Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = brine shrimp Artemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 974 KiB  
Article
Synthetic and Natural Red Food Dyes Affect Oxidative Metabolism and the Redox State in the Nauplii of Brine Shrimp Artemia franciscana
by Gianluca Fasciolo, Gaetana Napolitano, Maria Teresa Muscari Tomajoli, Eugenio Geremia, Adriana Petito, Carlos Gravato, Andreia C. M. Rodrigues, Ana L. Patrício Silva, Chiara Maria Motta, Claudio Agnisola and Paola Venditti
Antioxidants 2025, 14(6), 634; https://doi.org/10.3390/antiox14060634 - 25 May 2025
Viewed by 651
Abstract
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. [...] Read more.
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. In this study, we exposed Artemia franciscana cysts for 48 h to three different red dyes: E124 (synthetic), E120 (animal-based) or Vegan red (plant-based) and evaluated the oxidative metabolism and redox status in the hatched nauplii. Only E120 and VEG increased oxygen consumption. E124 and VEG increased mitochondrial Complex I activity, while all dyes enhanced the activity of Complex III. The levels of reactive oxygen species (ROS) and NADPH oxidase activity were increased by all red dyes. E120 and E124 increased antioxidant enzyme activity to a greater extent than VEG. Additionally, only E120 and E124 increased total antioxidant capacity. Nevertheless, E124 exposure induced redox imbalance (increased lipid and protein oxidative damage). Our data, as a whole, allow us to conclude that red dyes can influence the oxidative capacity and redox state of Artemia franciscana nauplii with more harmful effects in the presence of E124, thus drawing attention to their potentially severe influence on aquatic life. Full article
(This article belongs to the Special Issue Role of Mitochondria and ROS in Health and Disease)
Show Figures

Graphical abstract

25 pages, 5557 KiB  
Article
Evaluation of the Effects of the Quaternary Ammonium Silane K21 on Zebrafish Viability, Toxicity, Growth, and Development
by Surendra K. Rajpurohit, Devan Anmol S. Manhiani, Ashwin Ajith, Pragya Rajpurohit, Simran Hotwani, Sai Nasanally, Arsha Sreekumar, Keshu Bhat, Aiden Van Derhei, Rohan Pasi, Arishia Mishra, Kirk Kimmerling and Clifton M. Carey
Biomedicines 2025, 13(6), 1267; https://doi.org/10.3390/biomedicines13061267 - 22 May 2025
Viewed by 3513
Abstract
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized [...] Read more.
Background: The FDA-cleared antimicrobial quaternary ammonium silane K21 is recognized for its antimicrobial properties. This study explored potential applications of the K21 molecule in human health protection, disease prevention, and treatment using the zebrafish model. Method: A multi-dimensional approach was utilized to assess the toxicity, tolerance, and optimal dosage of K21 through serial dilutions at various concentrations. Acute and chronic exposure studies were performed at different developmental stages (embryonic, larval, juvenile, and adult) to evaluate its efficacy and toxicity in wild-type (WT), Casper (transparent skin mutant), and transgenic zebrafish lines. Results: Significant weight gain was observed in the F1 generation following K21 treatment, a trend that continued into the F2 and F3 generations. The effects of K21 on lipopolysaccharide-induced inflammation were also examined in Casper NFkB:GFP transgenic lines. Treatment with K21 reduced inflammation, indicating anti-inflammatory properties. Improved hatching rates, accelerated larval development, an increased adult mass, and modest reductions in embryonic motility (less than 20%) suggested positive developmental influences. Single-cell RNA sequencing further validated the biological impacts of K21, revealing the potential activation of a novel pathway that accelerates zebrafish growth. Summary and Conclusions: These findings position K21 as a promising candidate for biomedical applications and aquaculture, warranting further investigation into its underlying molecular mechanisms. Our additional study on the effect of K21 on the artemia (brine shrimp) hatching process provide strong evidence of better hatching ratio of 90% for brine shrimp in the group with K21 drug treatment as compared to 70% in the group without the K21 drug at 24 h of treatment; the K21 drug helps the early hatching process, as observed the 90% hatching rate in 20 h K21 treatment group hatching while in the group without K21, only 40% of brine shrimps hatched. Full article
(This article belongs to the Special Issue Advances in Novel Drug Discovery, Synthesis, and Evaluation)
Show Figures

