Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = brake fault-tolerance technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 211
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

30 pages, 11506 KiB  
Review
Research Progress and Future Prospects of Brake-by-Wire Technology for New Energy Vehicles
by Zhengrong Chen, Ruochen Wang, Renkai Ding, Bin Liu, Wei Liu, Dong Sun and Zhongyang Guo
Energies 2025, 18(11), 2702; https://doi.org/10.3390/en18112702 - 23 May 2025
Viewed by 841
Abstract
The energy crisis and environmental pollution have driven the rapid development of new energy vehicles (NEVs). As a core technology for integrating electrification and intelligence in NEVs, the brake-by-wire (BBW) system has become a research hotspot due to its excellent braking energy recovery [...] Read more.
The energy crisis and environmental pollution have driven the rapid development of new energy vehicles (NEVs). As a core technology for integrating electrification and intelligence in NEVs, the brake-by-wire (BBW) system has become a research hotspot due to its excellent braking energy recovery efficiency and precise active safety control performance. This paper provides a comprehensive review of the research progress in BBW technology for NEVs and provides a forward-looking perspective on its future development. First, the types and structures of the BBW system are introduced, and the development history and representative products are systematically reviewed. Next, this paper focuses on key technologies, such as the design and modeling methods of the BBW system, braking force optimization and distribution strategies, precise actuator control, multi-system coordination, driver operation perception, intelligent decision-making, personalized control, and fault diagnosis and fault-tolerant control. Finally, the main challenges faced in the research of BBW technology for NEVs are analyzed, and future development directions are proposed, providing insights for the optimization designs and industrial application of the BBW system in the future. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 3841 KiB  
Article
Research on Path Tracking Fault-Tolerant Control Strategy for Intelligent Commercial Vehicles Based on Brake Actuator Failure
by Guanjie Cui, Chunjiang Bao, Mingjie Guo, Yahui Xu, Yelin He and Jian Wu
Actuators 2024, 13(3), 97; https://doi.org/10.3390/act13030097 - 28 Feb 2024
Cited by 4 | Viewed by 1987
Abstract
With the development of safety technologies for intelligent commercial vehicles, electronic pneumatic braking systems (EBSs) have been widely used. However, EBS actuators may fail during vehicle operation and thus create safety problems. For this reason, we propose a path-tracking fault-tolerant control strategy under [...] Read more.
With the development of safety technologies for intelligent commercial vehicles, electronic pneumatic braking systems (EBSs) have been widely used. However, EBS actuators may fail during vehicle operation and thus create safety problems. For this reason, we propose a path-tracking fault-tolerant control strategy under EBS actuator failure in intelligent commercial vehicles. First, in order to be able to characterize different types of brake actuator faults during the EBS differential braking process of a vehicle, a comprehensive fault coefficient for calculating the degree of fault is designed, and a BES generalized fault model is established. Second, the faults are introduced into the fault-tolerant controller through the comprehensive fault coefficients for braking torque calculation and braking pressure allocation. Thus, a vehicle path model with the complete fault coefficients as variable parameters is established. Then, based on the LPV system gain scheduling, a path-tracking LPV/H∞ fault-tolerant controller under EBS actuator faults in commercial vehicles is designed, which is used to solve the safety problem arising from sudden EBS actuator faults. Finally, we conducted experimental validation through hardware-in-the-loop tests. The results demonstrate that the control strategy designed in this paper redistributes the braking torque and synergizes with the steering system to enhance vehicle stability, thereby improving vehicle safety in the EBS failure mode. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

14 pages, 1476 KiB  
Review
A Systematic Review and Future Development of Automotive Chassis Control Technology
by Aixi Yang, Yuhui Zang, Liuliu Xu, Lanyou Li and Dapeng Tan
Appl. Sci. 2023, 13(21), 11859; https://doi.org/10.3390/app132111859 - 30 Oct 2023
Cited by 1 | Viewed by 9156
Abstract
Automotive chassis control technology plays a crucial role in ensuring the stability, performance, and safety of vehicles. This paper reviews and discusses automotive steering/braking/driving/suspension systems from perspectives of system composition, the state of the art, and key technologies. Detailed analysis is conducted on [...] Read more.
Automotive chassis control technology plays a crucial role in ensuring the stability, performance, and safety of vehicles. This paper reviews and discusses automotive steering/braking/driving/suspension systems from perspectives of system composition, the state of the art, and key technologies. Detailed analysis is conducted on critical techniques related to system fault tolerance, road feel feedback, brake force distribution strategy, electric motors, and motor controllers. The development and application of automotive chassis control technology is in line with the goals and objectives for the advancement of the automotive industry in terms of innovation, safety, and environmental sustainability. Full article
(This article belongs to the Special Issue Advanced Control Systems and Applications)
Show Figures

