Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = bubble rise velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3961 KiB  
Article
Bernoulli Principle in Ferroelectrics
by Anna Razumnaya, Yuri Tikhonov, Dmitrii Naidenko, Ekaterina Linnik and Igor Lukyanchuk
Nanomaterials 2025, 15(13), 1049; https://doi.org/10.3390/nano15131049 - 6 Jul 2025
Viewed by 340
Abstract
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that [...] Read more.
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that the classical Bernoulli principle, which describes the conservation of the energy flux along velocity streamlines in a moving fluid, can be extended to the conservation of polarization flux in ferroelectric nanorods with varying cross-sectional areas. Geometric constrictions lead to an increase in polarization, resembling fluid acceleration in a narrowing pipe, while expansions cause a decrease. Beyond a critical expansion, phase separation occurs, giving rise to topological polarization structures such as polarization bubbles, curls and Hopfions. This effect extends to soft ferroelectrics, including ferroelectric nematic liquid crystals, where polarization flux conservation governs the formation of complex mesoscale states. Full article
(This article belongs to the Special Issue Research on Ferroelectric and Spintronic Nanoscale Materials)
Show Figures

Figure 1

20 pages, 2797 KiB  
Review
Advances in the Research on the Properties and Applications of Micro-Nano Bubbles
by Shuke Zhao, Jiazhong Wu and Yisong Li
Processes 2025, 13(7), 2106; https://doi.org/10.3390/pr13072106 - 2 Jul 2025
Viewed by 549
Abstract
Micro-nano bubbles (MNBs) are tiny bubbles with diameters ranging from 200 nm to 30 µm. They possess unique physicochemical properties such as a large specific surface area, slow rising velocity, high gas dissolution rate, high mass transfer efficiency, and strong interfacial zeta potential. [...] Read more.
Micro-nano bubbles (MNBs) are tiny bubbles with diameters ranging from 200 nm to 30 µm. They possess unique physicochemical properties such as a large specific surface area, slow rising velocity, high gas dissolution rate, high mass transfer efficiency, and strong interfacial zeta potential. These properties endow MNBs with great potential in various fields, including water treatment, enhanced oil recovery, medical and health care, and agriculture. This paper systematically reviews the physicochemical properties, generation methods, and applications of micro-nano bubbles. The main production methods include the mechanical stirring, pressurized dissolved gas release, ultrasonic cavitation, venturi injection, electrolysis, etc. The principles, advantages and disadvantages, and optimization strategies of these methods are comprehensively analyzed. In terms of applications, the mechanisms and typical cases of MNBs in enhanced oil recovery, water treatment, mineral flotation, medical drug delivery, and crop yield enhancement are thoroughly discussed. Extensive research has shown that MNB technology is highly efficient, energy-saving, and environmentally friendly. However, improving bubble stability, generation efficiency, and large-scale application remain key directions for future research. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 3724 KiB  
Article
The Influence of Process and Slag Parameters on the Liquid Slag Layer in Continuous Casting Mold for Large Billets
by Zhijun Ding, Chao Wang, Xin Wang, Pengcheng Xiao, Liguang Zhu and Shuhuan Wang
Crystals 2025, 15(5), 388; https://doi.org/10.3390/cryst15050388 - 23 Apr 2025
Viewed by 474
Abstract
In the continuous casting of special steel blooms, low casting speeds result in slow renewal of the molten steel surface in the mold, adversely affecting mold flux melting and liquid slag layer supply, which may lead to surface cracks, slag entrapment, and breakout [...] Read more.
In the continuous casting of special steel blooms, low casting speeds result in slow renewal of the molten steel surface in the mold, adversely affecting mold flux melting and liquid slag layer supply, which may lead to surface cracks, slag entrapment, and breakout incidents. To optimize the flow and heat transfer behavior in the mold, a three-dimensional numerical model was developed based on the VOF multiphase flow model, kϵ RNG turbulence model, and DPM discrete phase model, employing the finite volume method with SIMPLEC algorithm for solution. The effects of casting speed, argon injection rate, and mold flux properties were systematically investigated. Simulation results demonstrate that when casting speed increases from 0.35 m·min−1 to 0.75 m·min−1, the jet penetration depth increases by 200 mm and meniscus velocity rises by 0.014 m·s−1. Increasing argon flow rate from 0.50 L·min−1 to 1.00 L·min−1 leads to 350 mm deeper bubble penetration, 10 mm reduction in jet penetration depth, 0.002 m·s−1 increase in meniscus velocity, and decreased meniscus temperature due to bubble cooling. When mold flux viscosity increases from 0.2 Pa·s to 0.6 Pa·s, the average liquid slag velocity decreases by 0.006 m·s−1 with a maximum temperature drop of 10 K. Increasing density from 2484 kg·m−3 to 2884 kg·m−3 results in 0.005 m·s−1 higher slag velocity and average 8 K temperature reduction. Comprehensive analysis indicates that optimal operational parameters are casting speed 0.35–0.45 m·min−1, argon flow ≤ 0.50 L·min−1, mold flux viscosity 0.2–0.4 Pa·s, and density 2484–2684 kg·m−3. These conditions ensure more stable flow and heat transfer characteristics, effectively reducing slab defects and improving casting process stability. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