Figure 1

15 pages, 1656 KiB  
Article
Nanosilver Environmental Safety in Marine Organisms: Ecotoxicological Assessment of a Commercial Nano-Enabled Product vs an Eco-Design Formulation
by Arianna Bellingeri, Analía Ale, Tatiana Rusconi, Mattia Scattoni, Sofia Lemaire, Giuseppe Protano, Iole Venditti and Ilaria Corsi
Toxics 2025, 13(5), 338; https://doi.org/10.3390/toxics13050338 - 25 Apr 2025
Viewed by 497
Abstract
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three [...] Read more.
With the increasing use of manufactured nanomaterials in consumer products, especially silver nanoparticles (AgNPs), concerns about their environmental impact are rising. Two AgNP formulations were tested, the commercial nanosilver product nanArgen™ and a newly eco-designed bifunctionalized nanosilver (AgNPcitLcys), using marine organisms across three trophic levels, microalgae, microcrustaceans, and bivalves. Acute toxicity was assessed on the diatom Phaeodactylum tricornutum, brine shrimp larvae Artemia franciscana, and bivalve Mytilus galloprovincialis. The behavior of the formulations in marine media, including stability across a concentration range (0.001–100 mg/L), was also evaluated. Results showed that nanArgen™ was less stable compared to AgNpcitLcys, releasing more silver ions and exhibiting higher toxicity to microalgae (100% growth inhibition at 1 mg/L) and microcrustaceans (>80% mortality at 10 mg/L). Conversely, AgNPcitLcys (10 µg/L) was more toxic to bivalves, possibly due to the smaller nanoparticle size affecting lysosomal membrane stability. This study highlights how eco-design, such as surface coating, influences AgNP behavior and toxicity. These findings emphasize the importance of eco-design in minimizing environmental impacts and guiding the development of safer, more sustainable nanomaterials. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

17 pages, 4611 KiB  
Article
Composite Based on Biomineralized Oxidized Bacterial Cellulose with Strontium Apatite for Bone Regeneration
by Ana Lorena de Brito Soares, Erika Patrícia Chagas Gomes Luz, Igor Iuco Castro-Silva, Rodolpho Ramilton de Castro Monteiro, Fábia Karine Andrade and Rodrigo Silveira Vieira
Polysaccharides 2025, 6(1), 23; https://doi.org/10.3390/polysaccharides6010023 - 17 Mar 2025
Cited by 2 | Viewed by 894
Abstract
Rejections of commercial bone implants have driven research in the biomaterials field to develop more biocompatible and less cytotoxic alternatives. This study aims to create composites based on oxidized bacterial cellulose (OBC) and strontium apatite (SrAp). These composites were produced through a biomimetic [...] Read more.
Rejections of commercial bone implants have driven research in the biomaterials field to develop more biocompatible and less cytotoxic alternatives. This study aims to create composites based on oxidized bacterial cellulose (OBC) and strontium apatite (SrAp). These composites were produced through a biomimetic method using a simulated body fluid modified with strontium ions to enhance bioactivity and stabilize apatite within the biomaterial. The incorporation of SrAp into OBC membranes was confirmed by infrared spectroscopy and indicated by the appearance of a peak corresponding to phosphate group elongation (850 cm−1). Quantification of strontium content by atomic absorption spectrometry revealed a concentration of 3359 ± 727 mg·g−1 of Sr adsorbed onto the material surface after 7 days, beyond which no significant increase was observed. Scanning electron microscopy verified biomineralization through structural modifications, and X-ray diffraction showed that despite new peak appearances, the biomineralized membranes retained crystallinity similar to pure samples. The composite also demonstrated high cell viability for mouse osteoblasts and fibroblasts and a low mortality rate in brine shrimp Artemia (approximately 12.94 ± 4.77%). These findings suggest that these membranes have great potential for application in bone tissue engineering. Full article
Show Figures