Figure 1

34 pages, 5093 KiB  
Article
Regenerative Braking of Electric Vehicles Based on Fuzzy Control Strategy
by Zongjun Yin, Xuegang Ma, Rong Su, Zicheng Huang and Chunying Zhang
Processes 2023, 11(10), 2985; https://doi.org/10.3390/pr11102985 - 15 Oct 2023
Cited by 16 | Viewed by 7959
Abstract
Regenerative braking technology is a viable solution for mitigating the energy consumption of electric vehicles. Constructing a distribution strategy for regenerative braking force will directly affect the energy saving efficiency of electric vehicles, which is a technical bottleneck of battery-powered electric vehicles. The [...] Read more.
Regenerative braking technology is a viable solution for mitigating the energy consumption of electric vehicles. Constructing a distribution strategy for regenerative braking force will directly affect the energy saving efficiency of electric vehicles, which is a technical bottleneck of battery-powered electric vehicles. The distribution strategy of the front- and rear-axle braking forces of electric vehicles that possess integrated front-wheel-drive arrangements is established based on the Economic Commission of Europe (ECE) regulations, which enables the clarification of the total braking force of the front axle. The regenerative braking torque model of the motor is adjusted to optimize the ratio of motor braking force to the whole front-axle braking force. The regenerative braking process of electric vehicles is influenced by many factors, such as driving speed and braking intensity, so regenerative braking presents characteristics of nonlinearity, time variability, delay, and incomplete models. By considering the impact of fuzzy controllers having better robustness, adaptability, and fault tolerance, a fuzzy control strategy is employed in this paper to accomplish the regenerative braking force distribution on the front axle. A regenerative braking model is created on the Simulink platform using the braking force distribution indicated above, and experiments are run under six specific operating conditions: New European Driving Cycle (NEDC), World Light-Duty Vehicle Test Cycle (WLTC), Federal Test Procedure 72 (FTP-72), Federal Test Procedure 75 (FTP-75), China Light-Duty Vehicle Test Cycle-Passenger (CLTC-P), and New York City Cycle (NYCC). The findings demonstrate that in six typical cycling road conditions, the energy saving efficiency of electric vehicles has greatly increased, reaching over 15%. The energy saving efficiency during the WLTC driving condition reaches 25%, and it rises to 30% under the FTP-72, FTP-75, and CLTC-P driving conditions. Furthermore, under the NYCC road conditions, the energy saving efficiency exceeded 40%. Therefore, our results verify the effectiveness of the regenerative braking control strategy proposed in this paper. Full article
Show Figures

Figure 1

27 pages, 5956 KiB  
Article
H–H Configuration of Modular EV Powertrain System Based on the Dual Three-Phase BLDC Motor and Battery-Supercapacitor Power Supply System
by Ihor Shchur and Valentyn Turkovskyi
World Electr. Veh. J. 2023, 14(7), 173; https://doi.org/10.3390/wevj14070173 - 29 Jun 2023
Cited by 1 | Viewed by 1788
Abstract
A modular approach to the construction of electric machines, drive systems, power supply systems is a new direction of modern technology development. Especially, the modular approach is promising for electric vehicles due to such positive aspects as increased efficiency, fault tolerance, overall reliability, [...] Read more.
A modular approach to the construction of electric machines, drive systems, power supply systems is a new direction of modern technology development. Especially, the modular approach is promising for electric vehicles due to such positive aspects as increased efficiency, fault tolerance, overall reliability, safety, enhanced control capabilities, etc. In this work, the modular approach is comprehensively applied to an EV powertrain system, which includes a dual three-phase (DTP) BLDC motor with two machine modules of an asymmetric configuration, two battery modules and a supercapacitor module (SCM). The proposed H–H configuration of modular EV powertrain system includes four voltage source inverters that combine the power modules with the open ends of the windings (OEW) of the module machine armature, and provide control of their operation. Based on the developed mode system of the OEW machine module operation for EV traction and braking, a general control algorithm for the proposed configuration of the modular EV powertrain system has been developed. It combines the control of the operating modes with the functions of maintaining the required SOC level of the SCM and equalizing the SOCs of the two battery modules. The conducted simulation and experimental studies confirmed the workability and effectiveness of the proposed solutions. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology)
Show Figures

