Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (173)

Search Parameters:
Keywords = boron removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 208
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

23 pages, 4900 KiB  
Article
Degradation of Glyphosate in Water by Electro-Oxidation on Magneli Phase: Application to a Nanofiltration Concentrate
by Wiyao Maturin Awesso, Ibrahim Tchakala, Sophie Tingry, Geoffroy Lesage, Julie Mendret, Akpénè Amenuvevega Dougna, Eddy Petit, Valérie Bonniol, Mande Seyf-Laye Alfa-Sika and Marc Cretin
Molecules 2025, 30(15), 3153; https://doi.org/10.3390/molecules30153153 - 28 Jul 2025
Viewed by 295
Abstract
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), [...] Read more.
This study evaluates the efficiency of sub-stoichiometric Ti4O7 titanium oxide anodes for the electrochemical degradation of glyphosate, a persistent herbicide classified as a probable carcinogen by the World Health Organization. After optimizing the process operating parameters (pH and current density), the mineralization efficiency and fate of degradation by-products of the treated solution were determined using a total organic carbon (TOC) analyzer and HPLC/MS, respectively. The results showed that at pH = 3, glyphosate degradation and mineralization are enhanced by the increased generation of hydroxyl radicals (OH) at the anode surface. A current density of 14 mA cm2 enables complete glyphosate removal with 77.8% mineralization. Compared with boron-doped diamond (BDD), Ti4O7 shows close performance for treatment of a concentrated glyphosate solution (0.41 mM), obtained after nanofiltration of a synthetic ionic solution (0.1 mM glyphosate), carried out using an NF-270 membrane at a conversion rate (Y) of 80%. At 10 mA cm2 for 8 h, Ti4O7 achieved 81.3% mineralization with an energy consumption of 6.09 kWh g1 TOC, compared with 90.5% for BDD at 5.48 kWh g1 TOC. Despite a slight yield gap, Ti4O7 demonstrates notable efficiency under demanding conditions, suggesting its potential as a cost-effective alternative to BDD for glyphosate electro-oxidation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Figure 1

20 pages, 3913 KiB  
Article
Thermal Management Design for the Be Target of an Accelerator-Based Boron Neutron Capture Therapy System Using Numerical Simulations with Boiling Heat Transfer Models
by Bo-Jun Lu, Yuh-Ming Ferng, Tzung-Yi Lin, Cheng-Ji Lu and Wei-Lin Chen
Processes 2025, 13(6), 1929; https://doi.org/10.3390/pr13061929 - 18 Jun 2025
Viewed by 1285
Abstract
Recently, studies on accelerator-based boron neutron capture therapy (AB-BNCT) systems for cancer treatment have attracted the attention of researchers around the world. A neutron source can be obtained through the impingement of high-intensity proton beams emitted from the accelerator onto the target. This [...] Read more.
Recently, studies on accelerator-based boron neutron capture therapy (AB-BNCT) systems for cancer treatment have attracted the attention of researchers around the world. A neutron source can be obtained through the impingement of high-intensity proton beams emitted from the accelerator onto the target. This process would deposit a large amount of heat within this target. A thermal management system design is needed for AB-BNCT systems to prevent the degradation of the target due to thermal/mechanical loading. However, there are few studies that investigate this topic. In this paper, a cooling channel with a boiling heat transfer mechanism is numerically designed for thermal management in order to remove heat deposited in the Be target of the AB-BNCT system of Heron Neutron Medical Corp. A three-dimensional (3D) CFD methodology with a two-fluid model and an RPI wall boiling model is developed to investigate its availability. Two subcooled boiling experiments from previous works are adopted to validate the present CFD boiling model. This validated model can be confidently applied to assist in thermal management design for the AB-BNCT system. Based on the simulation results under the typical operating conditions of the AB-BNCT system set by Heron Neutron Medical Corp., the present coolant channel employing the boiling heat transfer mechanism can efficiently remove the heat deposited in the Be target, as well as maintain its integrity during long-term operation. In addition, compared with the channel with the single-phase convection traditionally designed for an AB-BNCT system, the boiling heat transfer mechanism can result in a lower peak temperature in the Be target and its corresponding deformation. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