Graphical abstract

27 pages, 3177 KiB  
Article
The Threat of Bis(2-Ethylhexyl) Phthalate in Coastal and Marine Environments: Ecotoxicological Assays Using Tropical Species from Different Trophic Levels
by Fernanda Silva dos Santos, Agatha Miralha, Amanda C. S. Coração, Antonio J. S. Rodrigues, Gabriel Kauai, Geovanna T. Borsato, Jéssica S. Costa, Julia de Morais Farias, Kettollen Brenda Ribeiro Pereira, Odilon Feuvrier, Rodrigo A. F. Silva, Nathália Rodrigues and Raquel A. F. Neves
Int. J. Environ. Res. Public Health 2025, 22(3), 402; https://doi.org/10.3390/ijerph22030402 - 10 Mar 2025
Viewed by 1010
Abstract
Plastic and plasticizer pollution has been a concern worldwide over the past decade. Bis(2-ethylhexyl) phthalate (DEHP) is the most produced plasticizer and has been detected in coastal and marine ecosystems. This study aimed to assess the toxicity of acute exposure (24, 48, 72, [...] Read more.
Plastic and plasticizer pollution has been a concern worldwide over the past decade. Bis(2-ethylhexyl) phthalate (DEHP) is the most produced plasticizer and has been detected in coastal and marine ecosystems. This study aimed to assess the toxicity of acute exposure (24, 48, 72, and 96 h) to DEHP concentrations (0.045–6.00 mg·L−1) on marine and estuarine tropical species from distinct trophic levels. The lethality and sublethal responses were assessed on two microorganisms and three invertebrates, independently. The microorganisms—the microalga Tetraselmis sp. and the microbial consortium MP001—showed high tolerance and a density-rising tendency during exposure to DEHP. Among the invertebrates, the mortality of the brine shrimp Artemia sp. and the amphipod Apohyale media rose with increasing DEHP concentrations. However, A. media was more sensitive across time since its lethality reached 100% in almost all DEHP concentrations from 72 h. The dark false mussel Mytilopsis leucophaeata was the most tolerant invertebrate: no significant lethality (≤20%) was observed exclusively from 72 h of exposure to DEHP at intermediate–high concentrations. Artemia sp. and M. leucophaeata presented sublethal responses that seem to be good endpoints for ecotoxicological assays. These results reinforce evidence of DEHP contamination risks for tropical coastal ecosystems, as well as suggest candidate species for its biodegradation. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

20 pages, 3652 KiB  
Article
A Novel Formulation Based on Resveratrol and Water Extracts from Equisetum arvense, Crataegus curvisepala, Vitex agnus-castus, and Glycine max Inhibits the Gene Expression of Inflammatory and Osteoclastogenic Biomarkers on C2C12 Cells Exposed to Oxidative Stress
by Simonetta Cristina Di Simone, Alessandra Acquaviva, Maria Loreta Libero, Nilofar Nilofar, Fatma Tunali, Mariachiara Gabriele, Angelica Pia Centulio, Gianluca Genovesi, Davide Ciaramellano, Lucia Recinella, Sheila Leone, Luigi Brunetti, Gokhan Zengin, Giustino Orlando, Luigi Menghini, Annalisa Chiavaroli and Claudio Ferrante
Foods 2025, 14(5), 896; https://doi.org/10.3390/foods14050896 - 6 Mar 2025
Viewed by 1281
Abstract
Medicinal plants and natural compounds have been considered alternative therapeutic options for counteracting postmenopausal disorders thanks to their different concomitant effects, including antioxidant and anti-inflammatory properties and the regulation of hormone activity. It is important to highlight that the efficacy of medicinal plants [...] Read more.
Medicinal plants and natural compounds have been considered alternative therapeutic options for counteracting postmenopausal disorders thanks to their different concomitant effects, including antioxidant and anti-inflammatory properties and the regulation of hormone activity. It is important to highlight that the efficacy of medicinal plants and natural compounds increases when used in combination, thus making the development of herbal formulations rational. Therefore, the present study aimed to evaluate the phytochemical and pharmacological properties of an innovative formulation consisting of resveratrol and water extracts from Equisetum arvense, Crateagus curvisepala, Vitex agnus-castus, and Glycine max. The phenolic composition and radical scavenger properties were evaluated using chromatographic and colorimetric (ABTS) methods, whilst the limits of biocompatibility were assessed through allelopathy, the Artemia salina (brine shrimp) lethality test, and Daphnia magna cardiotoxicity assay. The protective effects were evaluated on C2C12 cell lines exposed to the pro-oxidant stimulus, which consisted of hydrogen peroxide. The gene expression of estrogen 1 (ESR1, also known as ERα) and prolactin (PRLR) receptors, interleukin 6 (IL-6), tumor necrosis factor α (TNFα), and receptor activator of nuclear factor kappa-Β ligand (RANKL) was measured. The results of the phytochemical analysis showed that the main phytochemicals were hydroxycinnamic and phenolic acids, in particular coumaric acid (7.53 µg/mL) and rosmarinic acid (6.91 µg/mL), respectively. This could explain the radical scavenger effect observed from the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. According to the ecotoxicological models’ results, the formulation was revealed to be non-toxic, with a LC50 value > 1 mg/mL. Therefore, a biocompatible concentration range (200–1000 µg/mL) was used in C2C12 cells, where the formulation blunted the hydrogen peroxide-induced upregulation of TNFα, IL-6, RANKL, ESR1, and PRLR. Overall, the results of this study corroborate the use of the formulation for facing the oxidative stress and inflammation, which forms the basis of the osteoclastogenic process. Full article
Show Figures