14 pages, 3137 KiB  
Article
Estimation of Bubble Size and Gas Dispersion Property in Column Flotation
by HyunSoo Kim and Chul-Hyun Park
Separations 2024, 11(12), 331; https://doi.org/10.3390/separations11120331 - 21 Nov 2024
Cited by 1 | Viewed by 1729
Abstract
This study investigates bubble size measurements, bubble characteristics, and the relationship between key operating variables and gas dispersion properties in column flotation. As the frother concentration increased to 120 ppm, the bubble size distribution (BSD) transformed from bimodal to unimodal and achieved a [...] Read more.
This study investigates bubble size measurements, bubble characteristics, and the relationship between key operating variables and gas dispersion properties in column flotation. As the frother concentration increased to 120 ppm, the bubble size distribution (BSD) transformed from bimodal to unimodal and achieved a minimum bubble size of 0.62 mm. The critical coalescence concentration (CCC) was identified as 120 ppm. Gas velocity and wash water velocity significantly influenced bubble size, with gas holdup peaking at 27% at 1.08 cm/s a gas velocity. The bubble-rising velocity increased as the bubble size increased, indicating that the bubble size and bubble-rising velocity were proportional. The bubble surface area flux decreased linearly with increasing bubble size and was significantly affected by the gas velocity. A strong correlation (R2 = 0.86) between measured and calculated bubble sizes was achieved, with an average size of 0.64 mm and an estimation error of ±13%. The study demonstrated that bubble size and distribution could be effectively controlled under specific operational conditions (Jg = 0.65–1.3 cm/s, JW = 0.13–0.52 cm/s, frother = 30–120 ppm). These findings highlight the importance of optimizing key variables to enhance column stability, regime maintenance, and flotation performance. Full article
Show Figures

Figure 1

21 pages, 6260 KiB  
Article
Parameters of Collision and Adhesion Process Between a Rising Bubble and Quartz in Long-Chain Amine Solution and Their Correlation with Flotation
by Shuling Gao, Bochao Li, Lifeng Ma, Wenbao Liu, Sikai Zhao and Yanbai Shen
Minerals 2024, 14(11), 1129; https://doi.org/10.3390/min14111129 - 8 Nov 2024
Viewed by 847
Abstract
The successful adhesion of air bubbles to mineral particles is the crucial to flotation technology. This paper systematically investigates the parameters variation in the dynamic interaction process between a rising bubble and a quartz plate in long-chain amine solutions (dodecylamine, tedecylamine, and octadecylamine). [...] Read more.
The successful adhesion of air bubbles to mineral particles is the crucial to flotation technology. This paper systematically investigates the parameters variation in the dynamic interaction process between a rising bubble and a quartz plate in long-chain amine solutions (dodecylamine, tedecylamine, and octadecylamine). The results show that the type and concentration of long-chain amine affected the collision and adhesion process between bubbles and quartz plates remarkably. The maximum rebound distance (rebound distance after the first collision) of bubbles and the stable-state liquid film thickness gradually decreases with the increase of reagent concentration. Additionally, the collision-rebound duration and induction time shorten accordingly, the surface tension of the solution decreases, the surface hydrophobicity of quartz increases, and the deformation degree and average movement velocity of bubbles decrease. With the increase in carbon chain length, the adsorption form of the amine collector and quartz surface becomes closer to vertical, and the density of water molecules decreases. The recovery of quartz particles is highest with octadecylamine systems, corresponding well with the changing trend in steady-state liquid film thickness. This research provides an effective method for in-depth analysis of the microscopic interaction mechanism between bubbles and mineral surfaces and the prediction of flotation results. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