19 pages, 5722 KiB  
Article
Comparing Operational Approaches (Spectrophotometric, Electroanalytic and Chromatographic) to Quantify the Concentration of Emerging Contaminants: The Limit of Detection, the Uncertainty of Measurement, Applicability and Open Problems
by Marconi Sandro Franco de Oliveira, Jorge Leandro Aquino de Queiroz, Danyelle Medeiros de Araújo, Mayra Kerolly Sales Monteiro, Karen Giovanna Duarte Magalhaes, Carlos Alberto Martínez-Huitle and Elisama Vieira dos Santos
Coatings 2025, 15(6), 719; https://doi.org/10.3390/coatings15060719 - 14 Jun 2025
Viewed by 475
Abstract
In this study, a boron-doped diamond (BDD) sensor was used to study the electroanalytical behavior of emerging contaminants (ECs), such as caffeine, paracetamol and methyl orange. BDD shows strong resolving power for the superimposed voltammetric response of ECs in well-resolved peaks with increased [...] Read more.
In this study, a boron-doped diamond (BDD) sensor was used to study the electroanalytical behavior of emerging contaminants (ECs), such as caffeine, paracetamol and methyl orange. BDD shows strong resolving power for the superimposed voltammetric response of ECs in well-resolved peaks with increased peak current. Differential pulse voltammetry, which is an electroanalytical technique, was compared with two reference techniques including absorption spectrophotometry in the UV-vis region and high-performance liquid chromatography (HPLC) in the detection and quantification of ECs. The results obtained were satisfactory, as the complete removal of ECs was achieved in all applied processes. The detection limits were 0.69 mg L−1, 0.84 mg L−1 and 0.46 mg L−1 for CAF, PAR and MO, respectively. The comparison of electroanalysis results with those obtained by UV-vis and HPLC established and confirmed the potential applicability of the technique for determining CAF, PAR and MO analytes in synthetic effluents and environmental water samples (tap water, groundwater and lagoon water). The electrochemical approach can therefore be highlighted for its low consumption of reagents, ease of operation, time of analysis and excellent precision and accuracy, because these are characteristics that enable the use of this technique as another means of determining analytes in effluents. Full article
(This article belongs to the Special Issue Functional Coatings in Electrochemistry and Electrocatalysis)
Show Figures

Graphical abstract

23 pages, 2883 KiB  
Article
Effectiveness of Rain Gardens for Managing Non-Point Source Pollution from Urban Surface Storm Water Runoff in Eastern Texas, USA
by Shradhda Suman Jnawali, Matthew McBroom, Yanli Zhang, Kevin Stafford, Zhengyi Wang, David Creech and Zhongqian Cheng
Sustainability 2025, 17(10), 4631; https://doi.org/10.3390/su17104631 - 18 May 2025
Viewed by 1438
Abstract
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by [...] Read more.
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by increasing impervious surfaces that prevent natural infiltration. This study evaluated the efficacy of rain gardens, a nature-based best management practice (BMP), in mitigating NPS pollution from urban stormwater runoff. Stormwater samples were collected at inflow and outflow points of three rain gardens and analyzed for various water quality parameters, including pH, electrical conductivity, fluoride, chloride, nitrate, nitrite, phosphate, sulfate, salts, carbonates, bicarbonates, sodium, potassium, aluminum, boron, calcium, mercury, arsenic, copper iron lead magnesium, manganese and zinc. Removal efficiencies for nitrate, phosphate, and zinc exceeded 70%, while heavy metals such as lead achieved reductions up to 80%. However, certain parameters, such as calcium, magnesium and conductivity, showed increased outflow concentrations, attributed to substrate leaching. These increases resulted in a higher outflow pH. Overall, the pollutants were removed with an efficiency exceeding 50%. These findings demonstrate that rain gardens are an effective and sustainable solution for managing urban stormwater runoff and mitigating NPS pollution in eastern Texas, particularly in regions vulnerable to extreme precipitation events. Full article
Show Figures

