Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = bridge seismic vulnerability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 42620 KiB  
Article
Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm and Comparative Insights from Recent Cases for Civil Protection and Disaster Risk Reduction
by Spyridon Mavroulis, Maria Mavrouli, Andromachi Sarantopoulou, Assimina Antonarakou and Efthymios Lekkas
GeoHazards 2025, 6(2), 32; https://doi.org/10.3390/geohazards6020032 - 14 Jun 2025
Viewed by 2633
Abstract
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions [...] Read more.
In early 2025, the Santorini–Amorgos area (Aegean Volcanic Arc, Greece) experienced a seismic swarm, with dozens of M ≥ 4.0 earthquakes and a maximum magnitude of M = 5.2. Beyond its seismological interest, the sequence was notable for triggering rare increased preparedness actions by Greek Civil Protection operational structures in anticipation of an imminent destructive earthquake. These actions included (i) risk communication, (ii) the reinforcement of operational structures with additional personnel and equipment on the affected islands, (iii) updates to local emergency plans, (iv) the dissemination of self-protection guidance, (v) the activation of emergency alert systems, and (vi) volunteer mobilization, including first aid and mental health first aid courses. Although it was in line with contingency plans, public participation was limited. Volunteers helped bridge this gap, focusing on vulnerable groups. The implemented actions in Greece are also compared with increased preparedness during the 2024–2025 seismic swarms in Ethiopia, as well as preparedness before the highly anticipated major earthquake in Istanbul (Turkey). In Greece and Turkey, legal and technical frameworks enabled swift institutional responses. In contrast, Ethiopia highlighted the risks of limited preparedness and the need to embed disaster risk reduction in national development strategies. All cases affirm that preparedness, through infrastructure, planning, communication, and community engagement, is vital to reducing earthquake impacts. Full article
Show Figures

Figure 1

16 pages, 4962 KiB  
Article
Seismic Response Mitigation of Reinforced-Concrete High-Speed Railway Bridges with Hierarchical Curved Steel Dampers
by Mingshi Liang, Liqiang Jiang and Jianguang He
Materials 2025, 18(9), 2120; https://doi.org/10.3390/ma18092120 - 5 May 2025
Viewed by 565
Abstract
To address the seismic vulnerability of high-speed railway bridges (HSRBs) in seismically active regions, this study proposes a hierarchical curved steel damper (CSD) designed to mitigate excessive girder displacements induced by conventional isolation devices. The CSD integrates U-shaped and hollow diamond-shaped steel plates [...] Read more.
To address the seismic vulnerability of high-speed railway bridges (HSRBs) in seismically active regions, this study proposes a hierarchical curved steel damper (CSD) designed to mitigate excessive girder displacements induced by conventional isolation devices. The CSD integrates U-shaped and hollow diamond-shaped steel plates to achieve stable energy dissipation through coupled bending deformation. A finite element model is developed, and its hysteretic behavior is confirmed, with an energy dissipation coefficient of 1.82 and an equivalent damping ratio of 12.7%. An integrated high-speed railway track–bridge-CSD spatial coupling model is developed in OpenSees, which incorporates nonlinear springs for interlayer track interactions. Nonlinear time–history analyses under 40 spectrum-matched ground motions reveal that the CSD reduces transverse girder displacements by 73.7–79.2% and attenuates track slab acceleration peaks by 52.4% compared with uncontrolled cases. However, it increases the maximum bending moment at pier bases by up to 18.3%, necessitating supplemental energy-dissipating components for balanced force redistribution. This work provides a theoretical foundation and practical methodology for seismic response control and retrofitting of the HSRB in high-intensity seismic regions. Full article
Show Figures