11 pages, 1993 KiB  
Article
Modeling the Terminal Velocity of Rising Electrocharged Microbubbles
by Roberto Pérez-Garibay, Arturo Bueno-Tokunaga, Francisco Andrés Acosta-González and Ramón Arellano-Piña
Surfaces 2024, 7(4), 979-989; https://doi.org/10.3390/surfaces7040064 - 8 Nov 2024
Viewed by 1297
Abstract
The generation of electrocharged microbubbles is very important for several separation processes (e.g., water treatment, paper industry, and mineral processing). However, their rising terminal velocities are not fully understood. This work presents a laboratory study of the terminal velocity of single microbubbles (bubble [...] Read more.
The generation of electrocharged microbubbles is very important for several separation processes (e.g., water treatment, paper industry, and mineral processing). However, their rising terminal velocities are not fully understood. This work presents a laboratory study of the terminal velocity of single microbubbles (bubble diameter (Db) < 100 µm) rising in stagnant aqueous solutions with different pH levels (from 2 to 12) and reagent types (frother and collector; 30 ppm). The measurements were compared with the respective predicted velocities computed from the Stokes and Hadamard–Rybczynski models. It was found that the terminal velocities of electrocharged microbubbles were larger than the respective predictions from the Stokes equation. A regression equation was proposed to predict the terminal velocity as a function of the bubble diameter, which showed considerable dispersion depending on the type of reagent adsorbed on its surface, the concentration of these reagents, and the physical characteristics that the boundary layer acquires by modifying the zeta potential of the microbubbles; this effect has not yet been addressed in the literature. Full article
Show Figures

Figure 1

17 pages, 6466 KiB  
Article
Experimental Simulation Studies on Non-Uniform Fluidization Characteristics of Two-Component Particles in a Bubbling Fluidized Bed
by Mingmei Zhu, Zhong Zheng, Weiping Hao, Zhengjiang Yang and Zhancheng Guo
Minerals 2024, 14(11), 1113; https://doi.org/10.3390/min14111113 - 31 Oct 2024
Cited by 1 | Viewed by 1075
Abstract
Taking the fluidized pre-reduction process of iron ore powder bubbling fluidized bed as the background, for the problem of non-uniform structure in the bed of gas-solid fluidization process, the non-uniform fluidization characteristics of bicomponent particles are investigated in a cold two-dimensional bubbling fluidized [...] Read more.
Taking the fluidized pre-reduction process of iron ore powder bubbling fluidized bed as the background, for the problem of non-uniform structure in the bed of gas-solid fluidization process, the non-uniform fluidization characteristics of bicomponent particles are investigated in a cold two-dimensional bubbling fluidized bed by using a combination of physical experiments and mathematical simulations. Fluidization experiments were carried out under typical working conditions by using glass beads to study the effects of apparent gas velocity, mass ratio, and other factors on the non-uniform structure in the bed. Through the experimental observation of the bubble behavior, the effect of the cyclic change in bubble formation, rise and growth to rupture on the bed uniformity were analyzed. The experiments showed that the fluidized bed of two-component particles would be stratified, and the non-uniformity was strong in the upper part and weak in the lower part, and the apparent gas velocity and particle size were the main influencing factors. Based on the Euler-Lagrange reference frame modeling, the fluidization process of the two-dimensional bubble bed was simulated by the CFD-DEM method. The simulations of typical experimental conditions were carried out to further analyze the velocity distribution and the volume ratio of each phase in the bed from the gas-solid interaction level, revealing that the velocity distribution in the upper part of the bed is not uniform, and the gas flow is strongly perturbed, with intense bubble aggregation. The results reveal the reasons for the non-uniform phenomenon of gas-solid fluidization, which can provide a theoretical basis for the regulation of the non-uniform structure of the fluidization process. Full article
Show Figures