Figure 1

16 pages, 12762 KiB  
Article
Impact of Melt Refining on Secondary Al-Si Alloys’ Microstructure and Tensile Mechanical Performance
by Wei Gu, Huixin Jin, Xue Wang and Jiajun Jiang
Metals 2025, 15(5), 556; https://doi.org/10.3390/met15050556 - 18 May 2025
Viewed by 426
Abstract
Secondary Al-Si alloys typically encompass several impurities that substantially influence the materials’ microstructure and mechanical performance. This study employed a composite addition of chlorinated salt fluxing and an aluminum–boron master alloy to reduce the levels of the impurity elements magnesium (Mg), titanium (Ti), [...] Read more.
Secondary Al-Si alloys typically encompass several impurities that substantially influence the materials’ microstructure and mechanical performance. This study employed a composite addition of chlorinated salt fluxing and an aluminum–boron master alloy to reduce the levels of the impurity elements magnesium (Mg), titanium (Ti), and vanadium (V) in secondary Al-Si alloys. The investigation of the performance mechanism revealed that the distribution of alloys’ grain orientation and the ratio of small-angle grain boundaries were modified via synergistic purification, leading to the refined microstructure and mechanical performance of secondary Al-Si alloys. The removal rates of impurity elements under these optimal refining conditions were 89.9% for Mg, 68.9% for Ti, and 61.5% for V. The refined alloy exhibited a 45.5% decrease in grain size and a 28.7% improvement in tensile strength compared to the raw material. These findings demonstrate that fluxing can improve the extraction of Ti and V from secondary Al-Si alloy melts of aluminum–boron master alloys, providing a new cost-effective strategy for the removal of impurities and the optimization of the properties of secondary Al-Si alloys. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

15 pages, 2826 KiB  
Article
Electrochemical Looping Green Hydrogen Production by Using Water Electrochemically Treated as a Raw Material for the Electrolyzer
by Mayra K. Sales Monteiro, Jussara C. Cardozo, Aruzza M. de Morais Araújo, Amanda D. Gondim, Tabata N. Feijoó, Luis D. Loor-Urgilés, Carlos A. Martínez-Huitle, Marco A. Quiroz and Elisama V. dos Santos
Catalysts 2025, 15(5), 447; https://doi.org/10.3390/catal15050447 - 2 May 2025
Cited by 1 | Viewed by 814
Abstract
In this study, the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that, the depolluted water was reused, for the first time, [...] Read more.
In this study, the applicability of an integrated-hybrid process was performed in a divided electrochemical cell for removing organic matter from a polluted effluent with simultaneous production of green H2. After that, the depolluted water was reused, for the first time, in the cathodic compartment once again, in the same cell to be a viable environmental alternative for converting water into energy (green H2) with higher efficiency and reasonable cost requirements. The production of green H2 in the cathodic compartment (Ni-Fe-based steel stainless (SS) mesh as cathode), in concomitance with the electrochemical oxidation (EO) of wastewater in the anodic compartment (boron-doped diamond (BDD) supported in Nb as anode), was studied (by applying different current densities (j = 30, 60 and 90 mA cm−2) at 25 °C) in a divided-membrane type electrochemical cell driven by a photovoltaic (PV) energy source. The results clearly showed that, in the first step, the water anodically treated by applying 90 mA cm−2 for 180 min reached high-quality water parameters. Meanwhile, green H2 production was greater than 1.3 L, with a Faradaic efficiency of 100%. Then, in a second step, the water anodically treated was reused in the cathodic compartment again for a new integrated-hybrid process with the same electrodes under the same experimental conditions. The results showed that the reuse of water in the cathodic compartment is a sustainable strategy to produce green H2 when compared to the electrolysis using clean water. Finally, two implied benefits of the proposed process are the production of green H2 and wastewater cleanup, both of which are equally significant and sustainable. The possible use of H2 as an energetic carrier in developing nations is a final point about sustainability improvements. This is a win-win solution. Full article
Show Figures