Figure 1

18 pages, 3992 KiB  
Review
A Review of Prediction Methods for Ultra-Low Cycle Fatigue Damage of Steel Piers Under Earthquakes
by Qin Tian, Shixin Cao, Xiaoming Lu and Haigen Cheng
Appl. Sci. 2025, 15(9), 5114; https://doi.org/10.3390/app15095114 - 4 May 2025
Viewed by 530
Abstract
Steel bridge piers are vulnerable to seismic damage, with ultra-low cycle fatigue commonly occurring at the base of the piers or at welded joints under strong earthquake conditions. The current methods for predicting ultra-low cycle fatigue in steel bridge piers include the empirical [...] Read more.
Steel bridge piers are vulnerable to seismic damage, with ultra-low cycle fatigue commonly occurring at the base of the piers or at welded joints under strong earthquake conditions. The current methods for predicting ultra-low cycle fatigue in steel bridge piers include the empirical formula method, the cyclic void growth model (CVGM), and the continuous damage mechanics (CDM) model. This paper reviews the principles, development, advantages, and limitations of these three prediction methods. Compared to the empirical formula method, the CDM model offers improved accuracy for predicting ultra-low cycle fatigue life in welded joints under complex stress conditions. Unlike the CVGM, the CDM model requires fewer calibration tests, directly incorporates the effects of damage on material properties, and integrates well with finite element software. These benefits highlight the potential of CDM-based prediction methods for practical application. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 6967 KiB  
Article
Digital Mapping and Resilience Indicators, as Pillars of Bucharest’s Seismic Resilience Strategy
by Mihnea Paunescu, Oana Luca, Adrian Andrei Stanescu and Florian Gaman
Infrastructures 2025, 10(2), 39; https://doi.org/10.3390/infrastructures10020039 - 11 Feb 2025
Viewed by 1601
Abstract
This study presents relevant elements of seismic resilience strategy containing an innovative digital mapping tool tailored for Bucharest, one of Europe’s most seismically vulnerable areas. The framework integrates seismic resilience indicators and expert input with Bucharest’s seismic micro-zonation map to systematically identify critical [...] Read more.
This study presents relevant elements of seismic resilience strategy containing an innovative digital mapping tool tailored for Bucharest, one of Europe’s most seismically vulnerable areas. The framework integrates seismic resilience indicators and expert input with Bucharest’s seismic micro-zonation map to systematically identify critical relocation areas, including educational institutions, medical facilities, and open spaces for emergency use. A seven-step methodology underpins the strategy: identifying resilience indicators, gathering local data, conducting expert workshops, mapping vulnerable areas, designating emergency open spaces, incorporating educational institutions as shelters, and evaluating the framework through a SWOT (strengths, weaknesses, opportunities, and threats) analysis. The digital mapping tool developed using Google My Maps provides a practical and accessible platform for emergency management professionals and the public, enabling real-time response coordination and informed long-term planning. District 2 is identified as the most vulnerable area due to high population density and peak ground acceleration (PGA), while District 4 faces challenges stemming from limited medical and relocation resources, despite experiencing lower seismic activity. The SWOT analysis demonstrates the tool’s potential as a robust disaster management framework, while highlighting the need for continuous updates, enhanced collaboration, and integration of additional data. This study offers a scalable model for other urban contexts, bridging the gap between strategic planning and operational readiness for seismic risk reduction. Full article
(This article belongs to the Special Issue Seismic Engineering in Infrastructures: Challenges and Prospects)
Show Figures

