Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (935)

Search Parameters:
Keywords = building outline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 756 KiB  
Article
Designs and Interactions for Near-Field Augmented Reality: A Scoping Review
by Jacob Hobbs and Christopher Bull
Informatics 2025, 12(3), 77; https://doi.org/10.3390/informatics12030077 (registering DOI) - 1 Aug 2025
Viewed by 56
Abstract
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers [...] Read more.
Augmented reality (AR), which overlays digital content within the user’s view, is gaining traction across domains such as education, healthcare, manufacturing, and entertainment. The hardware constraints of commercially available HMDs are well acknowledged, but little work addresses what design or interactions techniques developers can employ or build into experiences to work around these limitations. We conducted a scoping literature review, with the aim of mapping the current landscape of design principles and interaction techniques employed in near-field AR environments. We searched for literature published between 2016 and 2025 across major databases, including the ACM Digital Library and IEEE Xplore. Studies were included if they explicitly employed design or interaction techniques with a commercially available HMD for near-field AR experiences. A total of 780 articles were returned by the search, but just 7 articles met the inclusion criteria. Our review identifies key themes around how existing techniques are employed and the two competing goals of AR experiences, and we highlight the importance of embodiment in interaction efficacy. We present directions for future research based on and justified by our review. The findings offer a comprehensive overview for researchers, designers, and developers aiming to create more intuitive, effective, and context-aware near-field AR experiences. This review also provides a foundation for future research by outlining underexplored areas and recommending research directions for near-field AR interaction design. Full article
Show Figures

Figure 1

12 pages, 697 KiB  
Article
Together TO-CARE: A Novel Tool for Measuring Caregiver Involvement and Parental Relational Engagement
by Anna Insalaco, Natascia Bertoncelli, Luca Bedetti, Anna Cinzia Cosimo, Alessandra Boncompagni, Federica Cipolli, Alberto Berardi and Licia Lugli
Children 2025, 12(8), 1007; https://doi.org/10.3390/children12081007 - 31 Jul 2025
Viewed by 131
Abstract
Background: Preterm infants and their families face a challenging experience during their stay in the neonatal intensive care unit (NICU). Family-centered care emphasizes the importance of welcoming parents, involving them in their baby’s daily care, and supporting the development of parenting skills. NICU [...] Read more.
Background: Preterm infants and their families face a challenging experience during their stay in the neonatal intensive care unit (NICU). Family-centered care emphasizes the importance of welcoming parents, involving them in their baby’s daily care, and supporting the development of parenting skills. NICU staff should support parents in understanding their baby’s needs and in strengthening the parent–infant bond. Although many tools outline what parents should learn, there is a limited structured framework to monitor their involvement in the infant’s care. Tracking parental participation in daily caregiving activities could support professionals in effectively guiding families, ensuring a smoother transition to discharge. Aims: The aim of this study was to evaluate the adherence to and effectiveness of a structured tool for parental involvement in the NICU. This tool serves several key purposes: to track the progression and timing of parents’ autonomy in caring for their baby, to support parents in building caregiving competencies before discharge, and to standardize the approach of NICU professionals in promoting both infant care and family engagement. Methods: A structured template form for documenting parental involvement (“together TO-CARE template”, TTCT) was integrated into the computerized chart adopted in the NICU of Modena. Nurses were asked to complete the TTCT at each shift. The template included the following assessment items: parental presence; type of contact with the baby (touch; voice; skin-to-skin); parental involvement in care activities (diaper changing; gavage feeding; bottle feeding; breast feeding); and level of autonomy in care (observer; supported by nurse; autonomous). We evaluated TTCT uploaded data for very low birth weight (VLBW) preterm infants admitted in the Modena NICU between 1 January 2023 and 31 December 2024. Staff compliance in filling out the TTCT was assessed. The timing at which parents achieved autonomy in different care tasks was also measured. Results: The TTCT was completed with an average of one entry per day, during the NICU stay. Parents reached full autonomy in diaper changing at a mean of 21.1 ± 15.3 days and in bottle feeding at a mean of 48.0 ± 22.4 days after admission. The mean length of hospitalization was 53 ± 38 days. Conclusions: The adoption of the TTCT in the NICU is feasible and should become a central component of care for preterm infants. It promotes family-centered care by addressing the needs of both the baby and the family. Encouraging early and progressive parental involvement enhances parenting skills, builds confidence, and may help reduce post-discharge complications and readmissions. Furthermore, the use of a standardized template aims to foster consistency among NICU staff, reduce disparities in care delivery, and strengthen the support provided to families of preterm infants. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