Figure 1

21 pages, 12847 KiB  
Article
Spatiotemporal Patterns of Chlorophyll-a Concentration in a Hypersaline Lake Using High Temporal Resolution Remotely Sensed Imagery
by R. Douglas Ramsey, Soren M. Brothers, Melissa Cobo and Wayne A. Wurtsbaugh
Remote Sens. 2025, 17(3), 430; https://doi.org/10.3390/rs17030430 - 27 Jan 2025
Cited by 1 | Viewed by 1267
Abstract
The Great Salt Lake (GSL) is the largest saline lake in the Western Hemisphere. It supports billion-dollar industries and recreational activities, and is a vital stopping point for migratory birds. However, little is known about the spatiotemporal variation of phytoplankton biomass in the [...] Read more.
The Great Salt Lake (GSL) is the largest saline lake in the Western Hemisphere. It supports billion-dollar industries and recreational activities, and is a vital stopping point for migratory birds. However, little is known about the spatiotemporal variation of phytoplankton biomass in the lake that supports these resources. Spectral reflectance provided by three remote sensing products was compared relative to their relationship with field measurements of chlorophyll a (Chl a). The MODIS product MCD43A4 with a 500 m spatial resolution provided the best overall ability to map the daily distribution of Chl a. The imagery indicated significant spatial variation in Chl a, with low concentrations in littoral areas and high concentrations in a nutrient-rich plume coming out of polluted embayment. Seasonal differences in Chl a showed higher concentrations in winter but lower in summer due to heavy brine shrimp (Artemia franciscana) grazing pressure. Twenty years of imagery revealed a 68% increase in Chl a, coinciding with a period of declining lake levels and increasing local human populations, with potentially major implications for the food web and biogeochemical cycling dynamics in the lake. The MCD43A4 daily cloud-free images produced by 16-day temporal composites of MODIS imagery provide a cost-effective and temporally dense means to monitor phytoplankton in the southern (47% surface area) portion of the GSL, but its remaining bays could not be effectively monitored due to shallow depths, and/or plankton with different pigments given extreme hypersaline conditions. Full article
Show Figures

Figure 1

19 pages, 3620 KiB  
Article
Phytochemical Profiling, Bioactivity, and Insecticidal Effectiveness of Mammea americana L. Leaf Extracts Against Ferrisia sp.
by Mike Vázquez-Torres, Nilka Rivera-Portalatín and Irma Cabrera-Asencio
Plants 2025, 14(1), 21; https://doi.org/10.3390/plants14010021 - 25 Dec 2024
Cited by 2 | Viewed by 1117
Abstract
Plant botanical extracts are recognized for being a source of biologically active phytochemicals that potentially have diverse applications. The phytochemical composition, potential cytotoxicity, and insecticidal effectiveness of three leaf extracts from the folkloric medicinal plant Mammea americana L. (Calophyllaceae) were investigated. Micro-Soxhlet extraction [...] Read more.
Plant botanical extracts are recognized for being a source of biologically active phytochemicals that potentially have diverse applications. The phytochemical composition, potential cytotoxicity, and insecticidal effectiveness of three leaf extracts from the folkloric medicinal plant Mammea americana L. (Calophyllaceae) were investigated. Micro-Soxhlet extraction with chloroform, dichloromethane, and methanol was used, and key phytochemicals were identified via Gas Chromatography-Mass Spectrometry (GC-MS). The extracts were mainly composed of sesquiterpenes, carboxylic acids, coumarins, esters, diterpenes, and other bioactive compounds. Potential cytotoxicity was assessed using brine shrimp lethality tests, where all extracts displayed high toxicity to Artemia salina. The dichloromethane extract (MAD) had the lowest LC50 value (8.39 μg/mL), followed by methanol extract (MAM, 11.66 μg/mL) and chloroform extract (MAC, 12.67 μg/mL). Insecticidal activity was tested against Ferrisia sp. (Hemiptera:Pseudococcidae), demonstrating the highest efficacy with the methanolic extract (LC50 = 5.90 mg/mL after 48 h). These findings provide a basis for further research into the bioactive components of Mammea americana leaves, particularly their antibacterial, anti-inflammatory, and anticancer properties. It also highlights the potential of Mammea americana L. leaf extracts as botanical insecticides due to their high bioactivity against agricultural pests of economic significance. This is the first study that evaluates the insecticidal activity of Mammea americana leaf extracts against Ferrisia sp. insects, offering valuable insights into using plant-based natural products in pest control. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