Figure 1

20 pages, 3265 KiB  
Review
A Review of Automobile Brake-by-Wire Control Technology
by Xuehui Hua, Jinbin Zeng, Haoxin Li, Jingkai Huang, Maolin Luo, Xiaoming Feng, Huiyuan Xiong and Weibin Wu
Processes 2023, 11(4), 994; https://doi.org/10.3390/pr11040994 - 24 Mar 2023
Cited by 23 | Viewed by 11425
Abstract
Brake-by-wire (BBW) technology is crucial in driverless cars. The BBW technology, which has a faster reaction time and greater stability, can improve passenger safety in driverless cars. BBW technology refers to the removal of some complicated mechanical and hydraulic components from the traditional [...] Read more.
Brake-by-wire (BBW) technology is crucial in driverless cars. The BBW technology, which has a faster reaction time and greater stability, can improve passenger safety in driverless cars. BBW technology refers to the removal of some complicated mechanical and hydraulic components from the traditional braking system in favor of using wires to transmit braking signals, which improves braking performance. Firstly, this paper summarized BBW’s development history as well as its structure, classification, and operating principles. Subsequently, various control strategies of the BBW system were analyzed, and the development trend and research status of the motor brake-control strategy and wheel-cylinder pressure-control strategy in the braking force-distribution strategy were analyzed respectively, and the brake fault-tolerance technology and regenerative-braking technology were also analyzed and summarized. Finally, this paper summarized the various technologies of BBW, taking the electromechanical brake (EMB) in the braking system as an example to discuss the current challenges and the way forward. Full article
Show Figures

Figure 1

23 pages, 9008 KiB  
Article
Autonomous Vehicle with Emergency Braking Algorithm Based on Multi-Sensor Fusion and Super Twisting Speed Controller
by Turki Alsuwian, Rana Basharat Saeed and Arslan Ahmed Amin
Appl. Sci. 2022, 12(17), 8458; https://doi.org/10.3390/app12178458 - 24 Aug 2022
Cited by 31 | Viewed by 14986
Abstract
The automobile revolution and growth in the number of cars produced several issues, and vehicle accidents remain one of the most serious road-related issues. Human mistakes and a failure to brake quickly are the main causes of accidents. There may be serious outcomes [...] Read more.
The automobile revolution and growth in the number of cars produced several issues, and vehicle accidents remain one of the most serious road-related issues. Human mistakes and a failure to brake quickly are the main causes of accidents. There may be serious outcomes to driving when distracted. To address the aforementioned issues, an autonomous emergency braking system (AEBS) was developed. To support such an AEBS, scalable, reliable, secure, fault-tolerant, and interoperable technologies are required. An advanced emergency braking system (EBS) with sensor fusion is proposed in this paper that can autonomously identify a probable forward collision and activate the vehicle braking system to brake the vehicle to avoid or mitigate a collision. Additionally, it provides a non-linear speed controller that facilitates the AEBS to apply the brakes in an emergency. Sensor fusion using lidar, radar, and vision sensors makes the AEBS more efficient and more reliable to detect vehicles or obstacles and decreases the chance of collision to a minimum level. A MATLAB/Simulink environment was used for simulation experiments and the results demonstrated the stable operation of the AEBS to avoid forward collisions in the event of an error in the measurement of any one sensor while any vehicle is detected. The presented work establishes that the EBS sensor fusion unit is a highly reliable solution for detecting the leading vehicle at the proper time and the AEBS controller can apply the brake in the situation of forwarding obstacle detection. Full article
(This article belongs to the Topic Advanced Systems Engineering: Theory and Applications)
Show Figures

Figure 1

17 pages, 25549 KiB  
Review
Review of Brake-by-Wire System and Control Technology
by Dexiang Li, Cao Tan, Wenqing Ge, Jin Cui, Chaofan Gu and Xuwen Chi
Actuators 2022, 11(3), 80; https://doi.org/10.3390/act11030080 - 4 Mar 2022
Cited by 29 | Viewed by 11353
Abstract
In accordance with the developing trend of “safety, comfort and low-carbon” technology, the market for intelligent X-by-wire chassis is huge. A new requirement of the X-by-wire system, including the response, accuracy, energy consumption and fault-tolerance, is put forward. Based on the analysis of [...] Read more.
In accordance with the developing trend of “safety, comfort and low-carbon” technology, the market for intelligent X-by-wire chassis is huge. A new requirement of the X-by-wire system, including the response, accuracy, energy consumption and fault-tolerance, is put forward. Based on the analysis of the structure and design flow of the brake-by-wire (BBW) system, this paper analyzes the research status and development trend of the control methods of braking force, coordination control strategies and fault-tolerant control of the BBW system. The application possibilities of direct-driving technology in the BBW system are analyzed. At present, the key points of research focus on considering the influence of the multi-field coupling effect in the design, observing and compensating various nonlinear factors, and having a higher requirement for fault-tolerant control. Finally, an intelligent direct-driving BBW system is proposed as a research direction, which takes high efficiency and energy saving as a foothold and aims at breakthroughs in dynamic response, control accuracy and fault-tolerant abilities. Full article
(This article belongs to the Special Issue Intelligent Control of Actuator Systems)
Show Figures

