Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = brackish water reverse osmosis brine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 596
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

24 pages, 12218 KiB  
Article
Application of Membrane Capacitive Deionization as Pretreatment Strategy for Enhancing Salinity Gradient Power Generation
by Seoyeon Lee, Juyoung Lee, Jaehyun Ju, Hyeongrak Cho, Yongjun Choi and Sangho Lee
Membranes 2025, 15(2), 56; https://doi.org/10.3390/membranes15020056 - 8 Feb 2025
Viewed by 1322
Abstract
Salinity gradient power (SGP) technologies, including pressure-retarded osmosis (PRO) and reverse electrodialysis (RED), have the potential to be utilized for the purpose of harvesting energy from the difference in salinity between two water streams. One challenge associated with SGP is a reduction in [...] Read more.
Salinity gradient power (SGP) technologies, including pressure-retarded osmosis (PRO) and reverse electrodialysis (RED), have the potential to be utilized for the purpose of harvesting energy from the difference in salinity between two water streams. One challenge associated with SGP is a reduction in power density due to membrane fouling when impaired water is utilized as a low-salinity water stream. Accordingly, this study sought to explore the feasibility of membrane capacitive deionization (MCDI), a low-energy water treatment technique, as a novel pretreatment method for SGP. Laboratory-scale experiments were conducted to evaluate the impact of MCDI pretreatment on the performance of PRO and RED. The low-salinity water was obtained from a brackish water reverse osmosis (BWRO) plant, while the high-salinity water was a synthetic seawater desalination brine. The removal efficiency of organic and inorganic substances in brackish water reverse osmosis (BWRO) brine by MCDI was estimated, as well as theoretical energy consumption. The results demonstrated that MCDI attained removal efficiencies of up to 88.8% for organic substances and 78.8% for inorganic substances. This resulted in a notable enhancement in the lower density for both PRO and RED. The power density of PRO exhibited a notable enhancement, reaching 3.57 W/m2 in comparison to 1.14 W/m2 recorded for the BWRO brine. Conversely, the power density of RED increased from 1.47 W/m2 to 2.05 W/m2. Given that the energy consumption by MCDI is relatively low, it can be surmised that the MCDI pretreatment enhances the overall efficiency of both PRO and RED. However, to fully capitalize on the benefits of MCDI pretreatment, it is recommended that further process optimization be conducted. Full article
(This article belongs to the Special Issue Electrodialysis and Novel Electro-Membrane Processes)
Show Figures

Figure 1

17 pages, 4160 KiB  
Article
Experimental Investigation on Thermo-Economic Analysis of Direct Contact Membrane Distillation for Sustainable Freshwater Production
by Saleh M. Shalaby, Farid A. Hammad, Hamdy A. Ebeid, Asaad M. Armanuos, Iqbal M. Mujtaba and Tamer A. Gado
Processes 2025, 13(1), 240; https://doi.org/10.3390/pr13010240 - 15 Jan 2025
Cited by 1 | Viewed by 1509
Abstract
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated [...] Read more.
Treatment of extremely saline water such as the brine rejected from reverse osmosis water desalination plants, and produced water from shale oil and non-conventional gas extraction, is considered a global problem. Consequently, in this work, hollow fiber membrane distillation (HFMD) is experimentally evaluated for desalinating extremely saline water of a salinity ranging from 40,000 to 130,000 ppm. For the purpose of comparison, the HFMD is also tested for desalinating brackish (3000–12,000 ppm) and sea (25,000–40,000 ppm) water. Firstly, the HFMD is tested at two values of feed water temperature (65 and 76 °C) and flow rate (600 and 850 L/h). The experimental results showed that the HFMD productivity significantly increases when the temperature of feed water increases. Increasing the feed water flow rate also has a positive effect on the productivity of HFMD. It is also concluded that the productivity of the HFMD is not significantly affected by increasing the salt concentration when brackish and sea water are used. The productivity also slightly decreases with increasing the salt concentration when extremely saline water is used. The decrement in the productivity reaches 27%, when the salt concentration increases from 40,000 to 130,000 ppm. Based on the conducted economic analysis, the HFMD shows a good potential for desalinating extremely saline water especially when the solar collector is used as a heat source. In this case, the cost per liter of freshwater is reduced by 21.7–23.1% when the evacuated tube solar collectors are used compared to the system using electrical heaters. More reduction in the cost per liter of freshwater is expected when a high capacity solar-powered HFMD plant is installed. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Comparison of Pilot-Scale Capacitive Deionization (MCDI) and Low-Pressure Reverse Osmosis (LPRO) for PV-Powered Brackish Water Desalination in Morocco for Irrigation of Argan Trees
by Edgardo E. Cañas Kurz, Ulrich Hellriegel, Abdelkarim Hdoufane, Ibtissame Benaceur, Makram Anane, Fatima Jaiti, Abdelilah El-Abbassi and Jan Hoinkis
Membranes 2023, 13(7), 668; https://doi.org/10.3390/membranes13070668 - 14 Jul 2023
Cited by 8 | Viewed by 2982
Abstract
The use of saline water resources in agriculture is becoming a common practice in semi-arid and arid regions such as the Mediterranean. In the SmaCuMed project, the desalination of brackish groundwater (TDS = 2.8 g/L) for the irrigation of Argan trees in Essaouira, [...] Read more.
The use of saline water resources in agriculture is becoming a common practice in semi-arid and arid regions such as the Mediterranean. In the SmaCuMed project, the desalination of brackish groundwater (TDS = 2.8 g/L) for the irrigation of Argan trees in Essaouira, Morocco, to 2 g/L and 1 g/L (33% and 66% salt removal, respectively) using low-pressure reverse osmosis (LPRO) (p < 6 bar) and membrane capacitive deionization (MCDI) was tested at pilot scale. MCDI showed 40–70% lower specific energy consumption (SEC) and 10–20% higher water recovery; however, the throughput of LPRO (2.9 m3/h) was up to 1.5 times higher than that of MCDI. In addition, both technologies were successfully powered by PV solar energy with total water costs ranging from EUR 0.82 to EUR 1.34 per m3. In addition, the water quality in terms of sodium adsorption ratio was slightly higher with LPRO resulting in higher concentrations of Ca2+ and Mg2+, due to blending with feed water. In order to evaluate both technologies, additional criteria such as investment and specific water costs, operability and brine disposal have to be considered. Full article
(This article belongs to the Special Issue Membranes Desalination of Sea/Brackish Water)
Show Figures