Figure 1

26 pages, 6049 KiB  
Article
A Proposed Fragility Curve Based on PO-ID Hybrid Analysis for Seismic Assessment Performance of the Reinforced Concrete Continuous Bridges in Earthquake Prone Area
by Khin Thuzar Htay, Jafril Tanjung, Masrilayanti, Monita Olivia, Fadzli Mohamed Nazri and Mulyadi Bur
Buildings 2024, 14(12), 3875; https://doi.org/10.3390/buildings14123875 - 2 Dec 2024
Cited by 2 | Viewed by 1625
Abstract
In earthquake-prone regions, the seismic performance assessment of reinforced concrete (RC) continuous bridges is critical for ensuring their resilience and safety. This study proposes a fragility curve developed through a hybrid pushover–incremental dynamic (PO-ID) analysis to accurately evaluate the seismic vulnerability of RC [...] Read more.
In earthquake-prone regions, the seismic performance assessment of reinforced concrete (RC) continuous bridges is critical for ensuring their resilience and safety. This study proposes a fragility curve developed through a hybrid pushover–incremental dynamic (PO-ID) analysis to accurately evaluate the seismic vulnerability of RC continuous bridges. The proposed method integrates the advantages of pushover analysis, which provides insights into the bridge’s capacity, with incremental dynamic analysis, which captures the bridge’s response under varying earthquake intensities. The resulting fragility curves offer a more comprehensive understanding of the likelihood of bridge failure at different seismic intensities. Incremental dynamic analysis (IDA) effectively illustrates a bridge’s response to increasing seismic demands but does not account for ultimate displacement under static lateral loads. Pushover analysis (POA) is useful for capturing maximum displacement capacity under static forces, yet it falls short of addressing the dynamic effects of near-fault ground motions. The hybrid approach combines the strengths of both IDA and POA, and this hybrid method’s heightened sensitivity to damage states allows for earlier detection and conservative displacement estimates, improving seismic assessments, informing design and retrofitting practices, and enhancing safety by addressing transverse displacements and weak axis vulnerabilities. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3781 KiB  
Article
A Multiscale Model to Assess Bridge Vulnerability Under Extreme Wave Loading
by Umberto De Maio, Fabrizio Greco, Paolo Lonetti and Paolo Nevone Blasi
J. Mar. Sci. Eng. 2024, 12(12), 2145; https://doi.org/10.3390/jmse12122145 - 25 Nov 2024
Cited by 1 | Viewed by 1014
Abstract
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid [...] Read more.
A multiscale model is proposed to assess the impact of wave loading on coastal or inland bridges. The formulation integrates various scales to examine the effects of flooding actions on fluid and structural systems, transitioning from global to local representation scales. The fluid flow was modeled using a turbulent two-phase level set formulation, while the structural system employed the 3D solid mechanics theory. Coupling between subsystems was addressed through an FSI formulation using the ALE moving mesh methodology. The proposed model’s validity was confirmed through comparisons with numerical and experimental data from the literature. A parametric study was conducted on wave load characteristics associated with typical flood or tsunami scenarios. This included verifying the wave load formulas from existing codes or refined formulations found in the literature, along with assessing the dynamic amplification’s effects on key bridge design variables and the worst loading cases involving bridge uplift and horizontal forces comparable to those typically used in seismic actions. Furthermore, a parametric study was undertaken to examine fluid flow and bridge characteristics, such as bridge elevation, speed, inundation ratio, and bearing system typology. The proposed study aims to identify the worst-case scenarios for bridge deck vulnerability. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

23 pages, 10425 KiB  
Article
Hybrid Reinforced Concrete Frames with Engineering Cementitious Composites: Experimental and Numerical Investigations
by Abdulrahman Metawa, Moussa Leblouba and Samer Barakat
Sustainability 2024, 16(22), 10085; https://doi.org/10.3390/su162210085 - 19 Nov 2024
Cited by 1 | Viewed by 1170
Abstract
Reinforced concrete (RC) structures are vulnerable to damage under dynamic loads such as earthquakes, necessitating innovative solutions that enhance both performance and sustainability. This study investigates the integration of Engineered Cementitious Composites (ECC) in RC frames to improve ductility, durability, and energy dissipation [...] Read more.
Reinforced concrete (RC) structures are vulnerable to damage under dynamic loads such as earthquakes, necessitating innovative solutions that enhance both performance and sustainability. This study investigates the integration of Engineered Cementitious Composites (ECC) in RC frames to improve ductility, durability, and energy dissipation while considering cost-effectiveness. To achieve this, the partial replacement of concrete with ECC at key structural locations, such as beam–column joints, was explored through experimental testing and numerical simulations. Small-scale beams with varying ECC replacements were tested for failure modes, load–deflection responses, and crack propagation patterns. Additionally, nonlinear quasi-static cyclic and modal analyses were performed on full RC frames, ECC-reinforced frames, and hybrid frames with ECC at the joints. The results demonstrate that ECC reduces the need for shear reinforcement due to its crack-bridging ability, enhances ductility by up to 25% in cyclic loading scenarios, and lowers the formation of plastic hinges, thereby contributing to improved structural resilience. These findings suggest that ECC is a viable, sustainable solution for achieving resilient infrastructure in seismic regions, with an optimal balance between performance and cost. Full article
(This article belongs to the Special Issue Research Advances in Sustainable Materials and Structural Engineering)
Show Figures

