson, S.; Alston, R.; Shen, S.; Clarke, C. Total, Fresh, Lean, and Fresh Lean Beef Consumption in Relation to Nutrient Intakes and Diet Quality among U.S. Adults, 2005–2016. Nutrients 2019, 11, 563. [Google Scholar] [CrossRef]
- Kim, H.; Rebholz, C.M.; Caulfield, L.E.; Ramsing, R.; Nachman, K.E. Trends in Types of Protein in US Adults: Results from the National Health and Nutrition Examination Survey 1999-2010. Public Health Nutr. 2019, 22, 191–201. [Google Scholar] [CrossRef]
- Rose, D. Environmental Nudges to Reduce Meat Demand. Lancet Planet. Health 2018, 2, e374–e375. [Google Scholar] [CrossRef]
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H.I. National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures; National Center for Health Statistics, Vital Health Statistics: Washington, DC, USA, 2020; Volume 2. [Google Scholar]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef]
- Anand, J.; Raper, N.R.; Tong, A. Quality Assurance during Data Processing of Food and Nutrient Intakes. J. Food Compos. Anal. 2006, 19, S86–S90. [Google Scholar] [CrossRef]
- USDA Food Patterns Equivalents Database. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/ (accessed on 2 July 2023).
- US Department of Agriculture (USDA); Agricultural Research Service (ARS) FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 5 July 2023).
- Sobal, J. Men, Meat, and Marriage: Models of Masculinity. Food Foodways 2005, 13, 135–158. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Tomiyama, A.J. Gender Differences in Meat Consumption and Openness to Vegetarianism. Appetite 2021, 166, 105475. [Google Scholar] [CrossRef]
- Love, H.J.; Sulikowski, D. Of Meat and Men: Sex Differences in Implicit and Explicit Attitudes toward Meat. Front. Psychol. 2018, 9, 559. [Google Scholar] [CrossRef]
- Mertens, A.; von Krause, M.; Meyerhöfer, S.; Aziz, C.; Baumann, F.; Denk, A.; Heitz, T.; Maute, J. Valuing Humans over Animals—Gender Differences in Meat-Eating Behavior and the Role of the Dark Triad. Appetite 2020, 146, 104516. [Google Scholar] [CrossRef]
- Neff, R.A.; Edwards, D.; Palmer, A.; Ramsing, R.; Righter, A.; Wolfson, J. Reducing Meat Consumption in the USA: A Nationally Representative Survey of Attitudes and Behaviours. Public Health Nutr. 2018, 21, 1835–1844. [Google Scholar] [CrossRef]
- Willits-Smith, A.; Aranda, R.; Heller, M.C.; Rose, D. Addressing the Carbon Footprint, Healthfulness, and Costs of Self-Selected Diets in the USA: A Population-Based Cross-Sectional Study. Lancet Planet. Health 2020, 4, e98–e106. [Google Scholar] [CrossRef]
- Frank, S.M.; Taillie, L.S.; Jaacks, L.M. How Americans Eat Red and Processed Meat: An Analysis of the Contribution of Thirteen Different Food Groups. Public Health Nutr. 2022, 25, 1406–1415. [Google Scholar] [CrossRef]
- Sobal, J.; Bisogni, C.A. Constructing Food Choice Decisions. Ann. Behav. Med. 2009, 38, s37–s46. [Google Scholar] [CrossRef]
- Taillie, L.S.; Chauvenet, C.; Grummon, A.H.; Hall, M.G.; Waterlander, W.; Prestemon, C.E.; Jaacks, L.M. Testing Front-of-Package Warnings to Discourage Red Meat Consumption: A Randomized Experiment with US Meat Consumers. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 1–13. [Google Scholar] [CrossRef]
- De Boer, J.; Schösler, H.; Aiking, H. “Meatless Days” or “Less but Better”? Exploring Strategies to Adapt Western Meat Consumption to Health and Sustainability Challenges. Appetite 2014, 76, 120–128. [Google Scholar] [CrossRef]
USDA Code | Food Category Description | Population-Level Consumption (Ounce Equivalents) | Respondents | |||
---|---|---|---|---|---|---|
Total | Percent of Total | Cumulative Percent | Frequency (n) | Frequency (%) | ||
2002 | Beef, excludes ground | 106,781,150 | 30.7% | 30.7% | 1027 | 9.4% |
3702 | Burgers (single code) | 62,882,785 | 18.1% | 48.7% | 947 | 9.4% |
3002 | Meat mixed dishes | 50,067,281 | 14.4% | 63.1% | 796 | 8.1% |
3502 | Burritos and tacos | 20,094,415 | 5.8% | 68.9% | 718 | 5.9% |
2602 | Cold cuts and cured meats | 19,622,145 | 5.6% | 74.5% | 531 | 5.2% |
2004 | Ground beef | 15,698,913 | 4.5% | 79.0% | 184 | 2.0% |
3703 | Frankfurter sandwiches (single code) | 14,148,461 | 4.1% | 83.1% | 330 | 3.3% |
2608 | Sausages | 7,945,033 | 2.3% | 85.4% | 255 | 2.2% |
3802 | Soups | 7,175,849 | 2.1% | 87.4% | 257 | 1.6% |
3204 | Pasta mixed dishes, excludes macaroni and cheese | 6,616,863 | 1.9% | 89.3% | 434 | 4.3% |
3708 | Other sandwiches (single code) | 6,479,862 | 1.9% | 91.2% | 130 | 1.5% |
3602 | Pizza | 6,129,408 | 1.8% | 93.0% | 891 | 7.6% |
3404 | Stir fry and soy-based sauce mixtures | 4,735,840 | 1.4% | 94.3% | 81 | 0.7% |
3506 | Other Mexican mixed dishes | 3,902,302 | 1.1% | 95.4% | 186 | 1.5% |
3706 | Egg/breakfast sandwiches (single code) | 3,298,461 | 0.9% | 96.4% | 281 | 2.6% |
2606 | Frankfurters | 3,156,976 | 0.9% | 97.3% | 84 | 0.6% |
3504 | Nachos | 1,462,181 | 0.4% | 97.7% | 49 | 0.4% |
3206 | Macaroni and cheese | 1,321,655 | 0.4% | 98.1% | 16 | 0.2% |
3402 | Fried rice and lo/chow mein | 1,254,718 | 0.4% | 98.4% | 30 | 0.3% |
3208 | Turnovers and other grain-based items | 1,167,858 | 0.3% | 98.8% | 91 | 1.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willits-Smith, A.; Odinga, H.; O’Malley, K.; Rose, D. Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming. Nutrients 2023, 15, 3795. https://doi.org/10.3390/nu15173795
Willits-Smith A, Odinga H, O’Malley K, Rose D. Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming. Nutrients. 2023; 15(17):3795. https://doi.org/10.3390/nu15173795
Chicago/Turabian StyleWillits-Smith, Amelia, Harmonii Odinga, Keelia O’Malley, and Donald Rose. 2023. "Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming" Nutrients 15, no. 17: 3795. https://doi.org/10.3390/nu15173795
APA StyleWillits-Smith, A., Odinga, H., O’Malley, K., & Rose, D. (2023). Demographic and Socioeconomic Correlates of Disproportionate Beef Consumption among US Adults in an Age of Global Warming. Nutrients, 15(17), 3795. https://doi.org/10.3390/nu15173795