Figure 1

21 pages, 2054 KiB  
Article
Techno-Economic Analysis of Selected PV-BWRO Desalination Plants in the Context of the Water–Energy Nexus for Low–Medium-Income Countries
by Ahmed N. Bdour, Noor Al-Sadeq, Muna Gharaibeh, Angeles Mendoza-Sammet, Maria D. Kennedy and Sergio G. Salinas-Rodriguez
Energies 2022, 15(22), 8657; https://doi.org/10.3390/en15228657 - 18 Nov 2022
Cited by 7 | Viewed by 2920
Abstract
Jordan was late in adopting seawater and brackish water desalination as a source until the late 1990s and early 2000s. However, ongoing studies are still discussing the technical, economic, and socio-political aspects of brackish water reverse osmosis (BWRO) desalination plants. In this study, [...] Read more.
Jordan was late in adopting seawater and brackish water desalination as a source until the late 1990s and early 2000s. However, ongoing studies are still discussing the technical, economic, and socio-political aspects of brackish water reverse osmosis (BWRO) desalination plants. In this study, the water–energy nexus was considered, in order to highlight the main challenges facing BWRO desalination. We discuss the use of photovoltaic (PV) technology, together with BWRO desalination, as an approach to compensate for ecological, financial, and social challenges in Jordan. For this purpose, the performance of nine existing BWRO desalination plants in the agricultural, domestic, and industrial sectors is assessed. The water performance is assessed based on water consumption, safe yield extraction, plant recovery rate (R, %), and compliance to local and international water quality standards; the Specific Energy Consumption (SEC, kWh/m3) is taken as the main evaluation criterion to assess the energy performance of the BWRO desalination plants; and economic performance is assessed based on the overall cost of water produced per cubic meter (USD/m3). The main environmental component is the brine disposal management practice utilized by each plant. Based on this assessment, the main challenges in BWRO desalination are the unsustainable patterns of water production, mismanaged energy performance, low recovery rates, and improper brine disposal. The challenges in domestic and industrial BWRO desalination, which are completely dependent on the electricity grid, are associated with critical energy and costs losses, as reflected by the high SEC values (in the range of 2.7–5.6 kWh/m3) and high water costs per cubic meter (0.60–1.18 USD/m3). As such, the use of PV solar panels is suggested, in order to reduce the electricity consumption of the assessed BWRO plants. The installation of PV panels resulted in significantly reduced energy costs (by 69–74%) and total costs (by 50–54%), compared with energy costs from the electricity grid, over the lifetime of the assessed BWRO desalination plants. Full article
Show Figures