Figure 1

21 pages, 6080 KiB  
Article
Seismic Fragility Analysis of Reinforced Concrete Simply Supported Girder Bridges Resting on Double-Column Piers for High Speed Railway
by Yongzheng Zhou, Ce Gao, Sibo Yang, Wei Guo and Liqiang Jiang
Buildings 2024, 14(10), 3072; https://doi.org/10.3390/buildings14103072 - 26 Sep 2024
Cited by 3 | Viewed by 1771
Abstract
This study investigates the probabilistic seismic damage characteristics of a five-span RC simply supported girder bridge with double-column piers designed for a high-speed railway (HSR). The objective is to assess the bridge’s fragility by developing a refined nonlinear numerical model using the OpenSEES [...] Read more.
This study investigates the probabilistic seismic damage characteristics of a five-span RC simply supported girder bridge with double-column piers designed for a high-speed railway (HSR). The objective is to assess the bridge’s fragility by developing a refined nonlinear numerical model using the OpenSEES (Version 3.3.0) platform. Incremental dynamic analysis (IDA) was conducted with peak ground accelerations (PGA) ranging from 0.05 g to 0.5 g, and fragility curves for pier columns, tie beams, and bearings were developed. Additionally, a series–parallel relationship and a hierarchically iterated pair copula model were established to evaluate system fragility. The results indicate that as PGA increases, the damage probability of all bridge components rises, with bearings being the most vulnerable, followed by pier columns, and tie beams exhibiting the least damage. The models accurately simulate the correlations between members and system fragility, offering valuable insights into the bridge’s performance under seismic conditions. Full article
(This article belongs to the Special Issue Recent Study on Seismic Performance of Building Structures)
Show Figures

Figure 1

23 pages, 69747 KiB  
Article
Optimal Sensor Placement for Enhanced Efficiency in Structural Health Monitoring of Medium-Rise Buildings
by Salman Saeed, Sikandar H. Sajid and Luc Chouinard
Sensors 2024, 24(17), 5687; https://doi.org/10.3390/s24175687 - 31 Aug 2024
Cited by 3 | Viewed by 1828
Abstract
Output-only modal analysis using ambient vibration testing is ubiquitous for the monitoring of structural systems, especially for civil engineering structures such as buildings and bridges. Nonetheless, the instrumented nodes for large-scale structural systems need to cover a significant portion of the spatial volume [...] Read more.
Output-only modal analysis using ambient vibration testing is ubiquitous for the monitoring of structural systems, especially for civil engineering structures such as buildings and bridges. Nonetheless, the instrumented nodes for large-scale structural systems need to cover a significant portion of the spatial volume of the test structure to obtain accurate global modal information. This requires considerable time and resources, which can be challenging in large-scale projects, such as the seismic vulnerability assessment over a large number of facilities. In many instances, a simple center-line (stairwell case) topology is generally used due to time, logistical, and economic constraints. The latter, though a fast technique, cannot provide complete modal information, especially for torsional modes. In this research, corner-line instrumented nodes layouts using only a reference and a roving sensor are proposed, which overcome this issue and can provide maximum modal information similar to that from 3D topologies for medium-rise buildings. Parametric studies are performed to identify the most appropriate locations for sensor placement at each floor of a medium-rise building. The results indicate that corner locations at each floor are optimal. The proposed procedure is validated through field experiments on two medium-rise buildings. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