Figure 1

11 pages, 5542 KiB  
Article
Experimental and Numerical Study on the Characteristics of Bubble Motion in a Narrow Channel
by Borong Tang, Shenfei Wang, Fang Liu and Fenglei Niu
J. Nucl. Eng. 2024, 5(4), 445-455; https://doi.org/10.3390/jne5040028 - 15 Oct 2024
Viewed by 1445
Abstract
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. [...] Read more.
Plate fuel elements, known for their compact structure and efficient cooling, are commonly used in the core of nuclear reactors. In these reactors, coolant channels are designed as rectangular narrow slits. Bubble behavior in narrow channels differs significantly from that in conventional channels. This paper investigates the vertical rise of bubbles in narrow slit channels. A gas–liquid two-phase flow experimental rig was constructed using transparent acrylic boards. A high-speed camera captured the bubble formation process during gas injection, and code implemented in Matlab was used to process the images. Numerical simulations were conducted with CFD software under identical conditions and compared with the experimental results, showing a good agreement. The results show that the experimental and simulated bubble movement velocities are in good agreement. In the experiments of this paper, when the width of the narrow gap is below 3 mm, the sidewalls exert a pronounced influence on the dynamics of bubble rise, notably altering both the velocity profile and the trajectory of the bubbles’ ascent. As the gas injection flow rate gradually increases, the bubble rising speed and trajectory change from regular to oscillatory patterns. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

16 pages, 8600 KiB  
Article
Investigation of Flotation Bubbles Movement Behavior under the Influence of an Immersed Ultrasonic Vibration Plate
by Kuidong Gao, Wenchao Zong, Zhihua Zhang, Liqing Sun and Lin Li
Separations 2024, 11(8), 234; https://doi.org/10.3390/separations11080234 - 31 Jul 2024
Cited by 3 | Viewed by 1519
Abstract
Ultrasonic flotation is widely used as an efficient mineral separation method. Its efficiency is related to the adhesion behavior between fine particles and flotation bubbles, which can be influenced by the bubbles’ movement behavior. This paper used two immersed ultrasonic vibration plates to [...] Read more.
Ultrasonic flotation is widely used as an efficient mineral separation method. Its efficiency is related to the adhesion behavior between fine particles and flotation bubbles, which can be influenced by the bubbles’ movement behavior. This paper used two immersed ultrasonic vibration plates to generate ultrasonic action and investigated the effect of ultrasonic action on the rising process of flotation bubbles. The distribution, aggregation and fusion, velocity, and other characteristics of bubbles generated by different needle apertures were studied by experimental and simulation methods. The results showed that a 0.4 mm needle produced bubbles that were more evenly spaced and more uniform in size and shape. The ultrasonic action can make the bubbles aggregate together and reduce the bubble rise velocity, as well as prolong their time in the flotation process at the same time. It is beneficial to the sufficient collision and adhesion behavior between flotation bubbles and particles, eventually improving the efficiency of mineral flotation. Full article
(This article belongs to the Special Issue Separation and Extraction Technology in Mineral Processing)
Show Figures