Graphical abstract

21 pages, 12068 KiB  
Article
Interaction of Machining Parameters on MRR of Sintered NdFeB Processed by EDM-Milling
by Xinyu Zhang, Xue Bai, Tingyi Yang and Li Li
Appl. Sci. 2025, 15(9), 4897; https://doi.org/10.3390/app15094897 - 28 Apr 2025
Viewed by 308
Abstract
Sintered Neodymium–iron–boron (NdFeB) exhibits high hardness and brittleness, resulting in low electrical discharge machining (EDM) efficiency. The study on the interaction effect of parameters on the material removal rate (MRR) of sintered NdFeB processed by EDM-milling is carried out to improve machining efficiency. [...] Read more.
Sintered Neodymium–iron–boron (NdFeB) exhibits high hardness and brittleness, resulting in low electrical discharge machining (EDM) efficiency. The study on the interaction effect of parameters on the material removal rate (MRR) of sintered NdFeB processed by EDM-milling is carried out to improve machining efficiency. The interaction significance of parameters on the MRR is analysed based on the interaction curve of two parameters. Meanwhile, the variation of MRR caused by the change in △y(x), △y x, and the sum and product of △y(x) are obtained by calculation. The interaction significance of parameters on MRR is obtained by comparing the sum and product of △y(x), while the significance of each parameter on MRR is obtained by comparing △y(x) and △y x. The reasons for the variation of interaction significance are revealed by analysing the differences in crater diameters and discharge waveforms. It is concluded that different levels of interactions exist between the processing parameters. The interaction between pulse on time and pulse off time affects the MRR most significantly, and current affects the MRR most significantly among single factors. The interaction of parameters can affect processes such as dielectric breakdown, discharge channel expansion, discharge energy and its utilisation, dielectric deionisation, significantly affecting the MRR of sintered NdFeB processed by EDM-milling. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 4857 KiB  
Article
Modeling and Optimization of p-Benzoquinone Degradation via Flow-By Electro-Oxidation on Boron-Doped Diamond Electrodes
by Ever Peralta-Reyes, Alejandro Regalado-Méndez, Frida A. Robles, Carlos Méndez-Durazno and Patricio J. Espinoza-Montero
Processes 2025, 13(4), 942; https://doi.org/10.3390/pr13040942 - 22 Mar 2025
Viewed by 1139
Abstract
The electro-oxidation of p-Benzoquinone (p-BQ) was investigated in a flow-by reactor (FM01-LC) without separation, with two boron-doped diamond (BDD) electrodes as both the anode and cathode, in batch recirculation mode. The optimal operating conditions were determined using response surface methodology, [...] Read more.
The electro-oxidation of p-Benzoquinone (p-BQ) was investigated in a flow-by reactor (FM01-LC) without separation, with two boron-doped diamond (BDD) electrodes as both the anode and cathode, in batch recirculation mode. The optimal operating conditions were determined using response surface methodology, specifically a face-centered central composite design. The initial pH (pH₀) and applied current density (j) were evaluated as factors, while the p-BQ (η (%)) served as the response variable. The optimal conditions, a pH0 of 6.52 and a j of 0.124 A/cm2, achieved a maximum removal efficiency of 97.32% after 5 h of electrolysis. The specific energy consumption and total operating cost were 127.854 kWh/m3 and USD 3.7 USD/L, respectively. Full article
Show Figures

Figure 1

21 pages, 7483 KiB  
Article
Treatment of Produced Water Using a Pilot-Scale Advanced Electrochemical Oxidation Unit
by Bassam Tawabini and Abdullah Basaleh
Molecules 2025, 30(6), 1272; https://doi.org/10.3390/molecules30061272 - 12 Mar 2025
Viewed by 1028
Abstract
The main goal of this study is to optimize the treatment of produced water (PW) using a pilot-scale advanced electrochemical oxidation unit. The electro-cell is outfitted with a boron-doped diamond BDD anode and gas diffusion (GDE) cathode. Synthetic PW was prepared in the [...] Read more.
The main goal of this study is to optimize the treatment of produced water (PW) using a pilot-scale advanced electrochemical oxidation unit. The electro-cell is outfitted with a boron-doped diamond BDD anode and gas diffusion (GDE) cathode. Synthetic PW was prepared in the laboratory following a protocol designed to closely replicate the characteristics of real PW. The PW used in this study had a total dissolved solids (TDS) concentration of 16,000 mg/L and a total organic carbon (TOC) concentration of 250 mg/L. The effect of various electrooxidation parameters on the reduction in TOC was investigated including pH (2–12), electric current (I) (50–200 mA/cm2), and airflow rate (0–4 NL/min). Response surface method RSM with a Box–Behnken design at a confidence level of 95 percent was employed to analyze the impact of the above factors, with TOC removal used as a response variable. The results revealed that the TOC level decreased by 84% from 250 to 40 mg/L in 4 h, current density of 200 mA/cm2, pH of 12, and airflow rate 2 (NL/min). The investigation verified the influential role of diverse operational factors in the treatment process. RSM showed that reducing the airflow rate and increasing pH levels and electric current significantly enhanced the TOC removal. The obtained results demonstrated profound TOC removal, confirming the substantial potential of treating PW using the electrochemical method. Full article
(This article belongs to the Special Issue Advanced Oxidation/Reduction Processes in Water Treatment)
Show Figures