13 pages, 7337 KiB  
Article
Natural Lime–Cork Mortar for the Seismic and Energetic Retrofit of Infill Walls: Design, Materials, and Method
by Rocco Buda and Raffaele Pucinotti
Appl. Sci. 2024, 14(17), 7503; https://doi.org/10.3390/app14177503 - 25 Aug 2024
Cited by 1 | Viewed by 1361
Abstract
Recent seismic events have prompted research into innovative and sustainable materials for strengthening and repairing obsolete and vulnerable buildings. These earthquakes have exposed the high seismic vulnerability of existing reinforced concrete (RC) buildings, particularly in secondary structural elements like infill walls. In addition [...] Read more.
Recent seismic events have prompted research into innovative and sustainable materials for strengthening and repairing obsolete and vulnerable buildings. These earthquakes have exposed the high seismic vulnerability of existing reinforced concrete (RC) buildings, particularly in secondary structural elements like infill walls. In addition to structural issues, these buildings often face significant energy deficiencies, such as thermal bridges, due to inadequate insulation. Traditionally, structural and energy improvements for residential buildings are addressed separately with different methods and protocols. This preliminary study is part of a broader research initiative at the University of Reggio Calabria (Italy), aiming to design an innovative fiber-reinforced plaster using natural, sustainable, and locally produced materials to enhance the energy and structural performance of existing wall infills. The study investigates two plaster matrices made of natural hydraulic lime and silica sand, with 15% and 30% cork granules added. Mechanical and thermophysical tests on multiple specimens were conducted to evaluate their suitability for seismic and energy retrofitting of infill walls. Results indicate that adding cork reduces mechanical strength by approximately 42% at a 30% cork content without compromising its use in seismic retrofitting. Thermophysical tests show improved thermal performance with a higher cork content. These findings suggest that the lime–cork mixture at 30% is effective, offering excellent ductility and serving as a promising alternative to traditional cementitious plaster systems. The next experimental phase will test matrices with varying percentages of gorse fiber. Full article
Show Figures

Figure 1

23 pages, 4500 KiB  
Article
Conceptual Design of Seismic Retrofit of Existing Bridges by Deck Isolation: Assessment of Effectiveness
by Carlo Pettorruso and Virginio Quaglini
Appl. Sci. 2024, 14(16), 7353; https://doi.org/10.3390/app14167353 - 20 Aug 2024
Cited by 1 | Viewed by 1465
Abstract
The creation of an isolation layer between decks and substructures has turned out to be a viable method for reducing the seismic vulnerability of existing bridges. However, to the Authors’ knowledge, a practical approach for a preliminary verification of the effectiveness of this [...] Read more.
The creation of an isolation layer between decks and substructures has turned out to be a viable method for reducing the seismic vulnerability of existing bridges. However, to the Authors’ knowledge, a practical approach for a preliminary verification of the effectiveness of this intervention is lacking. The paper introduces a practical tool for a preliminary assessment of the needs of the rehabilitation of the bridge and of the effectiveness of the deck isolation to improve its seismic performance by comparing the demands of the as-built structure and of the piers alone, expressed in terms of equivalent accelerations, to the maximum seismic acceleration allowed to maintain the substructure behavior in the elastic range. A practical implementation of the criterion is illustrated in a parametric study, considering prototypes of simply supported and continuous deck bridges with features common to the bridges of the Italian stock. The results of the study provide some indications about the inherent weaknesses of the examined pier typologies and the positive effect of the dead load of the deck on the effectiveness of deck isolation. Full article
(This article belongs to the Special Issue Seismic Resistant Analysis and Design for Civil Structures)
Show Figures