Figure 1

17 pages, 3153 KiB  
Article
Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems
by Jaehyun Ju, Yongjun Choi, Sangho Lee, Chan-gyu Park, Taemun Hwang and Namjo Jung
Membranes 2022, 12(4), 372; https://doi.org/10.3390/membranes12040372 - 29 Mar 2022
Cited by 15 | Viewed by 3581
Abstract
With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes [...] Read more.
With the increasing concern about climate change and the energy crisis, the use of reverse electrodialysis (RED) to utilize salinity gradient power (SGP) has drawn attention as one of the promising renewable energy sources. However, one of the critical issues in RED processes is membrane fouling and channel blockage, which lead to a decrease in the power density. Thus, this study aims to improve our understanding of SGP generation by using RED by investigating the effect of pretreatment on the RED performance. Experiments were conducted by using a laboratory-scale experimental setup for RED. The low-salinity and high-salinity feed solutions were brackish water reverse osmosis (BWRO) brine from a wastewater reclamation plant, and a NaCl solution simulating seawater desalination brine. Several pretreatments were applied to the RED process, such as cartridge filter (CF), microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), activated filter media (AFM), and granular activated carbon (GAC). The results indicate that the open-circuit voltage (OCV) and the power density were similar, except for in the NF pretreatment, which removed the dissolved ions to increase the net SGP. However, the pressure in the RED stack was significantly affected by the pretreatment types. The excitation–emission matrix (EEM) fluorescence spectroscopy and the parallel factor analysis (PARAFAC) quantified the organic compounds that are related to the stack pressure. These results suggest that the removal of both colloidal and organic matters by pretreatments is crucial for improving the RED performance by reducing the pressure that is increased in the RED stack. Full article
(This article belongs to the Special Issue Advances in Electromembrane Processes for Resource Recovery)
Show Figures

Figure 1

23 pages, 15292 KiB  
Review
Current Status and Future Trend of Dominant Commercial Reverse Osmosis Membranes
by Masaru Kurihara
Membranes 2021, 11(11), 906; https://doi.org/10.3390/membranes11110906 - 22 Nov 2021
Cited by 27 | Viewed by 5801
Abstract
Since 2000, seawater reverse osmosis method has been a dominant desalination technology against the distillation method in the global market. The large project called “Mega-SWRO” (half mega-ton per day and larger) plant in the Middle East is quite popular making full use of [...] Read more.
Since 2000, seawater reverse osmosis method has been a dominant desalination technology against the distillation method in the global market. The large project called “Mega-SWRO” (half mega-ton per day and larger) plant in the Middle East is quite popular making full use of the combination with solar energy. Today, the price of desalinated water is affordable at as low as $0.28/m3 to $0.53/m3. Likewise, dominant commercial reverse osmosis membrane is a cross-linked fully aromatic polyamide composite membrane-spiral wound element including FT-30 (DuPont Water Solution) and UTC-80 (Toray Industries., Inc., Otsu, Shiga, Japan). The said membranes are much superior in terms of performance compared to the cellulose triacetate membranes-hollow fiber for variety of applications including seawater desalinations, brackish water desalination, wastewater reuse, ultra-pure production for semiconductor, home-use water purifier, etc. SWCC of Saudi Arabia has announced that it intends to shift from cellulose triacetate hollow fiber to spiral wound RO membranes at all of its plants. Furthermore, the state-sponsored R&D on membrane and membrane process has been put into practice in major countries, including Japan and Korea, which contributed to the progress of membrane science and membrane process, suitable for spiral-wound polyamide membranes. SWCC has announced their plans for SWRO, mainly focusing on brine mining to obtain precious materials from the brine of SWRO. New and innovative brine-mining technology has been introduced for green desalination. Full article
Show Figures

Figure 1

40 pages, 5304 KiB  
Review
Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review
by Jhon Jairo Feria-Díaz, Felipe Correa-Mahecha, María Cristina López-Méndez, Juan Pablo Rodríguez-Miranda and Jesús Barrera-Rojas
Water 2021, 13(10), 1369; https://doi.org/10.3390/w13101369 - 14 May 2021
Cited by 113 | Viewed by 21349 | Correction
Abstract
Reverse osmosis is the leading technology for desalination of brackish water and seawater, important for solving the growing problems of fresh water supply. Thermal technologies such as multi-effect distillation and multi-stage flash distillation still comprise an important portion of the world’s desalination capacity. [...] Read more.
Reverse osmosis is the leading technology for desalination of brackish water and seawater, important for solving the growing problems of fresh water supply. Thermal technologies such as multi-effect distillation and multi-stage flash distillation still comprise an important portion of the world’s desalination capacity. They consume substantial amounts of energy, generally obtained from fossil fuels, due to their low efficiency. Hybridization is a strategy that seeks to reduce the weaknesses and enhance the advantages of each element that makes it up. This paper introduces a review of the most recent publications on hybridizations between reverse osmosis and thermal desalination technologies, as well as their integration with renewable energies as a requirement to decarbonize desalination processes. Different configurations provide improvements in key elements of the system to reduce energy consumption, brine production, and contamination, while improving product quality and production rate. A combination of renewable sources and use of energy and water storage systems allow for improving the reliability of hybrid systems. Full article
Show Figures