15 pages, 4012 KiB  
Article
Exploring the Safety of the Sustainable Toxicity Testing in Zebrafish and Brine Shrimp Using Nanoemulsions Formulated from Fish Byproducts and Lemon Oil
by Amira Ayman Hendawy, Amal A. M. Elgharbawy, Najihah Mohd Noor, Nurhidayu Al-Saari, Nor Azrini Nadiha Azmi and Hamzah Mohd Salleh
Colloids Interfaces 2024, 8(6), 59; https://doi.org/10.3390/colloids8060059 - 29 Oct 2024
Viewed by 2216
Abstract
Nanoemulsions, characterized by their nanosized particles ranging from 20 to 200 nm, are effective carriers for drug molecules. Our novel oil-in-water nanoemulsion, NE-FLO™, formulated from lemon and fish byproduct oils, demonstrates promising antioxidant and anti-inflammatory activities, with initial studies indicating nontoxicity to normal [...] Read more.
Nanoemulsions, characterized by their nanosized particles ranging from 20 to 200 nm, are effective carriers for drug molecules. Our novel oil-in-water nanoemulsion, NE-FLO™, formulated from lemon and fish byproduct oils, demonstrates promising antioxidant and anti-inflammatory activities, with initial studies indicating nontoxicity to normal skin cells. This study investigated the safety of NE-FLO™ using brine shrimp (Artemia salina) and zebrafish (Danio rerio) models, focusing on concentration-dependent effects and LC50 values. At lower concentrations (0.1 mg·L−1, 0.01 mg·L−1, and 0.001 mg·L−1), NE-FLO™ showed minimal toxicity without adverse effects. However, at 1 mg·L−1, reduced survival rates indicate potential toxicity. Specifically, this concentration also induces altered swimming behaviors in zebrafish. LC50 values are 8.7474 mg·L−1 for brine shrimp and 0.316 mg·L−1 for adult zebrafish. These results underscore the necessity for further detailed investigations into NE-FLO™, balancing its therapeutic benefits with potential toxicity risks. This study emphasizes the importance of optimizing nanoemulsion formulations from fish oil and conducting comprehensive safety assessments to meet regulatory standards. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

27 pages, 7685 KiB  
Article
Effects of Temperature and Salinity on the Growth, Reproduction, and Carotenoid Accumulation in Artemia sinica and Transcriptome Analysis
by Yucai Xue, Gang Jiang, Huang Shu, Weilong Wang and Xuxiong Huang
Fishes 2024, 9(11), 437; https://doi.org/10.3390/fishes9110437 - 28 Oct 2024
Cited by 1 | Viewed by 2584
Abstract
Brine shrimp (Artemia), rich in carotenoids, are widely used in intensive aquaculture to supplement nutrients and enhance the coloration of farmed organisms. This study investigates the growth, reproduction, and carotenoid accumulation in Artemia sinica under varying salinity and temperature conditions. The [...] Read more.
Brine shrimp (Artemia), rich in carotenoids, are widely used in intensive aquaculture to supplement nutrients and enhance the coloration of farmed organisms. This study investigates the growth, reproduction, and carotenoid accumulation in Artemia sinica under varying salinity and temperature conditions. The results showed that temperature and salinity displayed significant interactions with survival, body length, and carotenoid accumulation in the body. The optimal survival and growth conditions of A. sinica (Bohai Sea Gulf) were a temperature range of 25–30 °C and a salinity range of 30–50‰. High temperatures accelerated growth and sexual maturity at the expense of survival rates, while temperatures below 20 °C prevented ovigerous development. Extreme salinity levels negatively affected survival and growth, though high salinity promoted sexual maturity. Carotenoids in A. sinica mainly accumulate as echinenone and canthaxanthin form. Carotenoid accumulation decreased with increased temperature and salinity, and the temperature effect decreased with rising salinity. A. sinica cultivated at a salinity of 10‰ and a temperature of 25 °C exhibits the highest carotenoid content. Transcriptomic analysis revealed that high temperatures primarily affected genes related to stress response and metabolism, while high-salinity regulated genes associated with ion balance and signaling pathways. These findings provide a theoretical basis for enhancing Artemia sinica aquaculture and optimizing cultivation conditions, offering novel insights into nutritional and environmental impacts on brine shrimp biology. Full article
(This article belongs to the Special Issue Feed Additives in Aquaculture)
Show Figures