12 pages, 558 KiB  
Review
The Challenge of Rebuilding Gaza’s Health System: A Narrative Review Towards Sustainability
by Eduardo Missoni and Kasturi Sen
Healthcare 2025, 13(15), 1860; https://doi.org/10.3390/healthcare13151860 - 30 Jul 2025
Viewed by 679
Abstract
Background: Since the election of Hamas in 2006, Gaza has endured eight major military conflicts, culminating in the ongoing 2023–2025 war, now surpassing 520 days. This protracted violence, compounded by a 17-year blockade, has resulted in the near-total collapse of Gaza’s health [...] Read more.
Background: Since the election of Hamas in 2006, Gaza has endured eight major military conflicts, culminating in the ongoing 2023–2025 war, now surpassing 520 days. This protracted violence, compounded by a 17-year blockade, has resulted in the near-total collapse of Gaza’s health system. Over 49,000 deaths, widespread displacement, and the destruction of more than 60% of health infrastructure have overwhelmed both local capacity and international humanitarian response. Objectives: This narrative review aims to examine and synthesize the current literature (October 2023–April 2025) on the health crisis in Gaza, with a specific focus on identifying key themes and knowledge gaps relevant to rebuilding a sustainable health system. The review also seeks to outline strategic pathways for recovery in the context of ongoing conflict and systemic deprivation. Methods: Given the urgency and limitations of empirical data from conflict zones, a narrative review approach was adopted. Fifty-two sources—including peer-reviewed articles, editorials, reports, and correspondence—were selected through targeted searches using Medline and Google Scholar. The analysis was framed within a public health and political economy perspective, also taking health system building blocks into consideration. Results: The reviewed literature emphasizes emergency needs: trauma care, infectious disease control, and supply chain restoration. Innovations such as mobile clinics and telemedicine offer interim solutions. Gaps include limited attention to mental health (including that of health workers), local governance, and sustainable planning frameworks. Conclusions: Sustainable reconstruction requires a durable ceasefire; international stewardship aligned with local ownership; and a phased, equity-driven strategy emphasizing primary care, mental health, trauma management, and community engagement. Full article
Show Figures

Figure 1

36 pages, 1411 KiB  
Review
A Critical Analysis and Roadmap for the Development of Industry 4-Oriented Facilities for Education, Training, and Research in Academia
by Ziyue Jin, Romeo M. Marian and Javaan S. Chahl
Appl. Syst. Innov. 2025, 8(4), 106; https://doi.org/10.3390/asi8040106 - 29 Jul 2025
Viewed by 431
Abstract
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand [...] Read more.
The development of Industry 4-oriented facilities in academia for training and research purposes is playing a significant role in pushing forward the Fourth Industrial Revolution. This study can serve academic staff who are intending to build their Industry 4 facilities, to better understand the key features, constraints, and opportunities. This paper presents a systematic literature review of 145 peer-reviewed studies published between 2011 and 2023, which are identified across Scopus, SpringerLink, and Web of Science. As a result, we emphasise the significance of developing Industry 4 learning facilities in academia and outline the main design principles of the Industry 4 ecosystems. We also investigate and discuss the key Industry 4-related technologies that have been extensively used and represented in the reviewed literature, and summarise the challenges and roadblocks that current participants are facing. From these insights, we identify research gaps, outline technology mapping and maturity level, and propose a strategic roadmap for future implementation of Industry 4 facilities. The results of the research are expected to support current and future participants in increasing their awareness of the significance of the development, clarifying the research scope and objectives, and preparing them to deal with inherent complexity and skills issues. Full article
Show Figures