Figure 1

16 pages, 1671 KiB  
Article
Nanofiltration Process for Enhanced Treatment of RO Brine Discharge
by Mohamed E.A. Ali
Membranes 2021, 11(3), 212; https://doi.org/10.3390/membranes11030212 - 18 Mar 2021
Cited by 42 | Viewed by 5431
Abstract
Brine discharge of reverse osmosis (RO) desalination plants represents a challenge for both inland and coastal desalination plants. Zero-liquid discharge (ZLD) can be accomplished by using additional stages of RO, which can recycle that brine water, but the key challenge is the high [...] Read more.
Brine discharge of reverse osmosis (RO) desalination plants represents a challenge for both inland and coastal desalination plants. Zero-liquid discharge (ZLD) can be accomplished by using additional stages of RO, which can recycle that brine water, but the key challenge is the high concentration of divalent salts. These divalent salts (especially calcium and magnesium salts) forms a scaling layer on the RO membrane surfaces and hence shorten the life-time of the membranes. In this study, the nanofiltration (NF) procedure was used to remove divalent ions from the brine discharge to minimize the load on additional stages of RO membranes. One of the most critical considerations influencing the selection of an effective NF is the water type, which is expected here by calculation of some hydrochemical parameters (major ions, hypothetical soluble salts (electrolyte), and saturation indices). NF experiments were undertaken on a lab-scale using a low-pressure hand-made system of 4–7 bar. Synthetic single salts solutions and two real brine water discharge (brackish (BWRO) and seawater (SWRO) desalination plants) were used as a feed solution for NF system. The chemical characteristics of the RO-feed, RO-brine, NF-permeate, and NF-reject in were investigated. Electrolyte concentrations and saturation indices were determined based on the concentration of the major ions and the NETPATH software package, respectively. Calculations reveal that the brine concentrate samples contained mostly MgSO4 and MgCl2 soluble salts. The results show that 79–89% of the total dissolved salts (TDS) and 96–98% of the total hardness (TH) were retained using the NF process. The salt rejection of the NF membrane follows the order of CaSO4, Na2SO4, MgSO4, MgCl2, and NaCl with a percent of 97.4, 97.3, 95.2, 93.4, and 79%, respectively. Full article
Show Figures

Figure 1

21 pages, 2937 KiB  
Article
Implementation of Brackish Groundwater Desalination Using Wind-Generated Electricity: A Case Study of the Energy-Water Nexus in Texas
by Mary E. Clayton, Ashlynn S. Stillwell and Michael E. Webber
Sustainability 2014, 6(2), 758-778; https://doi.org/10.3390/su6020758 - 10 Feb 2014
Cited by 37 | Viewed by 12218
Abstract
Growing populations and periodic drought conditions have exacerbated water stress in many areas worldwide. In response, some municipalities have considered desalination of saline water as a freshwater supply. Unfortunately, desalination requires a sizeable energy investment. However, renewable energy technologies can be paired with [...] Read more.
Growing populations and periodic drought conditions have exacerbated water stress in many areas worldwide. In response, some municipalities have considered desalination of saline water as a freshwater supply. Unfortunately, desalination requires a sizeable energy investment. However, renewable energy technologies can be paired with desalination to mitigate concern over the environmental impacts of increased energy use. At the same time, desalination can be operated in an intermittent way to match the variable availability of renewable resources. Integrating wind power and brackish groundwater desalination generates a high-value product (drinking water) from low-value resources (saline water and wind power without storage). This paper presents a geographically-resolved performance and economic method that estimates the energy requirements and profitability of an integrated wind-powered reverse osmosis facility treating brackish groundwater. It is based on a model that incorporates prevailing natural and market conditions such as average wind speeds, total dissolved solids content, brackish well depth, desalination treatment capacity, capital and operation costs of wind and desalination facilities, brine disposal costs, and electricity and water prices into its calculation. The model is illustrated using conditions in Texas (where there are counties with significant co-location of wind and brackish water resources). Results from this case study indicate that integrating wind turbines and brackish water reverse osmosis (BWRO) systems is economically favorable in a few municipal locations in West Texas. Full article
(This article belongs to the Special Issue The Energy-Sustainability Nexus)
Show Figures

Figure 1

Back to TopTop