Figure 1

13 pages, 8105 KiB  
Article
Mechatronics and Remote Driving Control of the Drive-by-Wire for a Go Kart
by Chien-Hsun Wu, Wei-Chen Lin and Kun-Sheng Wang
Sensors 2020, 20(4), 1216; https://doi.org/10.3390/s20041216 - 23 Feb 2020
Cited by 3 | Viewed by 6389
Abstract
This research mainly aims at the construction of the novel acceleration pedal, the brake pedal and the steering system by mechanical designs and mechatronics technologies, an approach of which is rarely seen in Taiwan. Three highlights can be addressed: 1. The original steering [...] Read more.
This research mainly aims at the construction of the novel acceleration pedal, the brake pedal and the steering system by mechanical designs and mechatronics technologies, an approach of which is rarely seen in Taiwan. Three highlights can be addressed: 1. The original steering parts were removed with the fault tolerance design being implemented so that the basic steering function can still remain in case of the function failure of the control system. 2. A larger steering angle of the front wheels in response to a specific rotated angle of the steering wheel is devised when cornering or parking at low speed in interest of drivability, while a smaller one is designed at high speed in favor of driving stability. 3. The operating patterns of the throttle, brake, and steering wheel can be customized in accordance with various driving environments and drivers’ requirements using the self-developed software. The implementation of a steer-by-wire system in the remote driving control for a go kart is described in this study. The mechatronic system is designed in order to support the conversion from human driving to autonomous driving for the go kart in the future. The go kart, using machine vision, is wirelessly controlled in the WiFi frequency bands. The steer-by-wire system was initially modeled as a standalone system for one wheel and subsequently developed into its complete form, including front wheel steering components, acceleration components, brake components, a microcontroller, drive circuit and digital to analog converter. The control output section delivers the commands to the subsystem controllers, relays and converters. The remote driving control of the go kart is activated when proper commands are sent by the vehicle control unit (VCU). All simulation and experiment results demonstrated that the control strategies of duel motors and the VCU control were successfully optimized. The feasibility study and performance evaluation of Taiwan’s go karts will be conducted as an extension of this study in the near future. Full article
(This article belongs to the Special Issue Selected Papers from IEEE ICKII 2019)
Show Figures

Graphical abstract

7 pages, 958 KiB  
Article
The FlexRay Implementation of By-Wire System for Electric Vehicle
by Der-Cherng Liaw, I-Chang Liu and Kuo-Liang Chang
World Electr. Veh. J. 2012, 5(2), 610-616; https://doi.org/10.3390/wevj5020610 - 29 Jun 2012
Cited by 2 | Viewed by 1213
Abstract
In the recent years, advanced technologies of electronic devices for the communication and computer engineering have been considered to be widely implemented in the vehicle systems. Among those possible applications, the automotive network which is so-called “X-by-Wire” scheme has been developed for steering [...] Read more.
In the recent years, advanced technologies of electronic devices for the communication and computer engineering have been considered to be widely implemented in the vehicle systems. Among those possible applications, the automotive network which is so-called “X-by-Wire” scheme has been developed for steering control and braking control of the vehicles. It is known that the weight reduction of vehicle systems can decrease the power consumption in the design of electric driven vehicle by replacing the mechanical components with electronic devices. Therefore, X-by-wire system combined with fault-tolerant applications will be a trend in the automotive industry. Under the automotive circumstance, the timetrigged protocol improves the network capacity and guarantees the transmission of all safety related message. In order to ensure the safety of electronic devices, an advanced networking protocol FlexRay has been recently proposed to the design of X-by-wire system. In this paper, such an X-by-wire mechanism is developed for electric vehicle. The proposed design covers the development of a hub wheel motor driven electric vehicle and the design of both electronic control braking module and communication network. For facilitating the application usage, a FlexRay communication node is developed by using microprocessor chip Freescale MC9S12XF512. An electric vehicle is also designed by using four hub wheel type AC motors with DC motor driven braking mechanism for system testing and performance evaluation. A timescheduling scheme is proposed and configured for each of nine FlexRay nodes to fulfil the tasks of driveby- wire and brake-by-wire operations. Experimental results demonstrate the success of the proposed design. Full article
Back to TopTop