Figure 1

40 pages, 6652 KiB  
Systematic Review
How Architectural Heritage Is Moving to Smart: A Systematic Review of HBIM
by Huachun Cui and Jiawei Wu
Buildings 2025, 15(15), 2664; https://doi.org/10.3390/buildings15152664 - 28 Jul 2025
Viewed by 299
Abstract
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to [...] Read more.
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to identify key research patterns, emerging trends, and forecast future directions. A total of 1516 documents were initially retrieved from the Web of Science Core Collection using targeted search terms. Following a relevance screening, 1175 documents were related to the topic. CiteSpace 6.4.R1, VOSviewer 1.6.20, and Bibliometrix 4.1, three bibliometric tools, were employed to conduct both quantitative and qualitative assessments. The results show three historical phases of HBIM, identify core journals, influential authors, and leading regions, and extract six major keyword clusters: risk assessment, data acquisition, semantic annotation, digital twins, and energy and equipment management. Nine co-citation clusters further outline the foundational literature in the field. The results highlight growing scholarly interest in workflow integration and digital twin applications. Future projections emphasize the transformative potential of artificial intelligence in HBIM, while also recognizing critical implementation barriers, particularly in developing countries and resource-constrained contexts. This study provides a comprehensive and systematic framework for HBIM research, offering valuable insights for scholars, practitioners, and policymakers involved in heritage preservation and digital management. Full article
Show Figures

Figure 1

24 pages, 331 KiB  
Perspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Viewed by 676
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance [...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation. Full article
35 pages, 1231 KiB  
Review
Toward Intelligent Underwater Acoustic Systems: Systematic Insights into Channel Estimation and Modulation Methods
by Imran A. Tasadduq and Muhammad Rashid
Electronics 2025, 14(15), 2953; https://doi.org/10.3390/electronics14152953 - 24 Jul 2025
Viewed by 289
Abstract
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight [...] Read more.
Underwater acoustic (UWA) communication supports many critical applications but still faces several physical-layer signal processing challenges. In response, recent advances in machine learning (ML) and deep learning (DL) offer promising solutions to improve signal detection, modulation adaptability, and classification accuracy. These developments highlight the need for a systematic evaluation to compare various ML/DL models and assess their performance across diverse underwater conditions. However, most existing reviews on ML/DL-based UWA communication focus on isolated approaches rather than integrated system-level perspectives, which limits cross-domain insights and reduces their relevance to practical underwater deployments. Consequently, this systematic literature review (SLR) synthesizes 43 studies (2020–2025) on ML and DL approaches for UWA communication, covering channel estimation, adaptive modulation, and modulation recognition across both single- and multi-carrier systems. The findings reveal that models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) enhance channel estimation performance, achieving error reductions and bit error rate (BER) gains ranging from 103 to 106. Adaptive modulation techniques incorporating support vector machines (SVMs), CNNs, and reinforcement learning (RL) attain classification accuracies exceeding 98% and throughput improvements of up to 25%. For modulation recognition, architectures like sequence CNNs, residual networks, and hybrid convolutional–recurrent models achieve up to 99.38% accuracy with latency below 10 ms. These performance metrics underscore the viability of ML/DL-based solutions in optimizing physical-layer tasks for real-world UWA deployments. Finally, the SLR identifies key challenges in UWA communication, including high complexity, limited data, fragmented performance metrics, deployment realities, energy constraints and poor scalability. It also outlines future directions like lightweight models, physics-informed learning, advanced RL strategies, intelligent resource allocation, and robust feature fusion to build reliable and intelligent underwater systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