Figure 1

12 pages, 692 KiB  
Article
Comparative Effect of Fish Feeds on the Initial Growth and Survival Rate of Juvenile Redbreast Tilapia (Coptodon rendalli) under Early Hatchery Conditions
by Evans Kamwi Simasiku, Kudakwashe Hove, Margaret Ndatoolewe Kanyeme, Simon Kamwele Awala, Kenneth Kamwi Matengu and Titus Iipinge Iita
Aquac. J. 2024, 4(3), 180-191; https://doi.org/10.3390/aquacj4030013 - 7 Sep 2024
Viewed by 3155
Abstract
This study compared the effects of three supplementary diets—egg yolk, Artemia, and commercial pellets with 48% crude protein—on the growth performance and survival rate of redbreast tilapia (Coptodon rendalli) under intensive culture conditions at the Kamutjonga Inland Fisheries Institute in the [...] Read more.
This study compared the effects of three supplementary diets—egg yolk, Artemia, and commercial pellets with 48% crude protein—on the growth performance and survival rate of redbreast tilapia (Coptodon rendalli) under intensive culture conditions at the Kamutjonga Inland Fisheries Institute in the Kavango East region of Namibia. The study was conducted from December 2023 to January 2024 using a complete randomized design replicated thrice. Results showed that fish fed with commercial pellets exhibited the highest specific growth rate (1.39 ± 0.80%) compared to egg yolk (0.94 ± 0.54%) and Artemia (0.33 ± 0.19%). Commercial pellets also had the best survival rate (76.19 ± 43.099), compared to egg yolk and Artemia (70.47 ± 40.69; 33 ± 19.05), respectively. However, egg yolk had the best feed conversion ratio (0.20 ± 0.05) compared to the commercial pellets (0.22 ± 0.04) and Artemia (0.26 ± 0.07). Critical water quality parameters were maintained within acceptable survival ranges for C. rendalli across all treatments. These findings highlight the importance of dietary protein content in optimizing the growth and survival of C. rendalli under intensive culture conditions and provide insights for effective feeding strategies. However, commercial pellets are expensive and inaccessible to small-scale fish farmers. As an alternative, egg yolk emerged as a viable and affordable feed option, promoting fish growth and supporting the establishment of small-scale farming practices in the region. Full article
Show Figures