Figure 1

10 pages, 699 KiB  
Article
Method for Removing Impurities by Treating Silicon Tetrachloride with Hydrogen Plasma
by Roman Kornev, Georgy Mochalov, Nikita Maleev, Sergei Romanov, Konstantin Kornev and Alexandra Kalinina
Inorganics 2025, 13(3), 80; https://doi.org/10.3390/inorganics13030080 - 10 Mar 2025
Viewed by 940
Abstract
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8 [...] Read more.
The transformation of organochlorine and organic impurities such as CCl4, C2H2Cl2, C2HCl3, C2Cl4, C2H2Cl4, CH4, C3H8, C4H10, and C6H6 in the content range of 10−2–10−6 wt.%, as well as BCl3 impurities at the level of 3 × 10−2 wt.%, was considered. A method has been developed for removing limiting impurities of carbon and boron during the process of the hydrogen reduction of silicon tetrachloride in a high-frequency arc gas discharge at atmospheric pressure. The thermodynamic and gas-dynamic analyses of the reduction process of silicon tetrachloride in hydrogen plasma, along with the behavior of organochlorine impurities, organic substances, and boron trichloride, was conducted. These analyses suggest that under equilibrium conditions, the conversion reactions of impurities result in the formation of silicon carbide and boron silicide. Potential chemical reactions for the conversion of the studied impurities into silicon carbide and boron silicide have been proposed. A new potential for plasma chemical processes has been identified, enabling the effective purification of chlorosilanes from both limiting and limited impurities. The results demonstrate the possibility of significantly reducing the concentrations of organochlorine and organic impurities, as well as boron trichloride, during the reduction of silicon tetrachloride in hydrogen plasma. The maximum conversion rates achieved included 99% for the organochlorine impurity CCl4 to silicon carbide, 91% for benzene impurity to silicon carbide, and 86% for boron trichloride to boron silicide. Full article
Show Figures

Figure 1

15 pages, 6218 KiB  
Article
Porous Glass with Layered Morphology Prepared by Phase Separation
by Qiang Chen, Yihong Chen, Zhe Wang, Yao Zhou and Changjiu Li
Materials 2025, 18(5), 1133; https://doi.org/10.3390/ma18051133 - 3 Mar 2025
Viewed by 938
Abstract
In this study, porous glass with controllable layered structure was successfully prepared by the phase-separation method, with the aim to develop a high-performance high-temperature catalytic (denitrification) material. Glass compositions with different R values (n (Na2O)/n (B2O3)) were [...] Read more.
In this study, porous glass with controllable layered structure was successfully prepared by the phase-separation method, with the aim to develop a high-performance high-temperature catalytic (denitrification) material. Glass compositions with different R values (n (Na2O)/n (B2O3)) were designed based on the phase diagram of sodium borosilicate glass. The layered porous structure was obtained by heat treatment in the phase-separation temperature range and acid-leaching treatment to remove the boron-rich phase. For the adsorption and separation process, the layered pore is very ideal, due to its high contact area, high storage capacity and easy mass transfer characteristics, which means it has high adsorption capacity and separation efficiency. The experimental results show that the thickness of the silicon layer can be precisely controlled in the range of 2–23 μm by adjusting the heat treatment time (1.25–10 h), and the material has excellent high-temperature stability (the pore structure parameters do not change significantly after calcination at 600 °C for 10 h). V2O5 (multiphase redox catalyst) can be uniformly loaded by the impregnation method, and the layered structure can be completely retained. The formation process of the layered structure was studied by infrared, Raman spectroscopy and SEM analysis. This study provides a new strategy for the development of customizable porous materials. Full article
Show Figures

Figure 1

22 pages, 10051 KiB  
Article
Reuse of Activated Carbons from Filters for Water Treatment Derived from the Steam Cycle of a Nuclear Power Plant
by Beatriz Ledesma Cano, Eva M. Rodríguez, Juan Félix González González and Sergio Nogales-Delgado
C 2025, 11(1), 19; https://doi.org/10.3390/c11010019 - 3 Mar 2025
Viewed by 1552
Abstract
Nuclear energy has a great impact on the global energy mix. In Spain, it supplies over 20% of current energy requirements, demonstrating the relevance of nuclear power plants. These plants generate different types of waste (apart from radioactive) that should be managed. For [...] Read more.
Nuclear energy has a great impact on the global energy mix. In Spain, it supplies over 20% of current energy requirements, demonstrating the relevance of nuclear power plants. These plants generate different types of waste (apart from radioactive) that should be managed. For instance, the activated carbon included in filters (which neutralize isotopes in a possible radioactive leakage) should be periodically replaced. Nevertheless, these activated carbons might present long service lives, as they have not undergone any adsorption processes. Consequently, a considerable amount of activated carbon can be reused in alternative processes, even in the same nuclear power plant. The aim of this work was to assess the use of activated carbons (previously included in filters to prevent possible radioactive releases in primary circuits) for water treatment derived from the steam cycle of a nuclear power plant. A regeneration process (boron removal) was carried out (with differences between untreated carbon and after treatments, from SBET = 684 m2 g−1 up to 934 m2 g−1), measuring the adsorption efficiency for ethanolamine and triton X-100. There were no significative results that support the adsorption effectiveness of the activated carbon tested for ethanolamine adsorption, whereas a high adsorption capacity was found for triton X-100 (qL1 = 281 mg·g−1), proving that factors such as porosity play an important role in the specific usage of activated carbons. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Figure 1