Figure 1

10 pages, 2294 KiB  
Article
Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography
by Jan Stepanek, Juan M. Farina, Ahmed K. Mahmoud, Chieh-Ju Chao, Said Alsidawi, Chadi Ayoub, Timothy Barry, Milagros Pereyra, Isabel G. Scalia, Mohammed Tiseer Abbas, Rachel E. Wraith, Lisa S. Brown, Michael S. Radavich, Pamela J. Curtisi, Patricia C. Hartzendorf, Elizabeth M. Lasota, Kyley N. Umetsu, Jill M. Peterson, Kristin E. Karlson, Karen Breznak, David F. Fortuin, Steven J. Lester and Reza Arsanjaniadd Show full author list remove Hide full author list
J. Imaging 2024, 10(2), 38; https://doi.org/10.3390/jimaging10020038 - 31 Jan 2024
Cited by 1 | Viewed by 2805
Abstract
Exposure to high altitude results in hypobaric hypoxia, leading to physiological changes in the cardiovascular system that may result in limiting symptoms, including dyspnea, fatigue, and exercise intolerance. However, it is still unclear why some patients are more susceptible to high-altitude symptoms than [...] Read more.
Exposure to high altitude results in hypobaric hypoxia, leading to physiological changes in the cardiovascular system that may result in limiting symptoms, including dyspnea, fatigue, and exercise intolerance. However, it is still unclear why some patients are more susceptible to high-altitude symptoms than others. Hypoxic simulation testing (HST) simulates changes in physiology that occur at a specific altitude by asking the patients to breathe a mixture of gases with decreased oxygen content. This study aimed to determine whether the use of transthoracic echocardiography (TTE) during HST can detect the rise in right-sided pressures and the impact of hypoxia on right ventricle (RV) hemodynamics and right to left shunts, thus revealing the underlying causes of high-altitude signs and symptoms. A retrospective study was performed including consecutive patients with unexplained dyspnea at high altitude. HSTs were performed by administrating reduced FiO2 to simulate altitude levels specific to patients’ history. Echocardiography images were obtained at baseline and during hypoxia. The study included 27 patients, with a mean age of 65 years, 14 patients (51.9%) were female. RV systolic pressure increased at peak hypoxia, while RV systolic function declined as shown by a significant decrease in the tricuspid annular plane systolic excursion (TAPSE), the maximum velocity achieved by the lateral tricuspid annulus during systole (S’ wave), and the RV free wall longitudinal strain. Additionally, right-to-left shunt was present in 19 (70.4%) patients as identified by bubble contrast injections. Among these, the severity of the shunt increased at peak hypoxia in eight cases (42.1%), and the shunt was only evident during hypoxia in seven patients (36.8%). In conclusion, the use of TTE during HST provides valuable information by revealing the presence of symptomatic, sustained shunts and confirming the decline in RV hemodynamics, thus potentially explaining dyspnea at high altitude. Further studies are needed to establish the optimal clinical role of this physiologic method. Full article
Show Figures

Figure 1

11 pages, 1743 KiB  
Article
Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control
by Mehrnaz Hashemiesfahan, Pierre Gelin, Antonio Maisto, Han Gardeniers and Wim De Malsche
Micromachines 2024, 15(2), 191; https://doi.org/10.3390/mi15020191 - 27 Jan 2024
Cited by 1 | Viewed by 2133
Abstract
Acoustofluidics is an emerging research field wherein either mixing or (bio)-particle separation is conducted. High-power acoustic streaming can produce more intense and rapid flow patterns, leading to faster and more efficient liquid mixing. However, without cooling, the temperature of the piezoelectric element that [...] Read more.
Acoustofluidics is an emerging research field wherein either mixing or (bio)-particle separation is conducted. High-power acoustic streaming can produce more intense and rapid flow patterns, leading to faster and more efficient liquid mixing. However, without cooling, the temperature of the piezoelectric element that is used to supply acoustic power to the fluid could rise above 50% of the Curie point of the piezomaterial, thereby accelerating its aging degradation. In addition, the supply of excessive heat to a liquid may lead to irreproducible streaming effects and gas bubble formation. To control these phenomena, in this paper, we present a feedback temperature control system integrated into an acoustofluidic setup using bulk acoustic waves (BAWs) to elevate mass transfer and manipulation of particles. The system performance was tested by measuring mixing efficiency and determining the average velocity magnitude of acoustic streaming. The results show that the integrated temperature control system keeps the temperature at the set point even at high acoustic powers and improves the reproducibility of the acoustofluidic setup performance when the applied voltage is as high as 200 V. Full article
(This article belongs to the Collection Lab-on-a-Chip)
Show Figures

Figure 1

17 pages, 3238 KiB  
Article
Study on the Mechanism of Gas Intrusion and Its Transportation in a Wellbore under Shut-in Conditions
by Haifeng Zhu, Ming Xiang, Zhiqiang Lin, Jicheng Yang, Xuerui Wang, Xueqi Liu and Zhiyuan Wang
Energies 2024, 17(1), 242; https://doi.org/10.3390/en17010242 - 3 Jan 2024
Cited by 3 | Viewed by 1325
Abstract
This paper presents a comprehensive study based on multiphase-seepage and wellbore multiphase-flow theories. It establishes a model for calculating the rate of gas intrusion that considers various factors, including formation pore permeability, bottomhole pressure difference, rheology of the drilling fluid, and surface tension. [...] Read more.
This paper presents a comprehensive study based on multiphase-seepage and wellbore multiphase-flow theories. It establishes a model for calculating the rate of gas intrusion that considers various factors, including formation pore permeability, bottomhole pressure difference, rheology of the drilling fluid, and surface tension. Experiments were conducted to investigate the mechanism of gas intrusion under shut-in conditions, and the experimental results were employed to validate the reliability of the proposed method for calculating the gas intrusion rate. Furthermore, this research explores the transportation rates of single bubbles and bubble clusters in drilling fluid under shut-in conditions. Additionally, empirical expressions were derived for the drag coefficient for single bubbles and bubble clusters in the wellbore. These expressions can be used to calculate gas transportation rates for various equivalent radii of single bubbles and bubble clusters. The initial bubble size of intrusive gas, the transportation speed of intrusive gas in the wellbore, the rate of gas intrusion, and variations in the wellbore pressure after gas intrusion were analyzed. Additionally, a method was developed to calculate the rising velocity of bubble clusters in water based on experimental results. The study reveals that the average bubble size in the bubble cluster is significantly smaller than the size of single bubbles generated from the orifice. When the viscosity of the drilling fluid is low, the transportation velocity of the bubble cluster exhibits a positive correlation with the average bubble diameter. When the average bubble diameter exceeds 1 mm, the bubble velocity no longer varies with changes in the bubble-cluster diameter. The research results provide theoretical support for wellbore pressure prediction and pressure control under shutdown conditions. Full article
(This article belongs to the Topic Advances in Oil and Gas Wellbore Integrity)
Show Figures

Figure 1

17 pages, 5221 KiB  
Article
Numerical Simulation of Cavitation Bubble Collapse inside an Inclined V-Shape Corner by Thermal Lattice Boltzmann Method
by Yu Li, Jingyi Ouyang, Yong Peng and Yang Liu
Water 2024, 16(1), 161; https://doi.org/10.3390/w16010161 - 31 Dec 2023
Cited by 2 | Viewed by 2588
Abstract
Cavitation happening inside an inclined V-shaped corner is a common and important phenomenon in practical engineering. In the present study, the lattice Boltzmann models coupling velocity and temperature fields are adopted to investigate this complex collapse process. Based on a series of simulations, [...] Read more.
Cavitation happening inside an inclined V-shaped corner is a common and important phenomenon in practical engineering. In the present study, the lattice Boltzmann models coupling velocity and temperature fields are adopted to investigate this complex collapse process. Based on a series of simulations, the fields of density, pressure, velocity and temperature are obtained simultaneously. Overall, the simulation results agree with the experiments, and they prove that the coupled lattice Boltzmann models are effective to study cavitation bubble collapse. It was found that the maximum temperature of bubble collapse increases approximately linearly with the rise of the distance between the single bubble center and the corner. Meanwhile, the velocity of the micro-jet increases and the pressure peak at the corner decreases correspondingly. Moreover, the effect of angle of the V-shaped wall on the collapse process of bubbles is similar to the effect of distance between the single bubble center and the corner. Moreover, with the increase in bubble radius, the maximum temperature of bubble collapse increases proportionally, the starting and ending of the micro-jet are delayed and the pressure peak at the corner becomes larger and also is delayed. In the double bubble collapse, the effect of distance between two bubble centers on the collapse process of bubbles is discussed in detail. Based on the present study, appropriate measures can be proposed to prevent or utilize cavitation in practical engineering. Full article
Show Figures