Figure 1

25 pages, 28703 KiB  
Article
Seismic Performance of Bridge Expansion Joints with and without Viscous Dampers during the 6 February 2023 Kahramanmaraş Earthquakes
by Alemdar Bayraktar, Yavuzhan Taş, Mehmet Akköse, Emin Hökelekli, Carlos E. Ventura and Tony Y. Yang
Buildings 2024, 14(8), 2538; https://doi.org/10.3390/buildings14082538 - 18 Aug 2024
Cited by 2 | Viewed by 2119
Abstract
Expansion joints render bridge structures highly vulnerable to damage during strong ground motions. Failures of expansion joints triggered by earthquakes not only jeopardize the post-earthquake serviceability of the bridge but also have a significant impact on the bridgeâs overall seismic performance. Despite extensive [...] Read more.
Expansion joints render bridge structures highly vulnerable to damage during strong ground motions. Failures of expansion joints triggered by earthquakes not only jeopardize the post-earthquake serviceability of the bridge but also have a significant impact on the bridgeâs overall seismic performance. Despite extensive investigations and efforts to integrate these measures into design specifications aimed at mitigating the consequences of relative movements between adjacent bridge spans, major earthquakes have still revealed instances of damage related to expansion joints. On 6 February 2023, strong earthquake sequences occurred in KahramanmaraÅ, Turkey, with magnitudes of M7.7 and M7.6. The fault lines and epicenters of these shallow earthquakes were near the city and town centers and caused severe structural damage to buildings and infrastructures. There are approximately 1000 railway and highway bridges in the earthquake-affected region. Although both highway and railway bridges have generally performed well, some bridges experienced structural damage during the KahramanmaraÅ earthquakes. A large number of damage on the bridges is due to pounding and opening relative movements in expansion joints. This paper presents a comprehensive seismic evaluation of expansion joint failure mechanisms on bridges without viscous dampers during the 2023 KahramanmaraÅ earthquake sequences and an in-depth investigation into the seismic performance of bridge expansion joints equipped with viscous dampers and shock transmission unit devices are implemented utilizing the strong ground motion data collected throughout the earthquake sequences. It can be stated that the near-fault induced significant directivity and fling effects, resulting in notable velocity pulses and permanent tectonic deformations, and that these effects contributed to the failures of expansion joints, viscous damper devices, pot bearings, and shear keys. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Seismic Vulnerability Analysis of Concrete-Filled Steel Tube Tied Arch Bridges Using Symmetrically Arranged High-Damping Rubber Bearings
by Qingxi Zhang, Xiangyang Wang and Jiangshuai Huang
Symmetry 2024, 16(8), 1056; https://doi.org/10.3390/sym16081056 - 16 Aug 2024
Viewed by 1337
Abstract
High-damping rubber bearings play an essential role in isolated bridges. They can prolong the natural vibration period of a bridge and reduce its seismic response. In order to quantitatively study the isolation performance of high-damping rubber bearings, this paper investigates a concrete-filled steel [...] Read more.
High-damping rubber bearings play an essential role in isolated bridges. They can prolong the natural vibration period of a bridge and reduce its seismic response. In order to quantitatively study the isolation performance of high-damping rubber bearings, this paper investigates a concrete-filled steel tube-tied arch bridge as the research object and uses symmetrically arranged high-damping rubber bearings for isolation reconstruction. Nonlinear finite element analysis models for isolated and non-isolated bridges are built based on the structural properties of the actual bridge. Based on the structural deformation failure criterion, a bridge damage evaluation index system is established, the damage index of each component is defined, and a quantitative analysis of different damage states is carried out. Based on the incremental dynamic analysis method, the seismic vulnerability curves of bridge components and systems are established. By comparing the seismic vulnerability curves of the bridge before and after isolation, the isolation effect of the high-damping rubber bearings is quantitatively evaluated. The results of the analysis show that the high-damping rubber bearings have a significant isolation effect on the bridge structure and the effect is symmetrically distributed along the longitudinal symmetry plane of the bridge. After adopting the isolation measures, the exceedance probability of damage of each component of the bridge is reduced to varying degrees. Among them, the isolation effect on piers and arch ribs is the most significant, up to more than 90%. At the same time, the exceedance probability of damage of the bearing itself is less reduced. This result is also consistent with the original intention of the design of the isolation bearing; that is, through the energy dissipation of the isolation bearing, the seismic response of other components of the bridge is reduced. Full article
(This article belongs to the Special Issue Applied Mechanics, Engineering and Modeling - Volume II)
Show Figures