46 pages, 478 KiB  
Article
Extensions of Multidirected Graphs: Fuzzy, Neutrosophic, Plithogenic, Rough, Soft, Hypergraph, and Superhypergraph Variants
by Takaaki Fujita
Int. J. Topol. 2025, 2(3), 11; https://doi.org/10.3390/ijt2030011 - 21 Jul 2025
Viewed by 194
Abstract
Graph theory models relationships by representing entities as vertices and their interactionsas edges. To handle directionality and multiple head–tail assignments, various extensions—directed, bidirected, and multidirected graphs—have been introduced, with the multidirected graph unifying the first two. In this work, we further enrich this [...] Read more.
Graph theory models relationships by representing entities as vertices and their interactionsas edges. To handle directionality and multiple head–tail assignments, various extensions—directed, bidirected, and multidirected graphs—have been introduced, with the multidirected graph unifying the first two. In this work, we further enrich this landscape by proposing the Multidirected hypergraph, which merges the flexibility of hypergraphs and superhypergraphs to describe higher-order and hierarchical connections. Building on this, we introduce five uncertainty-aware Multidirected frameworks—fuzzy, neutrosophic, plithogenic, rough, and soft multidirected graphs—by embedding classical uncertainty models into the Multidirected setting. We outline their formal definitions, examine key structural properties, and illustrate each with examples, thereby laying groundwork for future advances in uncertain graph analysis and decision-making. Full article
16 pages, 1531 KiB  
Article
Intelligent HVAC Control: Comparative Simulation of Reinforcement Learning and PID Strategies for Energy Efficiency and Comfort Optimization
by Atef Gharbi, Mohamed Ayari, Nasser Albalawi, Yamen El Touati and Zeineb Klai
Mathematics 2025, 13(14), 2311; https://doi.org/10.3390/math13142311 - 19 Jul 2025
Viewed by 526
Abstract
This study presents a new comparative analysis of the cognitive control methods of HVAC systems that assess reinforcement learning (RL) and traditional proportional-integral-derivative (PID) control. Through extensive simulations in various building environments, we have shown that while the PID controller provides stability under [...] Read more.
This study presents a new comparative analysis of the cognitive control methods of HVAC systems that assess reinforcement learning (RL) and traditional proportional-integral-derivative (PID) control. Through extensive simulations in various building environments, we have shown that while the PID controller provides stability under predictable conditions, the RL-based control can improve energy efficiency and thermal comfort in dynamic environments by constantly adapting to environmental changes. Our framework integrates real-time sensor data with a scalable RL architecture, allowing autonomous optimization without the need for a precise system model. Key findings show that RL largely outperforms PID during disturbances such as occupancy increases and weather fluctuations, and that the preferably optimal solution balances energy savings and comfort. The study provides practical insight into the implementation of adaptive HVAC control and outlines the potential of RL to transform building energy management despite its higher computational requirements. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 3127 KiB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 241
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

40 pages, 2206 KiB  
Review
Toward Generative AI-Based Intrusion Detection Systems for the Internet of Vehicles (IoV)
by Isra Mahmoudi, Djallel Eddine Boubiche, Samir Athmani, Homero Toral-Cruz and Freddy I. Chan-Puc
Future Internet 2025, 17(7), 310; https://doi.org/10.3390/fi17070310 - 17 Jul 2025
Viewed by 492
Abstract
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due [...] Read more.
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due to their limited adaptability and dependency on predefined patterns. To overcome these limitations, machine learning (ML) and deep learning (DL)-based IDS have been introduced, offering better generalization and the ability to learn from data. However, these models can still struggle with zero-day attacks, require large volumes of labeled data, and may be vulnerable to adversarial examples. In response to these challenges, Generative AI-based IDS—leveraging models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers—have emerged as promising solutions that offer enhanced adaptability, synthetic data generation for training, and improved detection capabilities for evolving threats. This survey provides an overview of IoV architecture, vulnerabilities, and classical IDS techniques while focusing on the growing role of Generative AI in strengthening IoV security. It discusses the current landscape, highlights the key challenges, and outlines future research directions aimed at building more resilient and intelligent IDS for the IoV ecosystem. Full article
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 329
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