Figure 1

16 pages, 3783 KiB  
Article
Characterization of the Unarmored Dinoflagellate Karlodinium decipiens (Dinophyceae) from Jiaozhou Bay, China
by Jialin Yao, Yingyi Fan, Qiantong Chen, Xinxin Chen, Yunyan Deng, Yuanyuan Sun, Jinxiu Wang, Zhangxi Hu and Ying Zhong Tang
Diversity 2024, 16(8), 449; https://doi.org/10.3390/d16080449 - 30 Jul 2024
Cited by 2 | Viewed by 1511
Abstract
The dinoflagellate genus Karlodinium J. Larsen is well known to form harmful algal blooms (HABs), some of which can produce karlotoxins or other ichthyotoxins and thus cause fish-killing events. Among the 16 currently accepted species of Karlodinium (about half of which are reported [...] Read more.
The dinoflagellate genus Karlodinium J. Larsen is well known to form harmful algal blooms (HABs), some of which can produce karlotoxins or other ichthyotoxins and thus cause fish-killing events. Among the 16 currently accepted species of Karlodinium (about half of which are reported to be toxic), six species (K. australe, K. decipiens, K. digitatum, K. elegans, K. veneficum, and K. zhouanum) have been reported or described in the coastal waters of China. However, a fine morphological and molecular characterization of the seldom-observed species K. decipiens has not been conducted; moreover, the negative effects of this species on aquatic animals have not been investigated. This work reports the morphological and phylogenetic characterization of a strain of K. decipiens isolated from Jiaozhou Bay, China, in 2019. The characterization of the strain was conducted using light and scanning electron microscopy, LSU, SSU rDNA, and ITS sequences-based systematic analyses, pigment analysis, and a detailed investigation of its potential toxic/harmful activity on aquatic animals. We observed the typical diagnostic features of K. decipiens, including its relatively large size, ellipsoidal or ovoid cell shape, ventral pore, ventral ridge connecting the two displaced ends of the cingulum, cingulum with a displacement of about one-third of the cell length, numerous polyhedral or slightly elongated chloroplasts distributed peripherally, and large nucleus located centrally. However, we also observed a large amphiesmal vesicle at the dorsal end of the ASC at the dorsal epicone, which is a novel feature that has never been reported from any species of the genus. Based on the results of this study, it is not clear whether this feature is a specific structure of the species or a common characteristic of the genus; therefore, this novel feature is worthy of further examination. Fucoxanthin was the most abundant pigment among all the carotenoids detected. The phylogenies inferred using Bayesian inference (BI) and maximum likelihood (ML) techniques confirmed the conspecificity of our isolate with the holotype K. decipiens (accession no. EF469236). In molecular trees, K. decipiens and K. antarcticum form a separate clade from other species of Karlodinium, and it should be examined whether a large amphiesma vesicle may be a characteristic of this clade. The exposure bioassays using brine shrimp (Artemia salina) indicated that K. decipiens exhibited toxicity to zooplankton, with 100% and 68% mortality observed in brine shrimp using live cell cultures and cell culture lysates over 120 h, respectively. Our work provides a detailed morphological and molecular characterization of K. decipiens from China. The results of this study broaden the known geographical distribution of this species and demonstrate it to be a harmful dinoflagellate. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

17 pages, 3619 KiB  
Article
Toxicity of UV Filter Benzophenone-3 in Brine Shrimp Nauplii (Artemia salina) and Zebrafish (Danio rerio) Embryos
by Melissa I. Ortiz-Román, Ileska M. Casiano-Muñiz and Felix R. Román-Velázquez
J. Xenobiot. 2024, 14(2), 537-553; https://doi.org/10.3390/jox14020032 - 29 Apr 2024
Cited by 5 | Viewed by 2656
Abstract
The benzophenone (BP) family, including oxybenzone (BP-3), a prevalent sunscreen ingredient and environmental contaminant, has raised concerns since the year 2005. This study investigated oxybenzone toxicity in zebrafish (Danio rerio) eleutheroembryos and brine shrimp (Artemia salina) nauplii, focusing on [...] Read more.
The benzophenone (BP) family, including oxybenzone (BP-3), a prevalent sunscreen ingredient and environmental contaminant, has raised concerns since the year 2005. This study investigated oxybenzone toxicity in zebrafish (Danio rerio) eleutheroembryos and brine shrimp (Artemia salina) nauplii, focusing on the LC50 and developmental impacts. Zebrafish embryos (0.100–1.50 mg/L BP-3, 96 h) and A. salina (0.100–5.00 mg/L BP-3, 48 h) were tested with ultrasound-assisted emulsified liquid-phase microextraction (UA-ELPME) used for zebrafish tissue analysis. HPLC-DAD determined BP-3 concentrations (highest: 0.74 ± 0.13 mg/L). Although no significant zebrafish embryo mortality or hatching changes occurred, developmental effects were evident. Lethal concentrations were determined (A. salina LC50 at 24 h = 3.19 ± 2.02 mg/L; D. rerio embryos LC50 at 24 h = 4.19 ± 3.60 mg/L), with malformations indicating potential teratogenic effects. A. salina displayed intestinal tract alterations and D. rerio embryos exhibited pericardial edema and spinal deformities. These findings highlight oxybenzone’s environmental risks, posing threats to species and ecosystem health. Full article
(This article belongs to the Special Issue Environmental Toxicology and Animal Health)
Show Figures