18 pages, 20316 KiB  
Article
Efficient Removal of Sulfamethoxazole in Electro-Oxidation System with Boron-Doped Diamond Anode and Electrolyte NaCl: Degradation Mechanisms
by Xinghui Du, Wenxi Xie, Xianhu Long, Dazhen Li, Weixiong Huang, Igor Ying Zhang and Rongfu Huang
Molecules 2025, 30(5), 1056; https://doi.org/10.3390/molecules30051056 - 25 Feb 2025
Viewed by 744
Abstract
In recent years, the pollutant sulfamethoxazole (SMX) that is widely used in medical therapy has been frequently detected in different water systems. Thereby, it is necessary to develop green and effective advanced oxidation strategies, especially the electro-oxidation process. In this study, an electro-oxidation [...] Read more.
In recent years, the pollutant sulfamethoxazole (SMX) that is widely used in medical therapy has been frequently detected in different water systems. Thereby, it is necessary to develop green and effective advanced oxidation strategies, especially the electro-oxidation process. In this study, an electro-oxidation system featuring a boron-doped diamond (BDD) anode and NaCl as the supporting electrolyte was implemented to effectively remove sulfamethoxazole (SMX) without the addition of external oxidants. The operational parameters were optimized using the response surface methodology with a pH 7.5, current density of 4.44 mA/cm2, and NaCl concentration of 20 mmol/L. The optimization significantly enhanced the degradation efficiency of SMX to obtain 100% removal in 5 min. Results of scavenging and chemical probe experiments indicated the presence of hydroxyl radicals (OH) and chlorine radicals (Cl), with the latter primarily forming between the reaction of Cl and OH. A competition experiment further revealed the relative oxidative contribution of Cl of 38.6%, highlighting its significant role in the degradation process. Additionally, ion chromatography analysis confirmed the presence of Cl without the formation of harmful by-products such as ClO4, affirming the environmentally friendly nature of the system. The toxicity of the degradation by-products was also assessed. The application of current was investigated to explore the influence of coexistence ions as well as repeatability. Overall, this work highlighted the effectiveness of the electro-oxidation system for the degradation of organic pollutants in saline wastewater, demonstrating the significance of optimization of operational parameters for efficient and sustainable environmental remediation. Full article
Show Figures

Figure 1

14 pages, 5458 KiB  
Article
Characterization of Boron-Modified Activated Carbons
by Ayhan Orhan, Nurettin Çek, Selman Sezer and Ismail Demir
Inorganics 2025, 13(2), 54; https://doi.org/10.3390/inorganics13020054 - 13 Feb 2025
Viewed by 1085
Abstract
Although there are various boron production methods for modified activated carbons used in sulfur removal, catalyst synthesis, and hydrogen capture/storage processes, the modification of activated carbon with borax solutions has attracted attention as the easiest synthesis method. However, structural characterization analyses in previous [...] Read more.
Although there are various boron production methods for modified activated carbons used in sulfur removal, catalyst synthesis, and hydrogen capture/storage processes, the modification of activated carbon with borax solutions has attracted attention as the easiest synthesis method. However, structural characterization analyses in previous studies contradict each other and, therefore, more detailed characterization is needed. In this study, 0.25 M and 0.5 M borax solutions are prepared in distilled water; then, 2 g of commercial activated carbon is added to each one, mixed at 60 °C, filtered, and dried. Thus, two different boron-modified activated carbon materials are obtained. Structural characterization tests of these materials are performed and analyzed by comparing with the literature. As a result, two different boron-modified activated carbon structural analyzes are compared and it is confirmed that commercially activated carbon material induced phase composition and chemical bond modification as a result of modification with borax. It is revealed that the induction of phase composition and chemical bond modification is more dominant with increasing borax concentration. The produced boron-modified activated carbon materials have great promise for the development of new technologies in the fields of the environment, energy, lightweight compressible materials, thermal insulation, and composite materials. Full article
Show Figures

Graphical abstract

Back to TopTop