Figure 1

16 pages, 2321 KiB  
Article
Index of Attention for a Simplified Condition Assessment and Classification of Bridges
by Chiara Ormando, Valentina Lucaferri, Alessandro Giocoli, Paolo Clemente, Giacomo Buffarini and Alberto Tofani
Infrastructures 2024, 9(8), 125; https://doi.org/10.3390/infrastructures9080125 - 29 Jul 2024
Cited by 2 | Viewed by 1417
Abstract
A procedure for a simplified evaluation of bridges is proposed based on census and visual inspections. The structural–foundational, seismic, landslide, and hydraulic risks are considered, the hazard, vulnerability, and exposure factors of which are quantified with an index that can assume integer values [...] Read more.
A procedure for a simplified evaluation of bridges is proposed based on census and visual inspections. The structural–foundational, seismic, landslide, and hydraulic risks are considered, the hazard, vulnerability, and exposure factors of which are quantified with an index that can assume integer values from 1 to 5. Polynomial functions are then defined combining these indices, calculating an index for each risk and finally a multi-risk index of attention. The procedure follows a mathematical approach, less influenced by subjective choices, leading to a more gradual and efficient classification that managers can directly utilize. Specific needs and requirements result in specific configuration and calibration of the mathematical model coefficients. In this study, the authors calibrated coefficients to obtain results that were compliant with the Italian guidelines for existing bridges. The procedure, tested on a set of 86 bridges, does not replace an accurate evaluation, which is necessary in some cases and represents a higher level of knowledge, nor does it claim to provide a definitive result. It provides a more efficient classification, useful for establishing a rational decision-making process to prioritize any subsequent retrofit interventions. Full article
(This article belongs to the Section Infrastructures Inspection and Maintenance)
Show Figures

Figure 1

38 pages, 7005 KiB  
Article
Seismic Response of a Large-Span Steel Truss Arch Bridge under Nonuniform Near-Fault Ground Motions
by Zhen Liu, Xingliang Ma and Junlin Lv
Buildings 2024, 14(8), 2308; https://doi.org/10.3390/buildings14082308 - 25 Jul 2024
Cited by 2 | Viewed by 1412
Abstract
The ground motion in the near-fault region of an earthquake is characterized by exceptional energy levels, powerful velocity impulses, substantial spatial variability, and notable permanent displacement. These unique attributes can dramatically escalate structural damage. Steel truss arch bridges, being critical components of transportation [...] Read more.
The ground motion in the near-fault region of an earthquake is characterized by exceptional energy levels, powerful velocity impulses, substantial spatial variability, and notable permanent displacement. These unique attributes can dramatically escalate structural damage. Steel truss arch bridges, being critical components of transportation networks, are particularly vulnerable to these phenomena due to their extensive stiffness spans. Such factors are difficult to accurately simulate. In this study, real near-fault ground motions that incorporate spatial variability effects and pulse effects are used to excite the long-span arch bridge, thereby striving to realistically reproduce the structural damage sustained by the bridge under the simultaneous influence of near-fault spatial variability and pulse effects. This study adopts an arch bridge with a span closely approximating the spacing between stations (200 m) of the SMART seismic array as a case study. The near-fault ground motions, characterized by spatial variability and captured by the array, are selected as seismic samples, while the far-field ground motions recorded by the same array serve as a comparative reference. The seismic excitations are then input into the bridge case study, following the spatial correspondence of the stations, using a large-scale finite element program to obtain the structural response. Upon analyzing the seismic response of crucial positions on the bridge, it became evident that the arch foot of the bridge is more susceptible to the spatial variability in near-fault ground motion, whereas the vault experiences a greater impact from the high-energy velocity pulse. Specifically, under nonuniform seismic conditions, the internal force at the base of the bridge arch increased significantly, averaging a rise of 18.69% compared to uniform excitation conditions. Conversely, the displacement and internal force response at the top of the arch exhibited more modest increases of 6.48% and 10.33%, respectively. Under nonuniform excitation, the vault’s response to near-fault earthquakes increased by an average of 20.35% com-pared to far-field earthquakes, while the arch foot’s response rose by 11.55%. In contrast, under uniform excitation, the vault’s response to near-fault earthquakes was notably higher, increasing by 25.04%, while the arch foot’s response showed a minor increase of only 2.28%. The study has revealed significant differences in the sensitivity of different parts of long-span arch bridges to near-fault earthquake characteristics. This finding is of great importance for understanding the behavior of long-span arch bridges under complex earthquake conditions. Specifically, the arch foot of the bridge is more sensitive to the spatial variability of near-fault ground motions, while the arch crown is more significantly affected by high-energy velocity pulses, providing new insights for bridge seismic design. Furthermore, the differences in response between the arch crown and arch foot under different earthquake excitations also reveal the complexity and diversity of bridge structural responses. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop