Nanofiltration Process for Enhanced Treatment of RO Brine Discharge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Characterization of RO Feeds and Brines
Parameter | Brackish Water (Groundwater Well) | Seawater (Mediterranean Sea) | ||
---|---|---|---|---|
Feed | Brine | Feed | Brine | |
pH | 8.2 | 8 | 8 | 8.1 |
TDS (mg/L) | 5881.4 | 15,115.9 | 39,831.1 | 57,097.2 |
Ca2+ (mg/L) | 184 | 320 | 450 | 560 |
Mg2+ (mg/L) | 194.4 | 583.2 | 860 | 1919.7 |
Na+ (mg/L) | 1700 | 4600 | 13,000 | 18,400 |
K+ (mg/L) | 37 | 110 | 430 | 560 |
CO32− (mg/L) | 12 | 18 | 24 | 30 |
HCO3− (mg/L) | 183 | 311.1 | 134.2 | 176.9 |
SO42− (mg/L) | 360 | 1837 | 2200 | 3500 |
Cl− (mg/L) | 3302.5 | 7492.2 | 22,800 | 32039 |
Ca2+ hardness (mg/L) | 460 | 800 | 1125 | 1400 |
Mg2+ hardness (mg/L) | 800 | 2400 | 3539.1 | 7900 |
TH (mg/L) | 1257.04 | 3191.12 | 4651 | 9270.77 |
NaCl (mg/L) | 4423.4 | 11,493.11 | 39,856.21 | 46,488.75 |
MgCl2 (mg/L) | 837.81 | 1021.97 | 475.75 | 6140.6 |
MgSO4 (mg/L) | 106.87 | 1695.98 | 2523.51 | 2872.41 |
CaSO4 (mg/L) | 350.516 | 567.34 | 671.41 | 1368.22 |
Ca(HCO3)2 (mg/L) | 192.01 | 337.53 | 174.02 | 227.08 |
SO42−/HCO3− | 1.25 | 3.75 | 10.41 | 12.57 |
Calcite | 0.851 | 0.925 | 0.602 | 0.837 |
Aragonite | 0.707 | 0.781 | 0.458 | 0.693 |
Dolomite | 2.087 | 2.479 | 1.886 | 2.627 |
Gypsum | −1.263 | −0.66 | −0.679 | −0.517 |
anhydrite | −1.48 | −0.873 | −0.879 | −0.708 |
LSI | 0.46 | 0.75 | 0.036 | 0.48 |
2.3. Experimental Set-Up and Membrane Performance Evaluation
3. Results
3.1. Chemical Analysis of the Water Samples
3.2. Evaluating the Performance of the NF Process
Ion | Diffusivity (10−9 m2·s−1) | Ionic Radius (nm) | Hydrated Ionic Radius (nm) | Hydration Energy (kJ·mol−1) | Rejection BW-Brine (%) | Rejection SW-Brine (%) |
---|---|---|---|---|---|---|
Mg2+ | 0.706 | 0.074 | 0.429 | 1921 | 93.3 | 98.35 |
Ca2+ | 0.92 | 0.099 | 0.349 | 1584 | 81.8 | 90.71 |
Na+ | 1.333 | 0.095 | 0.365 | 407 | 77.39 | 45.65 |
SO42− | 1.065 | 0.230 | 0.380 | 1138 | 97.82 | 51.42 |
HCO3− | 1.85 | -- | -- | -- | 89.21 | 45.16 |
Cl− | 2.032 | 0.181 | 0.347 | 376 | 75.97 | 54.11 |
Hypothetical Electrolytes | BW | SW | ||||
---|---|---|---|---|---|---|
BWRO Brine | NF Permeate * | NF Brine | SWRO Brine | NF Permeate * | NF Brine | |
TDS | 15,115.9 | 3009.775 | 11,652.7 | 58,547.55 | 26,611.74 | 36,934 |
NaCl (mg/L) | 11,493.11 | 2326.6 | 7863.65 | 46,488.7 | 21,522.43 | 29,528.8 |
Na2SO4 (mg/L) | 0 | 6.20 | 53.92 | 0 | 4875.07 | 4286.99 |
MgCl2 (mg/L) | 1021.97 | 227.90 | 0 | 6140.67 | 0 | 0 |
MgSO4 (mg/L) | 1695.98 | 0 | 1879.16 | 2872.41 | 74.69 | 1514.72 |
CaCl2 (mg/L) | 0 | 88.62 | 0 | 0 | 0 | 0 |
CaSO4 (mg/L) | 567.344 | 48.02 | 1480.73 | 1368.22 | 0 | 1316.75 |
Ca(HCO3)2 (mg/L) | 337.53 | 31.74 | 375.22 | 227.08 | 133.26 | 286.68 |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, J.R.; Zhang, X.; Feng, X.; Wu, Y.; Cheng, F.; Ali, M.E. Desalination of high salinity brackish water by an NF-RO hybrid system. Desalination 2020, 491. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef] [PubMed]
- Pangarkar, B.L.; Sane, M.G.; Guddad, M. Reverse Osmosis and Membrane Distillation for Desalination of Groundwater: A Review. ISRN Mater. Sci. 2011, 2011, 523124. [Google Scholar] [CrossRef]
- Mohamed, A.; Maraqa, M.; Al Handhaly, J. Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination 2005, 182, 411–433. [Google Scholar] [CrossRef]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Ahmed, M.; Shayya, W.H.; Hoey, D.; Al-Handaly, J. Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates. Desalination 2001, 133, 135–147. [Google Scholar] [CrossRef]
- Younos, T. Environmental Issues of Desalination. J. Contemp. Water Res. Educ. 2009, 132, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Davies, P.A. Comparison of Configurations for High-Recovery Inland Desalination Systems. Water 2012, 4, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Istirokhatun, T.; Dewi, M.; Ilma, H.; Susanto, H. Separation of antiscalants from reverse osmosis concentrates using nanofiltration. Desalination 2018, 429, 105–110. [Google Scholar] [CrossRef]
- Arnal, J.; Sancho, M.; Iborra, I.; Gozálvez, J.; Santafé, A.; Lora, J. Concentration of brines from RO desalination plants by natural evaporation. Desalination 2005, 182, 435–439. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Shu, L.; Jegatheesan, V. A review of the management and treatment of brine solutions. Environ. Sci. Water Res. Technol. 2017, 3, 625–658. [Google Scholar] [CrossRef]
- Tao, G.; Viswanath, B.; Kekre, K.; Lee, L.Y.; Ng, H.Y.; Ong, S.L.; Seah, H. RO brine treatment and recovery by biological activated carbon and capacitive deionization process. Water Sci. Technol. 2011, 64, 77–82. [Google Scholar] [CrossRef]
- Ji, X.; Curcio, E.; Al Obaidani, S.; Di Profio, G.; Fontananova, E.; Drioli, E. Membrane distillation-crystallization of seawater reverse osmosis brines. Sep. Purif. Technol. 2010, 71, 76–82. [Google Scholar] [CrossRef]
- McGinnis, R.L.; Hancock, N.T.; Nowosielski-Slepowron, M.S.; McGurgan, G.D. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination 2013, 312, 67–74. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, J.; Ji, Z.; Wang, B.; Hao, Y.; Guo, X. Concentrating brine from seawater desalination process by nanofiltration–electrodialysis integrated membrane technology. Desalination 2016, 390, 53–61. [Google Scholar] [CrossRef]
- Morillo, J.; Usero, J.; Rosado, D.; El Bakouri, H.; Riaza, A.; Bernaola, F.-J. Comparative study of brine management technologies for desalination plants. Desalination 2014, 336, 32–49. [Google Scholar] [CrossRef]
- Afrasiabi, N.; Shahbazali, E. RO brine treatment and disposal methods. Desalin. Water Treat. 2011, 35, 39–53. [Google Scholar] [CrossRef]
- Semblante, G.U.; Lee, J.Z.; Lee, L.Y.; Ong, S.L.; Ng, H.Y. Brine pre-treatment technologies for zero liquid discharge systems. Desalination 2018, 441, 96–111. [Google Scholar] [CrossRef]
- Ahmed, M.; Shayya, W.H.; Hoey, D.; Mahendran, A.; Morris, R.; Al-Handaly, J. Use of evaporation ponds for brine disposal in desalination plants. Desalination 2000, 130, 155–168. [Google Scholar] [CrossRef]
- Ünlü, K.; Kemblowski, M.; Parker, J.; Stevens, D.; Chong, P.; Kamil, I. A screening model for effects of land-disposed wastes on groundwater quality. J. Contam. Hydrol. 1992, 11, 27–49. [Google Scholar] [CrossRef]
- Arafat, H. Desalination Sustainability: A Technical, Socioeconomic and Environmental Approach; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Al-Ghamdi, A.A. Recycling of Reverse Osmosis (RO) Reject Streams in Brackish Water Desalination Plants using Fixed Bed Column Softener. Energy Proced. 2017, 107, 205–211. [Google Scholar] [CrossRef]
- Shalaby, M.; Abdalla, H.S.; Shaban, A.; Mohamed, H.A.; Mohamed, W.A. Brine Treatment by Solar Energy: Case Study in Tor-Sinai—Egypt. Egypt. J. Chem. 2020, 63, 2–5. [Google Scholar] [CrossRef]
- Dama-Fakir, P.; Toerien, A. Evaporation rates on brine produced during membrane treatment of mine water. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009. [Google Scholar]
- Chang, J.-S. Understanding the role of ecological indicator use in assessing the effects of desalination plants. Desalination 2015, 365, 416–433. [Google Scholar] [CrossRef]
- Schantz, A.B.; Xiong, B.; Dees, E.; Moore, D.R.; Yang, X.; Kumar, M. Emerging investigators series: Prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams. Environ. Sci. Water Res. Technol. 2018, 4, 894–908. [Google Scholar] [CrossRef]
- Linares, R.V.; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, N.; Amy, G.; Leiknes, T.; Vrouwenvelder, J. Life cycle cost of a hybrid forward osmosis-low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Res. 2016, 88, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Bowen, W.; Mukhtar, H. Characterisation and prediction of separation performance of nanofiltration membranes. J. Membr. Sci. 1996, 112, 263–274. [Google Scholar] [CrossRef]
- Hafiane, A.; Lemordant, D.; Dhahbi, M. Removal of hexavalent chromium by nanofiltration. Desalination 2000, 130, 305–312. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Koninckx, A.; Vandecasteele, C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res. 2004, 38, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Meihong, L.; Sanchuan, Y.; Yong, Z.; Congjie, G. Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: Preparation and performance. J. Membr. Sci. 2008, 310, 289–295. [Google Scholar] [CrossRef]
- Krieg, H.; Modise, S.; Keizer, K.; Neomagus, H. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination 2005, 171, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Chidambaram, T.; Oren, Y.; Noel, M. Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater. Chem. Eng. J. 2015, 262, 156–168. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Cai, L.-J.; Nie, X.-Y.; Song, X.; Yu, J.-G. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. J. Water Process. Eng. 2015, 7, 210–217. [Google Scholar] [CrossRef]
- González, A.P.; Ibáñez, R.; Gómez, P.; Urtiaga, A.; Ortiz, I.; Irabien, J. Nanofiltration separation of polyvalent and monovalent anions in desalination brines. J. Membr. Sci. 2015, 473, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohammad, A.W. Performance of Nanofiltration Membranes in the Treatment of Synthetic and Real Seawater. Sep. Sci. Technol. 2007, 42, 493–515. [Google Scholar] [CrossRef]
- Rainwater, F.H.; Thatcher, L.L. Methods for Collection and Analysis of Water Samples; U.S. Government Publishing Office: Washington, DC, USA, 1960. [CrossRef]
- Fishman, M.J.; Friedman, L.C. Methods for Determination of Inorganic Substances in Water and Fluvial Sediments; U.S. Department of the Interior: Washington, DC, USA, 1989.
- American Society for Testing and Materials. ASTM C469/Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ASTM International. Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Freeze, R.; Cherry, J. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Mohallel, S. Hydrochemistry and Treatment of Groundwater in the Area between Mersa Matruh and El Salloum, Egypt. Master’s Thesis, Faculty of Science, Al-Azhar University, Cairo, Egypt, 2009. [Google Scholar]
- Langelier, W.F. The Analytical Control of Anti-Corrosion Water Treatment. J. Am. Water Works Assoc. 1936, 28, 1500–1521. [Google Scholar] [CrossRef]
- Langelier, W.F. Chemical Equilibria in Water Treatment. J. Am. Water Works Assoc. 1946, 38, 169–178. [Google Scholar] [CrossRef]
- Collins, A. Geochemistry of Oilfield Waters; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Mix, A.E. Report on Waters, Brine and Salt. J. Assoc. Anal. Chem. 1944, 27, 481–483. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Schaep, J.; Vandecasteele, C.; Mohammad, A.W.; Bowen, W.R. Modelling the retention of ionic components for different nanofiltration membranes. Sep. Purif. Technol. 2001, 22, 169–179. [Google Scholar] [CrossRef]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Eriksson, P.; Kyburz, M.; Pergande, W. NF membrane characteristics and evaluation for sea water processing applications. Desalination 2005, 184, 281–294. [Google Scholar] [CrossRef]
- Park, M.; Park, J.; Lee, E.; Khim, J.; Cho, J. Application of nanofiltration pretreatment to remove divalent ions for economical seawater reverse osmosis desalination. Desalin. Water Treat. 2015, 57, 1–10. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Mohammad, A.; Darwish, N. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 2005, 184, 315–326. [Google Scholar] [CrossRef]
- Mänttäri, M.; Pekuri, T.; Nyström, M. NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effluents from the paper industry. J. Membr. Sci. 2004, 242, 107–116. [Google Scholar] [CrossRef]
- Bowen, W.; Welfoot, J.S. Modelling the performance of membrane nanofiltration-critical assessment and model development. Chem. Eng. Sci. 2002, 57, 1121–1137. [Google Scholar] [CrossRef]
- El-Manharawy, S.; Hafez, A. A new chemical classification system of natural waters for desalination and other industrial uses. Desalination 2003, 156, 163–180. [Google Scholar] [CrossRef]
- Schaep, J.; Vandecasteele, C. Evaluating the charge of nanofiltration membranes. J. Membr. Sci. 2001, 188, 129–136. [Google Scholar] [CrossRef]
- Schaep, J. Nanofiltration for the Removal of Ionic Components from Water. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2001. [Google Scholar]
- Ahmad, A.; Ooi, B.; Choudhury, J. Preparation and characterization of co-polyamide thin film composite membrane from piperazine and 3,5-diaminobenzoic acid. Desalination 2003, 158, 101–108. [Google Scholar] [CrossRef]
- Stiff, H.A., Jr.; Davis, L.E. A method for predicting the tendency of oil field waters to deposit calcium carbonate. J. Pet. Technol. 1952, 4, 213–216. [Google Scholar] [CrossRef]
- Telzhensky, M.; Birnhack, L.; Lehmann, O.; Windler, E.; Lahav, O. Selective separation of seawater Mg2+ ions for use in downstream water treatment processes. Chem. Eng. J. 2011, 175, 136–143. [Google Scholar] [CrossRef]
- Hussain, A.; Abashar, M.; Al-Mutaz, I. Influence of ion size on the prediction of nanofiltration membrane systems. Desalination 2007, 214, 150–166. [Google Scholar] [CrossRef]
- Antropov, L.I.; Anissimov, A. Electrochimie Théorique; Mir: Moscow, Russia, 1979. [Google Scholar]
Brine Treatment Technique | Cost (US$/m3) | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Surface Water Discharge | 0.05–0.3 | Available and cost-effective for all desalination plants | Damage of ecosystem, discharge of chemicals of membranes cleaning | [21] |
Fixed bed column softener | -- | highly efficient with relatively low cost and energy requirements | Degradation and oxidation in some cases, discharge of excess NaCl to the aquatic environment | [22] |
Solar concentrators (solar ponds) | -- | Low cost, a valuable by-product | Requires a lot of maintenance, requires large land areas, needs adequate sunlight | [23] |
Evaporation Ponds | 3–10 | Salt production, low maintenance and little operator attention | High footprint and costs, | [24] |
Land Applications | 0.74–1.95 | Easy operation and implementation | limited to small plants | [2] |
Deep Well Injection | 0.54–2.65 | Low energy consumption, moderate cost | Groundwater contamination | [2] |
Sewer Discharge | 0.32–0.66 | Low cost and energy consumption, easy implementation | Limited to small size flows | [25] |
Membrane-based technology (HP-RO) | 0.75–0.79 | High production of desalted water | High cost because of frequently membranes replacement | [26] |
Forward osmosis | 0.63 | Efficient with high salt content | Low production of water | [27] |
Thermal-based technology | 0.09–1.2 | Efficient with high salt content | High energy consumption | [2] |
This work (NF-based hypothetical electrolytes prediction) | -- | Ease of operation, durability, low energy consumption, and highly efficient elimination of contaminants | Membranes scaling | -- |
Salt | MgSO4 | Na2SO4 | CaSO4 | MgCl2 | NaCl | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pressure (bar) | Jw | Rs | Jw | Rs | Jw | Rs | Jw | Rs | Jw | Rs |
4 | 46 | 92 | 72 | 96.2 | 246.8 | 96 | 216 | 90.5 | 320 | 68 |
5 | 100.8 | 93.7 | 370.2 | 97.4 | 481.3 | 97 | 376.4 | 92.5 | 530 | 73 |
7 | 308.4 | 95.2 | 709.7 | 97.3 | 752.91 | 97.4 | 709.7 | 93.4 | 790 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.E.A. Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes 2021, 11, 212. https://doi.org/10.3390/membranes11030212
Ali MEA. Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes. 2021; 11(3):212. https://doi.org/10.3390/membranes11030212
Chicago/Turabian StyleAli, Mohamed E.A. 2021. "Nanofiltration Process for Enhanced Treatment of RO Brine Discharge" Membranes 11, no. 3: 212. https://doi.org/10.3390/membranes11030212
APA StyleAli, M. E. A. (2021). Nanofiltration Process for Enhanced Treatment of RO Brine Discharge. Membranes, 11(3), 212. https://doi.org/10.3390/membranes11030212