Graphical abstract

29 pages, 5706 KiB  
Article
Bioactive Potential of Olive Mill Waste Obtained from Cultivars Grown in the Island of Malta
by Frederick Lia and Karen Attard
Foods 2024, 13(8), 1152; https://doi.org/10.3390/foods13081152 - 10 Apr 2024
Cited by 1 | Viewed by 2256
Abstract
This study explores the bioactive potential of olive mill waste derived from cultivars grown in the Maltese Islands through various analytical approaches. Cell culture, cell staining, allelopathic assays, shrimp brine lethality assays, and HPLC analysis were conducted to assess the efficacy and bioactivity [...] Read more.
This study explores the bioactive potential of olive mill waste derived from cultivars grown in the Maltese Islands through various analytical approaches. Cell culture, cell staining, allelopathic assays, shrimp brine lethality assays, and HPLC analysis were conducted to assess the efficacy and bioactivity of the extracts using different treatments, including methanolic extraction, acid, and alkaline hydrolysis. Notably, the results from cell lines revealed that NB4r2 cells exhibited high susceptibility to the tested extracts, with the lowest IC50 recorded after 72 h of exposure. Notably, the ‘Bajda’ cultivar displayed the most effectiveness, particularly with acid hydrolysis. In allelopathic assays, higher concentrations of ‘Malti’, ‘Bidni’, and ‘Bajda’ extracts significantly inhibited lettuce seed germination. Similarly, in the brine shrimp lethality assay, higher concentrations led to increased mortality rates of Artemia salina, though rates decreased at lower concentrations. The identification of phenolic compounds found in olive mill waste was conducted using high-performance liquid chromatography (HPLC) with the use of internal standards. The identification revealed a variety of compounds, with 3-hydroxytyrosol and oleacein being present in high abundance in nearly all hydrolyzed and methanolic extracts, whereas gallic acid was found to be the least abundant. These findings highlight the rich bioactive potential of olive mill waste and provide insights into its applications in pharmaceuticals, nutraceuticals, and agriculture, emphasizing the importance of further research to fully exploit these valuable resources. Full article
Show Figures

Graphical abstract

18 pages, 2302 KiB  
Article
Ericaria amentacea Algae Extracts: A Sustainable Approach for the Green Synthesis of Silver Oxide Nanoparticles and Their Effectiveness against Leishmaniasis
by Fatouma Mohamed Abdoul-Latif, Ayoub Ainane, Ibrahim Houmed Aboubaker, Barwako Houssein Kidar, Jalludin Mohamed, Meryem Lemrani, Abdelmjid Abourriche and Tarik Ainane
Processes 2023, 11(11), 3227; https://doi.org/10.3390/pr11113227 - 15 Nov 2023
Cited by 2 | Viewed by 1803
Abstract
In this study, anti-leishmanial activities were performed on silver oxide nanoparticles green synthesized from hexane, ethereal, chloroform, and methanolic extracts of the Ericaria amentacea seaweed. The extracts were obtained using a soxhlet extraction system, and the silver oxide nanoparticles were synthesized through a [...] Read more.
In this study, anti-leishmanial activities were performed on silver oxide nanoparticles green synthesized from hexane, ethereal, chloroform, and methanolic extracts of the Ericaria amentacea seaweed. The extracts were obtained using a soxhlet extraction system, and the silver oxide nanoparticles were synthesized through a simple and environmentally friendly method. Physicochemical characterizations, including UV spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal gravimetry analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analysis (ZPA), were conducted to confirm the formation of silver oxide particles. The anti-leishmanial activity was evaluated in vitro using the MTT assay against the Leishmania infantum, Leishmania tropica, and Leishmania major strains. Additionally, a brine shrimp cytotoxicity test was performed on Artemia salina larvae to assess the toxicity of the products. The results showed that the anti-leishmanial activity of the synthesized silver oxide nanoparticles was significant, with inhibitory concentration values ranging from 27.16 μg/mL to 38.18 μg/mL. The lethal doses in the cytotoxicity activities were higher than 17.08 μg/mL, indicating low toxicity. These findings suggest that silver oxide nanoparticles derived from Ericaria amentacea seaweed have potential applications in the treatment of leishmaniasis. Further research is needed to elucidate the mechanisms of action and assess the in vivo efficacy of these nanoparticles. Moreover, comprehensive toxicity studies are necessary before considering their clinical use in leishmaniasis treatment. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

Back to TopTop