26 pages, 2217 KiB  
Review
A Scientific Review of Recycling Practices and Challenges for Autoclaved Aerated Concrete in Sustainable Construction
by Shuxi (Hiro) Wang, Guomin Zhang, Chamila Gunasekara, David Law, Yongtao Tan and Weihan Sun
Buildings 2025, 15(14), 2453; https://doi.org/10.3390/buildings15142453 - 12 Jul 2025
Viewed by 506
Abstract
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling [...] Read more.
Autoclaved Aerated Concrete (AAC) is a lightweight, thermally insulating, and fire-resistant building material that has become prominent in sustainable construction due to its reduced production energy demands and minimal environmental impact. As an increasing number of AAC-based structures reach end-of-life, the effective recycling and reuse of AAC waste present both challenges and opportunities within the context of sustainable building practices and circular economy frameworks. This study presents a scientometric review of AAC recycling research published between 2014 and 2024, using the Web of Science database and bibliometric tools such as CiteSpace. Key trends, techniques, and knowledge gaps in AAC recycling are identified, highlighting issues such as high energy consumption, limited practical implementation, and the absence of standardized recovery protocols. The study also outlines emerging research pathways, including detailed material characterization, development of recycling standards, innovative reuse techniques, hybrid material systems, and the integration of recycled AAC in new construction. These insights provide a foundation for advancing sustainable building material strategies and inform policy and practice in construction waste management. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

39 pages, 3629 KiB  
Review
Radiative Heat Transfer Properties of Fiber–Aerogel Composites for Thermal Insulation
by Mohanapriya Venkataraman, Sebnem Sözcü and Jiří Militký
Gels 2025, 11(7), 538; https://doi.org/10.3390/gels11070538 - 11 Jul 2025
Viewed by 517
Abstract
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times [...] Read more.
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber–aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber–aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber–aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials’ affordability and scalability for industrial applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel (2nd Edition))
Show Figures

Figure 1

19 pages, 2212 KiB  
Article
A Self-Evaluated Bilingual Automatic Speech Recognition System for Mandarin–English Mixed Conversations
by Xinhe Hai, Kaviya Aranganadin, Cheng-Cheng Yeh, Zhengmao Hua, Chen-Yun Huang, Hua-Yi Hsu and Ming-Chieh Lin
Appl. Sci. 2025, 15(14), 7691; https://doi.org/10.3390/app15147691 - 9 Jul 2025
Viewed by 427
Abstract
Bilingual communication is increasingly prevalent in this globally connected world, where cultural exchanges and international interactions are unavoidable. Existing automatic speech recognition (ASR) systems are often limited to single languages. However, the growing demand for bilingual ASR in human–computer interactions, particularly in medical [...] Read more.
Bilingual communication is increasingly prevalent in this globally connected world, where cultural exchanges and international interactions are unavoidable. Existing automatic speech recognition (ASR) systems are often limited to single languages. However, the growing demand for bilingual ASR in human–computer interactions, particularly in medical services, has become indispensable. This article addresses this need by creating an application programming interface (API)-based platform using VOSK, a popular open-source single-language ASR toolkit, to efficiently deploy a self-evaluated bilingual ASR system that seamlessly handles both primary and secondary languages in tasks like Mandarin–English mixed-speech recognition. The mixed error rate (MER) is used as a performance metric, and a workflow is outlined for its calculation using the edit distance algorithm. Results show a remarkable reduction in the Mandarin–English MER, dropping from ∼65% to under 13%, after implementing the self-evaluation framework and mixed-language algorithms. These findings highlight the importance of a well-designed system to manage the complexities of mixed-language speech recognition, offering a promising method for building a bilingual ASR system using existing monolingual models. The framework might be further extended to a trilingual or multilingual ASR system by preparing mixed-language datasets and computer development without involving complex training. Full article
Show Figures

Figure 1

Back to TopTop