Figure 1

19 pages, 9871 KiB  
Article
Simulation of the Asphaltene Deposition Rate in Oil Wells under Different Multiphase Flow Condition
by Xiaoming Wang, Pingchuan Dong, Youheng Zhang, Xiaodong Gao, Shun Chen, Ming Tian and Yongxing Cui
Energies 2024, 17(1), 121; https://doi.org/10.3390/en17010121 - 25 Dec 2023
Cited by 2 | Viewed by 1763
Abstract
As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the single-phase flow becomes a gas–liquid two-phase flow. However, most studies simplify the multiphase flow to a single-phase flow to [...] Read more.
As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the single-phase flow becomes a gas–liquid two-phase flow. However, most studies simplify the multiphase flow to a single-phase flow to study asphaltene deposition in wellbores. This assumption under multiphase conditions may lead to inaccurate prediction results and a substantial economic and operational burden for the oil and gas industry. Therefore, it is crucial to predict the deposition rate of asphaltene in a multiphase flow to assist in minimizing this issue. To do so, the volume of fluid coupling level-set (VOSET) model was used to obtain the flow pattern (bubble, slug, churn, and annular) in the current work. In the next step, the VOSET + k-ε turbulent + DPM models were used to simulate asphaltene deposition in a multiphase flow. Finally, the effects of different parameters, such as the gas superficial velocity, liquid superficial velocity, particle diameter, interfacial tension, viscosity, and average deposition rate, were investigated. The findings revealed that the maximum average deposition rate of asphaltene particles in a bubble flow is 1.35, 1.62, and 2 times that of a slug flow, churning flow, and annular mist flow, respectively. As the apparent velocity of the gas phase escalates from 0.5 m/s to 4 m/s, the average deposition rate experiences an increase of 82%. Similarly, when the apparent velocity of the liquid phase rises from 1 m/s to 5 m/s, the average deposition rate is amplified by a factor of 2.1. An increase in particle diameter from 50 μm to 400 μm results in a 27% increase in the average deposition rate. When the oil–gas interfacial tension is augmented from 0.02 n/m to 0.1 n/m, the average deposition rate witnesses an 18% increase. Furthermore, an increase in crude oil viscosity from 0.012 mPa·s to 0.06 mPa·s leads to a 34% increase in the average deposition rate. These research outcomes contribute to a deeper understanding of the asphaltene deposition problem under multiphase flow conditions and offer fresh perspectives on the asphaltene deposition issue in the oil and gas industry. Full article
(This article belongs to the Special Issue Multi-Phase Flow in Wellbore and Machine Learning Optimization Method)
Show Figures

Figure 1

21 pages, 3859 KiB  
Article
Optimizing Mass Transfer in Multiphase Fermentation: The Role of Drag Models and Physical Conditions
by Yannic Mast, Moritz Wild and Ralf Takors
Processes 2024, 12(1), 45; https://doi.org/10.3390/pr12010045 - 23 Dec 2023
Cited by 1 | Viewed by 2499
Abstract
Detailed knowledge of the flow characteristics, bubble movement, and mass transfer is a prerequisite for the proper design of multiphase bioreactors. Often, mechanistic spatiotemporal models and computational fluid dynamics, which intrinsically require computationally demanding analysis of local interfacial forces, are applied. Typically, such [...] Read more.
Detailed knowledge of the flow characteristics, bubble movement, and mass transfer is a prerequisite for the proper design of multiphase bioreactors. Often, mechanistic spatiotemporal models and computational fluid dynamics, which intrinsically require computationally demanding analysis of local interfacial forces, are applied. Typically, such approaches use volumetric mass-transfer coefficient (kLa) models, which have demonstrated their predictive power in water systems. However, are the related results transferrable to multiphase fermentations with different physicochemical properties? This is crucial for the proper design of biotechnological processes. Accordingly, this study investigated a given set of mass transfer data to characterize the fermentation conditions. To prevent time-consuming simulations, computational efforts were reduced using a force balance stationary 0-dimension model. Therefore, a competing set of drag models covering different mechanistic assumptions could be evaluated. The simplified approach of disregarding fluid movement provided reliable results and outlined the need to identify the liquid diffusion coefficients in fermentation media. To predict the rising bubble velocities uB, the models considering the Morton number (Mo) showed superiority. The mass transfer coefficient kL was best described using the well-known Higbie approach. Taken together, the gas hold-up, specific surface area, and integral mass transfer could be accurately predicted. Full article
Show Figures

Figure 1

Back to TopTop